Generalized Dark Matter in Compact Groups

Jessica N. López Sánchez, Erick Munive Villa

Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, México. jessayel.123@gmail.com

1. Introduction

Generalized Dark Matter is an extension of CDM which allows a pressure P and a shear Σ different from zero. This model has three free parameters namely, the equation of state w, sound speed c_s and the viscosity $c_{\rm vis}$. Choosing these parameter values properly it is possible to reproduce some known scenarios such as

- If $(w, c_s^2, c_{vis}^2) \rightarrow (1/3, 1/3, 1/3)$ we have HDM
- If $(w, c_s^2, c_{vis}^2) \rightarrow (\omega, 1, 0)$ we have SFDM, (Wayne Hu 1998)
- To stay near CDM, then $w, c_s^2, c_{vis}^2 \ll 1$ (B. Thomas et al., 2020)

Likelihood	Model	$10^2 w$		$10^6 c_s^2$ (upper bound)		$10^6 c_{\rm vis}^2$ (upper bound)	
(PPS+)	$(\Lambda\text{-}\mathrm{GDM}+)$	95%	99%	95%	99%	95%	99%
		$-0.040^{+0.473}_{-0.468}$	$-0.040\substack{+0.700\\-0.701}$	3.31	6.31	5.70	11.3
+ Lens		$0.066^{+0.434}_{-0.427}$	$0.066^{+0.654}_{-0.642}$	1.92	3.44	3.27	5.99
+ Lens + BAO		$0.074^{+0.111}_{-0.110}$	$0.074\substack{+0.164\\-0.163}$	1.91	3.21	3.30	6.06
	+ HM	$-0.029^{+0.477}_{-0.481}$	$-0.029^{+0.716}_{-0.690}$	3.11	5.39	5.62	11.1
+ Lens	+ HM	$-0.087^{+0.448}_{-0.461}$	$-0.087\substack{+0.668\\-0.649}$	1.92	3.83	3.13	5.79

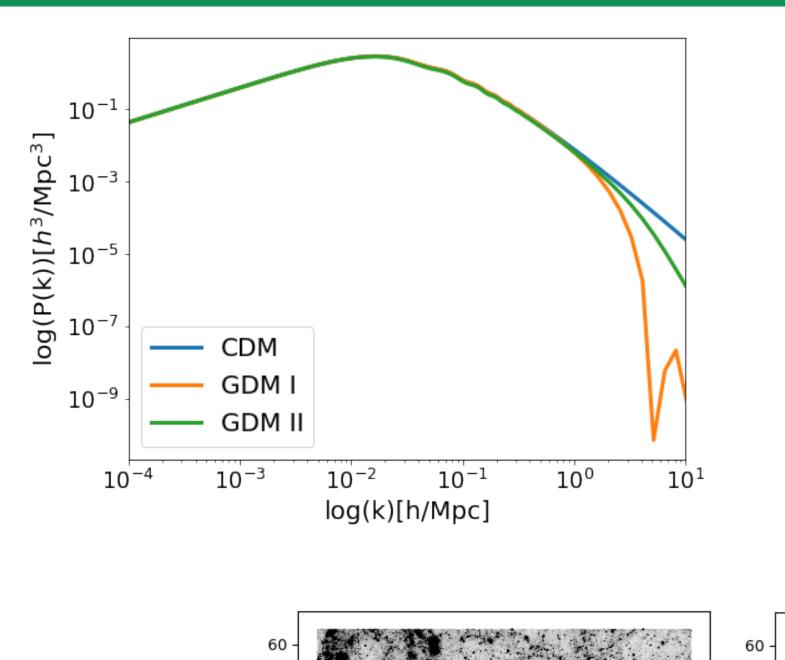
2. GDM model

Lets consider a perturbated metric in a FRW universe

$$ds^{2} = a^{2} \left(-(1+2\Psi)d\tau^{2} - 2\vec{\nabla}_{i}\zeta d\tau dx^{i} + \left[\left(1 + \frac{1}{3}h \right)\gamma_{ij} + D_{ij}v \right] dx^{i} dx^{j} \right] (1)$$

