ATLAS: Recent Results and Future Perspectives

Song-Ming Wang Academia Sinica

On behalf of the ATLAS Collaboration

SILAFAE XII3/4 November 8-12, 2021 ICTP-SAIFR, Sao Paulo, Brazil

The LHC (Large Hadron Collider)

- p-p collider
- •Design parameters:

•
$$\sqrt{s} = 14$$
 TeV, $L_{inst} = 10^{34}$ cm⁻² s⁻¹

Can also collide heavy ion particles
Pb, Xe

The ATLAS Experiment

	Weight (tons)	Length (m)	Height (m)
ATLAS	7000	44	25

•One of two general purpose experiments

Run 2

- •LHC ran at $\sqrt{s}=13$ TeV from 2015-2018
 - 147 fb⁻¹ of pp data recorded
 - 139 fb⁻¹ good for physics analysis, data taking efficiency ~95%
 - $L_{\rm max} \sim 2 \times 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$
 - Ave. #of interactions per crossing ~ 34
- •Also heavy-ion collisions (Pb+Pb, p+Pb, Xe+Xe)
- •Precision object performance. Uncertainties :
 - •Electron identification <1% [$p_T \sim 30-250$ GeV], muon<1% [$p_T \sim 10-150$ GeV], b-tagging ~1-1.5% [$p_T \sim 40-250$ GeV @70% working point]
 - •Energy scale for central jets $\sim 1\%$ for $p_T \sim 250-2000$ GeV
- •Luminosity uncertainty of 1.7%

Broad Range of Physics Topics

•Can only present short summary of recent results on a few topics and show the future perspectives on some of them.

• Apologies if some topics are highlighted more than others

Higgs Boson Measurements

- •Higgs-like boson was discovered at LHC in Run-1
- •At Run-2, focus on measuring its properties:
 - •Major production channels (ggF, VBF, W/ZH, ttH) and decays modes (H \rightarrow WW, ZZ, $\gamma\gamma$, and 3rd generation fermions bb/ $\tau\tau$) have been observed
 - •Now looking for decays to 2^{nd} generation fermions cc/µµ and other rare decays
 - •Improving the coupling measurement precision
 - •Perform fiducial/differential and simplified template cross section (STXS) measurements
 - •Search for signs of New Physics with the Higgs boson

Updates on H→WW^{*}

ATLAS-CONF-2021-014

•High statistics of $H \rightarrow WW^* \rightarrow ev\mu v$ are used to study different Higgs production modes

- **ggF** : jets from ISR
- •**VBF** : 2 forward jets, large m_{jj} and large $\Delta \eta_{jj}$
- •Dominant background from continuum WW* and ttbar
 - •Exploit $\Delta \phi(e, \mu)$, smaller for signal due to spin-0 Higgs
- •Categorize selected events into different jet multiplicities
- •Final discriminant:

• ggF:
$$m_{\rm T} = \sqrt{(E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss})^2 - |p_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss}|}$$

• VBF : deep neural net (DNN)

Updates on $H \rightarrow \tau \tau$

 $\sigma_{
m i} imes B_{
m tr}^{
m H}$ [pb]

Ratio to SM

 10^{-1}

- •Relative high BR H $\rightarrow \tau\tau$ decay (~6.3%) provides large statistics to study the Yukawa mechanism and the Higgs properties
- •Analyzed full Run-2 data to measure:
 - pp \rightarrow H \rightarrow $\tau\tau$ inclusively in the 4 dominant production modes
 - as function of key production properties (e.g. $p_T(H)$, Njets,...)
- •Measured in di-tau decay modes : $\tau_{had} \tau_{had}$, $\tau_{lep} \tau_{had}$, $e\mu$
- •Categorize selected events in the dominant production modes
- •Main background from $Z(\rightarrow \tau\tau)$ +jets production

•Inclusive cross section ($|y_H| < 2.5$)

• $\sigma=2.90 \pm 0.21$ (stat) $^{+0.37}_{-0.32}$ (syst) pb ($\sigma^{SM}=3.14 \pm 0.08$ pb) •Significance : ggF : 3.9 σ obs (4.6 σ exp), VBF: 5.3 σ obs (6.2 σ exp)

Search for Higgs Couplings to Charm Quarks

ATLAS-CONF-2021-021

•Probe Higgs coupling to 2nd gen. fermions •Difficult at hadron collider

•Small BR (~2.9% at m_{H} =125 GeV)

- •Large BG, challenging c-jet identification
- •Developed a charm jet tagger, to select "intermediate" lifetime charm hadrons between longer lifetime b and prompt uds/g
- •27% efficiency for charm, 8% for b, 1.6% light •Searched in WH \rightarrow lvcc, ZH \rightarrow vv/ll cc
 - •Select events with large E_t^{miss} or 1,2 leptons
 - •Require 1 or 2 c-tagged jets, veto b-tag jets
- m_{cc} is the discriminating variable, simultaneous fit to signal and control regions
- •Validate analysis strategy by measuring $VW(\rightarrow cq)$, $VZ(\rightarrow cc)$ (V=W or Z)