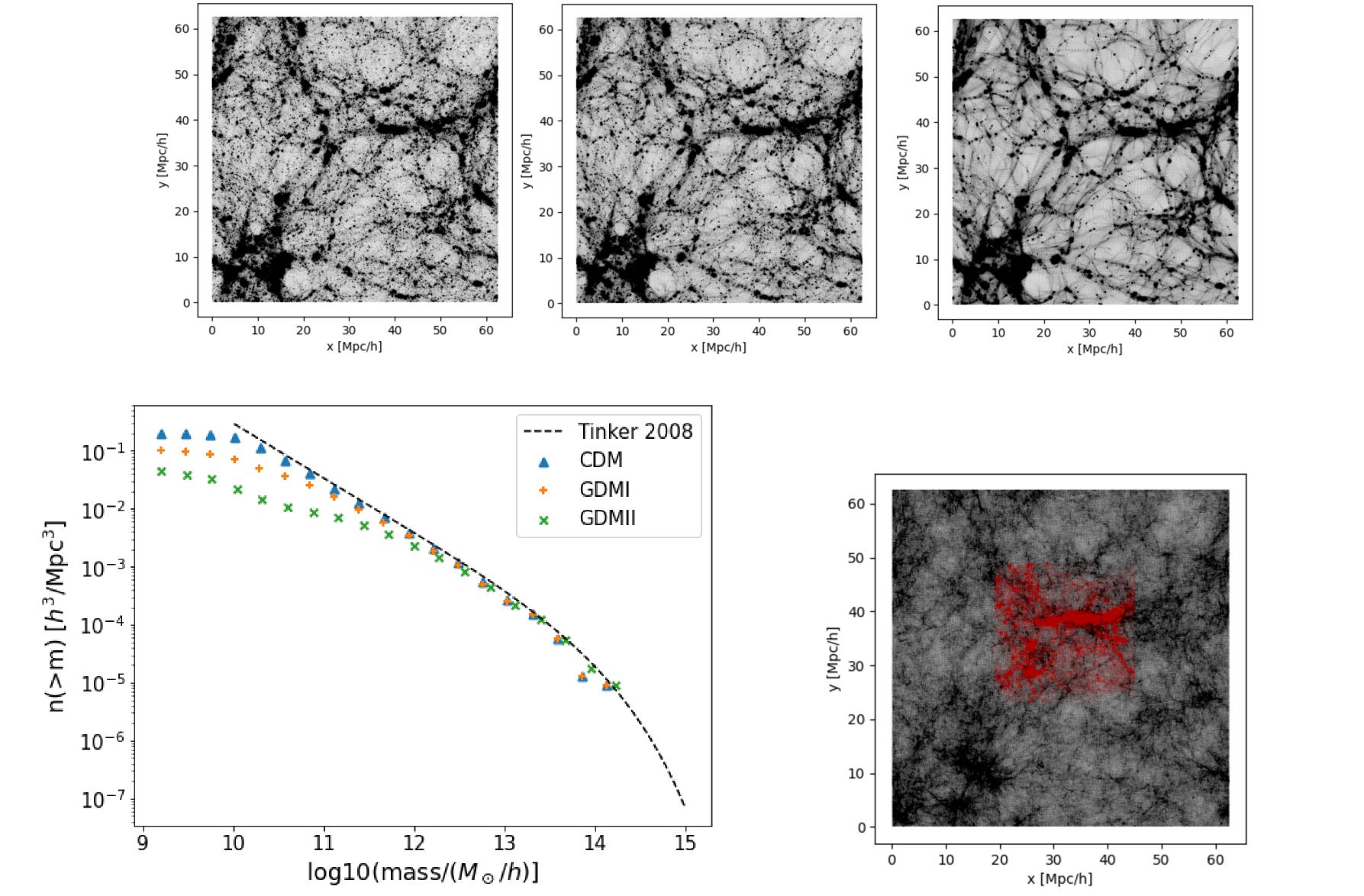
where $D_{ij} = \vec{\nabla}_i \vec{\nabla}_j - \frac{1}{3} \gamma_{ij} \vec{\nabla}^2$, being $\vec{\nabla}$ the covariant derivative. After perturbating the Einstein equation as well as the energy density ρ and the pressure P we can construct the pertubated equations at first order,

$$\dot{\delta}_{I} = 3H(w_{I}\delta_{I} - \Pi_{I}) - (1 + w_{I}) \left[\frac{k^{2}}{a}(\theta_{I} - \zeta) + \frac{1}{2}\dot{h}\right]$$
(2)
$$a\dot{\theta}_{I} = -(1 - 3c_{a}^{2})aH\theta_{I} + \frac{\Pi_{I}}{1 + w_{I}} - \frac{2}{3}k^{2}\Sigma_{I} + \Psi$$
(3)