σ×BR / σ×BR(SM)	value	stat	syst
μ (VW(cq))	0.83	0.11	0.21
μ (VZ(cc))	1.16	0.32	0.36
μ (VH(cc))	-9	10	12

• VW(cq) and VZ(cc) are observed with 3.8σ and 2.6σ , consistent with expectation

- •Set 95% CL limit on $\sigma(VH(cc)) < 26 \times SM$ $(31 \times SM expected)$
- •Set limit on H-charm coupling modifier
 - $|\kappa_c| < 8.5$ (12.4 exp) at 95%CL (assuming modifier only affect $H \rightarrow cc$, not Higgs production)

Search for Higgs Couplings to Charm Quarks

•ZH \rightarrow µµcc candidate event. m(µµ)=92 GeV, p_T(µµ)=150 GeV • p_T(c1)=123 GeV, p_T(c2)=71 GeV, m(cc)=123 GeV

Higgs Combination

ATLAS-CONF-2021-53

•Combined all major production/decay mode measurements (13 TeV, L~36-139 fb⁻¹)

•Global signal strength : $\mu = 1.06 \pm 0.06 = 1.06 \pm 0.03(\text{stat.}) \pm 0.03(\text{exp.}) \pm 0.04(\text{sig. th.}) \pm 0.02(\text{bkg. th.})$ $\mu_{global} = \frac{\sigma(\text{exp})}{\sigma(\text{SM})}$ Signal theory uncertainty becoming the dominant uncertainty source

Particle mass [GeV]

- •Extract coupling strength modifiers (in κ framework) as function of particle mass
- •Assume no BSM contribution to Higgs decay
- •Good agreement of couplings through three orders of magnitude of particle mass

Combined STXS Measurements

ATLAS-CONF-2021-53

•Extracted best-fit values for cross sections ($\sigma_i \times B_{ZZ}$) of different production processes and in several STXS regions, and the ratios of the branching fractions (B_f/B_{ZZ})

•Good compatibility with the SM predictions

Di-Higgs Production

•HH measurement provides a direct probe of the Higgs boson self-coupling $\lambda_{_{\rm HHH}}$

•Searched in ggF + VBF production, and in several different decay modes

Di-Higgs Production

NEW

- •HH→bbττ : _<u>ATLAS-C</u>
 - ATLAS-CONF-2021-030
- Moderate background and branching fraction
 B(HH→bbττ)=7.3%
- •Select events in $\tau_{lep} \tau_{had}$ and $\tau_{had} \tau_{had}$ channels, with improved τ_{had} identification efficiency
- •Background mainly from Top, V+jets, VV, single Higgs and fake τ
 - •Estimate from simulation and data
- •Extract signal from fits to multivariate discriminants

Events / 0.14 10' Data ATLAS Preliminary SM HH at exp. limit vs = 13 TeV, 139 fb⁻¹ 10^{6} Top-quark had had Jet $\rightarrow \tau_{had}$ fakes (MJ) Signal Region $Z \rightarrow \tau \tau + (bb, bc, cc)$ 10^{5} Jet $\rightarrow \tau_{\rm had}$ fakes (tī) Other 10 SM Higgs Uncertainty Pre-fit background 10^{3} 10^{2} 10 Data/Pred BDT score

- •Set Limit at 95% CL
 - • $\sigma(HH)/\sigma^{SM}(HH) \le 4.7 (3.9) \text{ obs } (exp)$
 - factor of 4 improvement over 36 fb⁻¹ analysis
- •Most sensitive single channel to non-resonant HH search at ATLAS

Di-Higgs Production : Combination ATLAS-CONF-2021-052

Di-Higgs Production

•HH \rightarrow bb $\tau\tau$, $\mu+\tau_{had}$ channel • m(bb)=120 GeV, m($\tau\tau$)^{MMC}=120 GeV, m(HH)=680 GeV_{16}

New Heavy Resonances: W'

ATLAS-CONF-2021-025

Multiple theories beyond SM predict existence of new heavy particles. Example from:
Extended Gauge Symmetry for new gauge bosons (e.g. W', Z')

•Heavy W bosons : W'→τν

•W'→lv, flavour symmetric in Sequential SM (SSM)
•Coupling to τ could be enhanced for Non-Universal Gauge Interaction Model (NUGIM), if cotθ_{NU}>1

- 1 τ_{had} candidate and large $E_{T}^{\ miss}$
- Main background from W $\rightarrow \tau v$, Top, Diboson and jets faking τ_{had}

•Transverse mass $M_{_T}$ of $\tau_{_{had}}$ and $E_{_T}^{_{\mbox{miss}}}$ used as discriminant

Limits on W' at 95% CL : •SSM: exclude mass below 5 TeV obs (4.9 TeV exp)

•NUGIM: exclude mass up to 3.5-5 TeV (depend on θ_{NU})

Lepton Flavour Violation

Lepton Flavour is conserved in SM, but not protected by any fundamental principle
Violation only observed in neutrino oscillations, negligible for charged leptons in SM

• ~8 *billion Z's produced in ATLAS in Run-2* => update LFV search in Z decays :

•Z→*l*τ (*l*=e,μ)

arXiv:2105.12491

- $\tau \rightarrow e/\mu + 2\nu$
- •**Signature:** $e, \mu + E_T^{miss}$
- •Background : $Z \rightarrow \tau\tau \rightarrow e\mu + 4\nu$, ttbar, diboson, fake leptons
- •NN classifiers trained to discriminate against different background sources

Upper	ATLAS	LEP		
limits @	(×10 ⁻⁶)	(×10⁻6)		
95% CL				
B(Z→eµ)	0.34	1.7		
		(OPAL)		
B(Z→eτ)	5.0	9.8		
		(OPAL)		
B(Ζ→μτ)	6.5	12		
		(DELPHI)		
Combined with $Z \rightarrow e/\mu + \tau$,				

 τ decays hadronically

•Z→eµ

ATLAS-CONF-2021-042

- •**Signature:** $e, \mu + low E_T^{miss}$
- •**Background** : $Z \rightarrow \tau \tau \rightarrow e\mu + 4\nu$, $Z \rightarrow \mu \mu$, ttbar, diboson
- •Search for peak around m_z in $m_{e\mu}$ distr.

•Surpasses LEP limits !

PRD 103 (2021) 112006

Dark Matter Searches

- •At LHC dark matter (DM) can be produced via decay of a mediator (med) to the dark sector, and indirectly detected by measuring the SM particles recoiling against it. Signature : Large $E_T^{miss} + X$
- **Mono-jet** (**E**_T^{miss} + jet) : Golden channel for DM search •Can interpret results in several models
- •Selection :
 - ≥ 1 jet pT>150 GeV, $E_T^{miss}>200$ GeV, no lepton/photon
- •Background : Z(vv)+jets, W(lv)+jets, ttbar + single top, diboson, multi-jet, non-collision background
- •Discriminating variable : E_T^{miss}

•Results:

Model-independent 95% CL limit on visible cross sections range between 736 fb and 0.3fb.
Simplified model with axial-vector mediator (Z_A) and Dirac WIMPs (χ)
Exclude m_{ZA} up to 2.1 TeV for m_χ=1 GeV (g_a=0.25, g_y=1)

H→Invisible Decay

•In SM BR(H \rightarrow inv) ~0.1% (H \rightarrow ZZ \rightarrow 4v)

•Can be enhanced in some BSM where H couples to dark matter

•ATLAS recently updated the H→inv search with full Run-2 data sample and in several different channels

Channel (Run-2)	Limit on BR(H→inv)	Reference
VBF + H	0.13 (0.13 ^{+0.05} -0.04)	ATLAS-CONF-2020-008
tt + H (tt2L + tt0L)	0.40 (0.36 ^{0.15} -0.10)	ATLAS-CONF-2020-052
Z(II) + H	0.18 (0.18)	ATLAS-CONF-2021-029
VBF + H + photon	0.37 (0.34 ^{+0.15} -0.10)	arXiv:2019.00925

- •Run-2 VBF+H and ttH are combined with Run-1 •BR(H→inv): <0.11 (0.11^{+0.04}_{-0.03} exp) @ 95%CL
- •BR limit interpreted as limit on WIMP-nucleon elastic scattering cross section in Higgs portal model (assuming DM particles are either scalar or Majorana fermions)
- •A preliminary combination. Final Run-2 combination will include Z(ll)+H and VBF+H+photon

SUSY : All Hadronic Search

- •Focus on pair production of heavy "Electroweakinos" decaying into SM bosons (W/Z/H) and LSP
- •Exploit the large BR of hadronic decays of W/Z/H to improve the search sensitivity
- •Large radius jet: to capture collimated energetic jets
- •Jet substructure : to identify hadronic decays of W/Z/H
- •Orthogonal signal regions : 4Q, 2B2Q
- •Final state : large E_T^{miss} , 2 large-R jets, no lepton
- •**Dominant background :** Z(vv)+jets, W(lv)+jets and di-boson

- •Many different signal models are considered
- •Example: exclusion limits wino pair decaying into bino LSP (C1N2-WZ)
- •Limits extending into TeV region, beyond reach of the leptonic analyses