3. Cosmological Simulations

z=127, N=272³, L=62.5 Mpc/h, $\epsilon = 0.05$ kpc **GDM I**: w= -1×10^{-4} , $c_s = 1 \times 10^{-6}$, $c_{\rm vis} = 1 \times 10^{-7}$ **GDM II**: w= 6×10^{-4} , $c_s = 1.92 \times 10^{-6}$, $c_{\rm vis} = 1.1 \times 10^{-7}$



For Π_I and Σ_I there are some closure equatinos

 $\Pi_g = c_a^2 \delta_g + 3(1+w_I)(c_s^2 - c_a^2) a H \theta_g$ (4) $\dot{\Sigma}_g = -3H\Sigma_g + \frac{4}{1+w_I}c_{vis}^2 \left(\frac{\theta_g}{a} - \frac{1}{2}\dot{v}\right)$ (5)

The first expression corresponds to the perturbated pressure while the second one is related to the shear dynamics.

It is convenient to define some invariant potentials

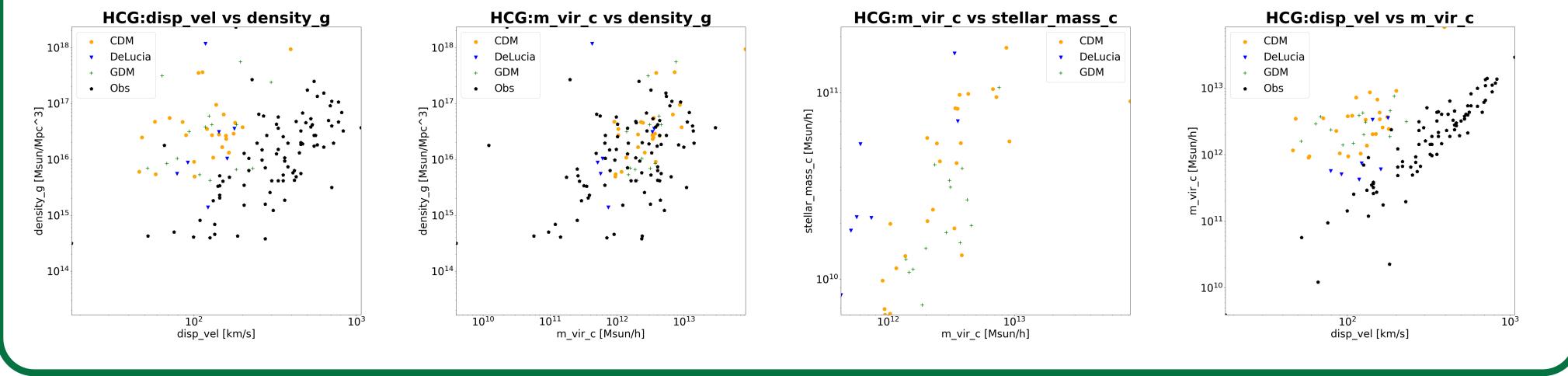
$$\hat{\Phi} \equiv \eta + H\left(\frac{1}{2}\dot{\nu} + \zeta\right) \quad \hat{\Psi} \equiv \Psi - \frac{1}{a}\partial_{\tau} \left[a\left(\frac{1}{2}\dot{\nu} + \zeta\right)\right]$$
(6)