Study of the $B_c^+ \rightarrow J/\psi D_s^{(*)+}$

ATLAS-CONF-2021-046

- • $\mathbf{B}_{c}^{+} \rightarrow \mathbf{J}/\psi \mathbf{D}_{s}^{(*)+}$ can occur through b decay with c as a spectator, or through annihilation diagram
- •These decays were first observed by LHCb and ATLAS using Run-1 data sample
- •ATLAS has analyzed full Run-2 data to achieve more precise measurements of the branching fraction and the polarization
- •Reference channel : $\mathbf{B}_{c}^{+} \rightarrow \mathbf{J}/\psi \pi^{+}$
- •Use it for branching fraction ratio measurements

$$\begin{split} R_{D_s^+/\pi^+} &= 2.76 \pm 0.33 (\text{stat.}) \pm 0.29 (\text{syst.}) \pm 0.16 (\text{br.f.}) \\ R_{D_s^{*+}/\pi^+} &= 5.33 \pm 0.61 (\text{stat.}) \pm 0.67 (\text{syst.}) \pm 0.32 (\text{br.f.}) \\ R_{D_s^{*+}/D_s^+} &= 1.93 \pm 0.24 (\text{stat.}) \pm 0.10 (\text{syst.}) \\ \Gamma_{\pm\pm}/\Gamma &= 0.70 \pm 0.10 (\text{stat.}) \pm 0.04 (\text{syst.}) \end{split}$$

•New measurements are consistent with earlier measurements of ATLAS and LHCb, and with better precision

Run 3, HL-LHC

Run 3:

- •Will start in 2022, $\sqrt{s}=13.6$ TeV
- $\int L \sim 150 \text{ fb}^{-1}$, will increase the total data sample by factor of 2
- $L_{\rm max} \sim 2 \times 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$
- Ave. pileup ~60

HL-LHC:

- • $\sqrt{s}=14 \text{ TeV}$
- $\int L \sim 3000-4000 \text{ fb}^{-1}$: will be ~15-20 times more data than Run-2
- $L_{\rm max} \sim 5-7.5 \times 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$
- Ave. pileup ~200

Simulated HL-LHC event, with 200 reconstructed vertices (µ=200)

- •A lot of data for
 - •QCD and EWK precision measurements
 - •Deep understanding of Higgs properties
 - •Probe BSM in both direct searches and in precision measurements

ATLAS Upgrades

(ITK: new inner tracking detector for HL-LHC)

ATLAS Upgrade	Phase-1 (Run-3)	Phase-2 (HL-LHC)
DAQ & Trigger	Trigger hardware : - Higher purity e/γ triggers - Lower forward muon fake rate	Level-1 (L1) rate increase: 1 MHz, High Level Trigger (HLT) increase : ~10 kHz
Inner Tracker		New, up to η <4 (ITK)
Calorimeter	L1 trigger electronics for Liquid Argon (LAr)	Electronics upgrade for LAr & Tile
Muon	New Small Wheel (NSW)	Electronics upgrade + new muon chamber
Timing detector		New High Granularity Timing Detector in endcap

Detector Performance (Phase-2)

•Performance at HL-LHC improved by up to 50% in $|\eta|$ <2.5, and enlarged geometrical coverage

 di-photon mass resolution at HL-LHC, with <μ>~200, is comparable to Run2 for the optimistic scenario

Higgs : Projections for Production / Coupling Measurements

•Combined all major production/decay mode measurements

ATL-PHYS-PUB-2019-006

Scenario S1: Keep Run2 systematic uncertainties (pessimistic)
Scenario S2 (baseline): Reduction of syst. uncertainties defined in CERN Yellow Report

Higgs : Projections for VH(→bb), VH(→cc)_ATL-PHYS-PUB-2021-039

VH(→cc)

•Both projections based on recent analyses with full Run-2 data and using assumption similar to Scenario S2

VH(→bb)

Projection for Di-Higgs Search

ATL-PHYS-PUB-2018-053 arXiv:1902.00134

•Recent full Run-2 HH results improved significantly over the previous 36 fb⁻¹ results •*May reach the discovery level of di-Higgs production at the end of HL-LHC* !

Projection for *ll* **and** *lv* **Resonance Searches**

- •Extend Z' $_{SSM}$ exclusion limit by ~1.4 TeV
- •Overall uncertainty $\sim 6.5\% \times m_{II}$ [TeV]
 - expt. (rec. Id, resolution) : $\sim 2.9\% \times m_{ll}$ [TeV]
 - theory (dominated by PDF) : $\sim 5.6\% \times m_{ll}$ [TeV]

•Extend exclusion W' $_{SSM}$ mass by ~2 TeV

ATL-PHYS-PUB-2018-044

Projection for Dark Matter Searches

•Extrapolate from the Mono-jet ($E_T^{miss} + jet$) Run-2 analysis with 36 fb⁻¹ data

Mono-jet $(E_T^{miss} + jet)$

ATL-PHYS-PUB-2018-043

- •Searches are sensitive to systematic uncertainties
- •Expected exclusion limit on mediator mass can be extended by several hundreds of GeV
- •Discovery could be reached for a signal with DM mass of 1 GeV and mediator mass of 2.25 TeV

Large improvement compared to current LHC results !

Exotics/SUSY Search Reach at HL-LHC

Model	spin	95% CL Limit (sol	id), 5 σ Discovery ((dash)	Section hl/he-lhc	HL/HE-LHC	SUSY	Searche	HL-UHG, [Litr = Jah HE-LHC, [Litr = Jah	Sir discovery (95% CL exclusion)	Sir	nulation Preliminary
KK Ab	2	ىلىبىلىيىلىيە	őpopol i	<u>infri</u>	611	Model	e,μ,τ,γ	Jets	Mass limit			Section
$\frac{1}{1}$	-				0.1.1	<i>§§</i> , <i>§</i> →η ^į <i>ξ</i> ⁰	0	4 jets	1	2.9 (3.2) TeV	m($\tilde{\ell}_{1}^{0}$)=0	2.1.1
$HVI \rightarrow VV$	1				6.4.4 6.4.4	<u>88.8→0</u> 071	0	4 jets	1	52(5./) IeV	m(¥1)=0	2.1.1
$G_{RS} \rightarrow W^+W^-$	1				6.4.6	3 88,8→n(c) 10 m n m ²	0	Multiple	7 2	2.3 (2.5) TeV	m(X;)=0	2.1.3
$G_{RS} \rightarrow t\bar{t}$	1				6.2.2 6.2.2	gg, g→t01 NUHM2, g→tī	0	Multiple/26	2	5.5 (5.9) TeV	mik li≃oni dev	2.4.2
$Z'_{TC2} \rightarrow t\bar{t}$	1				6.2.3 6.4.6	$\tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow i\tilde{k}_{1}^{0}$	0	Multiple/26	ĥ.	1.4 (1.7) TeV	m($\hat{\chi}_{1}^{0})$ =0	21.2, 2.1.3
7 4	- 1					$\hat{\mathbf{Q}}_{\mathbf{I}} = \hat{I}_1 \hat{I}_1, \hat{I}_1 \rightarrow \hat{U} \hat{U}_1^0$	0	Multiple/2b	<u>h</u>	0.6 (0.85) TeV	$\Delta m(\tilde{r}_1, \tilde{\chi}_1^0) \sim m(t)$	2.1.2
$Z_{SSM} \rightarrow \pi$	- 1 I.				6.4.6	$i_{1}i_{1}, i_{1} \rightarrow b \tilde{t}^{+}/d \tilde{t}_{1}^{0}, \tilde{t}_{2}^{0}$	0	Multiple/2b	Ĩ	3.16 (3.65) TeV		2.4.2
$Z_{\psi} \rightarrow \ell^+ \ell^-$	1				6.2.5 6.2.5	$\tilde{X}_1^* \tilde{X}_1^-, \tilde{X}_1^\pm \rightarrow W^* \tilde{X}_1^3$	2 e,µ	0-1 jets	ž ²	0.66 (0.84) TeV	m(\hat{x}_{1}^{0})=0	2.2.1
$Z'_{SOM} \rightarrow \ell^+ \ell^-$	1			11	6.2.5 6.2.4		3 e.µ	0 1 jots	$\hat{x}_1^* \hat{x}_2^*$	0.92 (1.15) TeV	$m(\tilde{x}_1^0)=0$	2.2.2
z′ _+	- 1					Sing XiX2 via WL Wh→lvtb	1 <i>e</i> ,µ	2-3 jets/2/i	$\tilde{\chi}_1^* / \tilde{\chi}_2^0$	1.06 (1.28) TeV	$m(\hat{x}_{1}^{\theta})=0$	2.2.3
Z _{SSM} → 1 1	- 1	••••••••			6.2.4	$\tilde{\chi}_2^{\pm} \tilde{\chi}_4^0 \rightarrow W^{\pm} \tilde{\chi}_1^0 W^{\pm} \tilde{\chi}_1^{\pm}$	2 e,µ	•	$\hat{\chi}_{2}^{a} / \hat{\chi}_{4}^{\mu}$	0.9 TeV	$m(\vec{\chi}_1^0)$ =150, 250 GeV	2.2.4
$W_{SSM} \rightarrow \tau v$	1	non an			6.2.7	$\mathbf{g} = \tilde{X}_1^* \tilde{X}_2^0 + \tilde{X}_2^0 \tilde{\mathbf{x}}_1^0, \tilde{X}_2^0 \rightarrow \mathbf{Z} \tilde{X}_1^0 \tilde{X}_1^* \rightarrow W \tilde{\mathbf{X}}$	2 e,µ	1 jet	$\hat{x}_1^* B_1^*$	0.25 (0.36) TeV	$m(\tilde{\ell}_1^0)$ =15 GeV	2.2.5.1
$W_{SSM} \rightarrow \ell v$	1	លោកចាត់ពាលកាត់ពាលការព័ត	mmut		6.2.6	$ \begin{array}{l} \mathbf{\hat{x}}_{1}^{*} \hat{X}_{2}^{0} + \hat{X}_{2}^{0} \hat{\xi}_{1}^{*}, \hat{X}_{2}^{*} \rightarrow \mathbf{Z} \hat{X}_{2}^{0}, \hat{\xi}_{1}^{*} \rightarrow \mathbf{W} \hat{X}_{1}^{0} \\ \mathbf{\hat{y}}_{1}^{*} \mathbf{\hat{y}}_{2}^{*} + \mathbf{Z} \hat{X}_{2}^{0}, \hat{X}_{1}^{*} \rightarrow \mathbf{W} \hat{X}_{1}^{0} \end{array} $	2 e,µ	1 jet	若成2	0.42 (0.55) TeV	m($\tilde{\ell}_1^0$)=15 GeV	22.5.1
$W_B \to t\bar{b} \to b\bar{b}\ell v$	1	monominanana			6.2.6	$\begin{array}{c} \mathbf{L} X_2 \mathbf{x}_1, \mathbf{x}_1 \mathbf{x}_1, \mathbf{x}_1 \mathbf{x}_1 \\ \mathbf{g} (\pi i \theta \ (\pi i - \pi i $	24	Tilet	X1	0.21 (0.35) TeV	$\Delta m(\ell_2, \chi_1) = 5 \text{GeV}$	22.5.2
	1		•••••		646	X ₂ X ₄ wa same-sign w w	2 ε.μ	v	WINO	0.00 (1.00) 164		2.4.2
Maiorana -	2			-	0.4.0	$\tilde{\tau}_{L,k} \tilde{\tau}_{L,k}, \tilde{\tau} \rightarrow t \tilde{\ell}_1^{\prime\prime}$	27		1	0.53 (0.73) TeV	m($\hat{\ell}_1^*$)=0	2.3.1
$V^{majorana} \rightarrow \ell q q$	12		1000 <u>-</u>		5.1.3 5.1.3	en an S H	2τ, τ(e, μ) 2τ, τ(e, μ)		T.	0.47 (0.65) IEV 0.81 (1.15) TeV	$\mathfrak{m}(\tilde{t}_1)=0, \mathfrak{m}(\tilde{\tau}_1)=\mathfrak{m}(\tilde{\tau}_n)$ $\mathfrak{m}(\tilde{t}_1)=0, \mathfrak{m}(\tilde{\tau}_1)=\mathfrak{m}(\tilde{\tau}_n)$	232
v^{Heavy} $(m_N = m_E)$	1	nnnni			5.1.1 5.1.1	11 12.12 2.24		2404-157			unfetten unfettendelst	Protection (1)
$\ell^* \to \ell V$	1				6.3.1	$X_1^*X_1^*, X_1^*X_1^*$, long-lived X_1^* $\hat{X_1^*}\hat{X_1^*}, \hat{X_1^*}\hat{X_1^*}$, long-lived $\hat{X_1^*}$	Disapp. trk, Disapp. trk,	1 jet 1 jet	$\hat{X}_{i} = \{r(\hat{X}_{i})=1ns\}$ $\hat{X}_{i}^{\dagger} = ir(\hat{X}_{i}^{\dagger})=1ns]$	0.8 (1.1) lev 0.6 (0.75) TeV	Wino-like Xî Hiacsino-like Xî	4.1.1
10(animated) he	2					MSSM, Electroweak DM	Disapp. trk.	1 jet	DM mass	0.88 (0.9) TeV	Wino-like DM	4.1.3
$LQ(pair prod.) \rightarrow bi$			HE-LHC	1	5.2.3 5.2.4	NSSM, Electroweak DM	Disapp. trk.	1 jet	DM mass	2.0 (2.1) TeV	Wino-like DM	4.1.3
$LQ \rightarrow t\mu$	0	annanag annanag	√s = 27 TeV, I	L = 15 ab 1	5.2.1	MSSM, Electroweak DM	Disapp. trk.	1 jet	DM mass	0.28 (0.3) TeV	Hggsino-like DM	4.1.3
$LQ \rightarrow t\tau$	0	mmg			5.2.1	S B MSSM, Electroweak DM	Disapp. trk,	1 jet	DM mass	0.55 (0.6) TeV	Higgsino-like DM	4.1.3
11++11 ot of of ()			HL-LHC			\hat{g} R-hadron, $\hat{g} \rightarrow q q \hat{q}_1^0$	0	Multiple	g (n(g) =0.1 - 3 ns)	3.4 TeV	$m(\bar{\chi}_1^0)$ =100 GeV	4.2.1
$\Pi \Pi \to \iota_h \tau \tau \tau (I)$	VH)U		√s = 14 TeV. I	L = 3 ab ⁻¹	5.1.1 5.1.1	ğ R-hadron, ğ→qqVî	0	Multiple	ğ [π(ğ)=0.1 - 10.ns]	2.8 TeV		4.2.1
$H^{++}H^{} \to \tau_h \ell^{\pm} \ell^{\mp} \ell^{\mp} (I$	H) 0			<u> </u>	5.1.1 5.1.1	GMSB $\bar{\mu} \rightarrow \mu \bar{G}$	displ. µ	÷	<i>p</i>	0.2 TeV	ct =1000 mm	4.2.2
$(\ell = e, \mu)$	0	2 4 6	8 10 12	14 arXiv	:1812.07831				0-1 1			arXiv:1812.07831
			Mass s	cale [TeV]					Vie I.	Mass scale [IEV]		

•Many more projection studies on Exotic/SUSY searches can be found at :

arXiv:1812.07831

Summary

- •Many new results from ATLAS have improved upon not just with more data but also with improvement in the analysis methods
- •Tremendous work has been performed by the collaboration to determine the physics potential at the HL-LHC
 - •Higgs productions and decays can be measured to a precision of a few percent and we may reach the discovery level of di-Higgs production at the end of HL-LHC
 - •Large extensions can be made for Beyond SM searches with more data and with improve detector performance
- •However reduction of systematic uncertainties, improvement of theoretical understanding and innovation of advanced techniques will be important for the success of the HL-LHC program.
- •Run-3 data taking will start in a few months. More exciting new results will be coming soon.

ATLAS public physics results : https://twiki.cern.ch/twiki/bin/view/AtlasPublic

Backup

C-jet tagging efficiency

Mono-jet

Table 9: Observed and expected 95% CL upper limits on the number of signal events, S_{obs}^{95} and S_{exp}^{95} , and on the visible cross section, defined as the product of cross section, acceptance and efficiency, $\langle \sigma \rangle_{obs}^{95}$, for the IM0–IM12 selections.

Selection	$\langle \sigma angle_{ m obs}^{95}$ [fb]	$S_{\rm obs}^{95}$	S ⁹⁵ _{exp}
$p_{\rm T}^{\rm recoil} > 200 {\rm GeV}$	736	102 274	83 000 ^{+22 000} -23 000
$p_{\rm T}^{\rm recoil} > 250 {\rm GeV}$	296	41 158	33800^{+11300}_{-9400}
$p_{\rm T}^{\rm recoil} > 300 {\rm GeV}$	150	20 893	15400^{+5900}_{-4300}
$p_{\rm T}^{\rm recoil} > 350 {\rm GeV}$	86	11 937	8300 ⁺³¹⁰⁰ -2300
$p_{\rm T}^{\rm recoil} > 400 {\rm GeV}$	52	7214	4700^{+1800}_{-1300}
$p_{\rm T}^{\rm recoil} > 500 {\rm GeV}$	21	2918	1930^{+730}_{-540}
$p_{\rm T}^{\rm recoil} > 600 {\rm GeV}$	10	1391	940^{+360}_{-260}
$p_{\rm T}^{\rm recoil} > 700 {\rm GeV}$	4.1	574	490^{+190}_{-140}
$p_{\rm T}^{\rm recoil} > 800 {\rm GeV}$	2.1	298	277^{+106}_{-77}
$p_{\rm T}^{\rm recoil} > 900 {\rm GeV}$	1.2	164	168^{+65}_{-47}
$p_{\rm T}^{\rm recoil} > 1000 {\rm GeV}$	1.3	186	119^{+45}_{-33}
$p_{\rm T}^{\rm recoil} > 1100 {\rm GeV}$	0.5	73	75^{+28}_{-21}
$p_{\rm T}^{\rm recoil} > 1200 {\rm GeV}$	0.3	40	49^{+19}_{-14}

Physics Projection at HL-LHC

•Assume center of mass energy at 14 TeV and total integrated luminosity is 3000 fb⁻¹

•Methods for projection:

- •Detailed simulations are used to access performance of upgraded detector and HL-LHC condition
- •Existing results are **extrapolated** and take into account of increase in energy and performance of upgraded detector, or **parametric simulations** are used to allow full re-optimization of the analyses

•Systematic uncertainties :

- •Baseline scenario ("YR18" or "S2") :
 - •Theory uncertainties $\frac{1}{2}$ of Run-2
 - •No simulation statistical uncertainty
 - •luminosity uncertainty ~1%
 - •Statistical uncertainty reduced by $1/\sqrt{L}$
 - •Uncertainties due to detector limitations remain unchanged or revised according to simulation studies of upgraded detector.

- •Conservative scenario ("S1") :
 - •Use uncertainties of Run-2 measurements, assuming the higher pile-up effects will be compensated by detector upgrades.

ATL-PHYS-PUB-2018-054

CMS-PAS-FTR-18-011

VBF Higgs→Invisible Decay Candidate Event

Candidate in signal region of $H \rightarrow \chi \bar{\chi}$ with two VBF jets ($m_{jj} = 5.0 \text{ TeV}$) Longitudinal view Perspective x-y view

LeptoQuarks

- •Leptoquark (LQ), an BSM particle, predicted in GUTs and Composite Higgs models
- •At LHC, LQ can be :
 - pair produced : via gg fusion and qq annihilationsingly produced : in association with a lepton
- •LQ decay : into a quark and a lepton
- •Search for pair-produced 3rd generation scalar LQs
 - •Assume LQ decays to 3^{rd} generation quark, and to 3^{rd} generation or $1^{st}/2^{nd}$ generation lepton
- •Also searched for pair-produced 3rd generation vector LQs
- •Set 95% CL exclusion region in m(LQ) vs B(LQ decays to a quark and a charged lepton)

Possible HL-LHC Triggers

Table 2: Representative trigger menu for ATLAS operations at the HL-LHC. The offline p_T thresholds indicate the momentum above which a typical analysis would use the data. Where multiple object triggers are described only one threshold is given if both objects are required to be at the same p_T ; otherwise, each threshold is given with the two values separated by a comma. In the case of the $e - \mu$ trigger in Run 2, two sets of thresholds were used depending on running period, and both are listed. This table is a subset of Table 6.4 from the TDAQ TDR [10].

	Run 1	Run 2 (2017)	Planned
Trigger	Offline $p_{\rm T}$	Offline $p_{\rm T}$	HL-LHC
Selection	Threshold	Threshold	Offline $p_{\rm T}$
	[GeV]	[GeV]	Threshold [GeV]
isolated single e	25	27	22
isolated single μ	25	27	20
single γ	120	145	120
forward e			35
di-y	25	25	25
di-e	15	18	10
di- μ	15	15	10
$e - \mu$	17,6	8,25 / 18,15	10
single $ au$	100	170	150
di- $ au$	40,30	40,30	40,30
single <i>b</i> -jet	200	235	180
single jet	370	460	400
large-R jet	470	500	300
four-jet (w/ b-tags)		45(1-tag)	65(2-tags)
four-jet	85	125	100
H_{T}	700	700	375
$E_{ m T}^{ m miss}$	150	200	210
VBF inclusive			$2x75$ w/ ($\Delta\eta > 2.5$
(di-jets)			& $\Delta \phi < 2.5$)

New Heavy Resonances

ATLAS-CONF-2021-040

•Vector-Like Top quark

- •Search in single production channel
- •Probe the universal coupling constant $\boldsymbol{\kappa}$

•Controls the production cross section and resonance width of VLQ

- •Search in $T \rightarrow Zt$, $T \rightarrow Ht$
- •Select events with:
 - e or µ,
 - \bullet large-R jet to tag Z / H
 - small-R jets (some b-tagged)

•Main background from ttbar, single top, W+jets

•Discriminating variable:

$$m_{eff} = \sum_{i} p_{T_i}^{(lepton, jets)} + E_T^{miss}$$

•Exclude κ>0.5 for all masses below 1.8 TeV

Run-2 ID vs ITK

ATL-PHYS-PUB-2021-024

Run-2 ID vs ITK

Detector Performance (Phase-2)

- di-photon mass resolution at HL-LHC, with $\langle \mu \rangle \sim 200$, is comparable to Run2 for the optimistic scenario
 - **pessimistic** : same resolution constant term as Run-2, pile-up noise extracted from the full simulation using the Run-2 reconstruction alg.
 - optimistic : reduce the resolution constant term to its design value, pile-up noise reduce to level equivalent to <µ>=75

CERN-LHCC-2017-018

HGTD

Higgs : Projections for Differential Distributions Measurements

•Important to measure the differential distributions of Higgs production

- •Provide a probe of the SM
- •Constraint effects from beyond the SM
- •HL-LHC projections based on Run 2 analyses

•Most precisely measured by $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^* \rightarrow 41$ channels

•Expect to probe with precision of ~10% at p_T^H ~350-600 GeV (HL-LHC)

•Run-2 : About ~20% precision at pT(H)~200-350 GeV

ATL-PHYS-PUB-2018-040