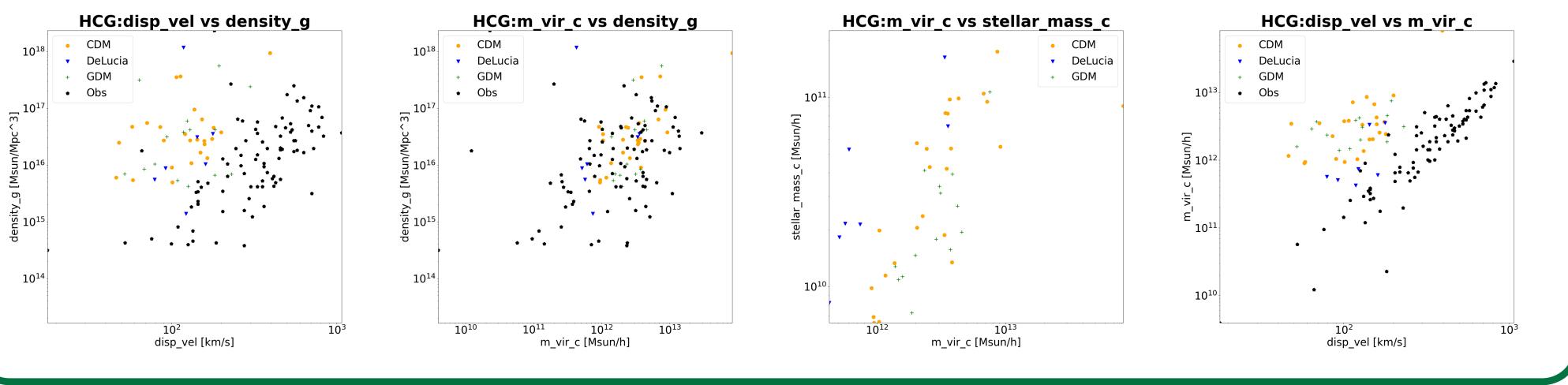
The free parameter values determine the dynamics of the potentials and therefore the CMB and Matter Power Spectrum Behavior.

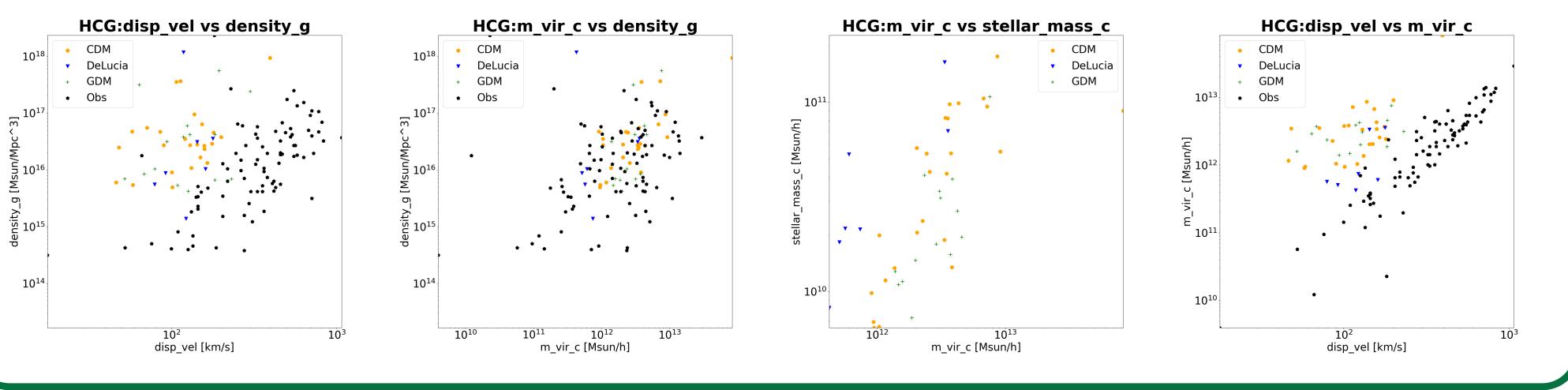
4. Hickson Compact Groups

HCG are believed to be rich in DM and were classified by Paul Hickson in 1984.

5. Comparing simulations against observational data







- **Population** N > 4 in a range of 3 times the magnitud of the most brilliant galaxy.
- Isolation $\theta_N \geq 3\theta_G$ θ_G is the smallest circle containing all the centers

 θ_N is the biggest concentric circle without containing other galaxies

• Compacticidad $\bar{\mu}_G < 26.0$ $\bar{\mu}_G$ is the total magnitude/arcsec² averaged over θ_G

We have created the Mock catalogues constructing the mergers trees for each halo at z = 0. After that, we have applied a semi-empirical model to obtain galaxy information.

6. Conclusions

- We performed dm-only simulations in CDM and different GDM scenarios where changes in small structure are observed.
- We have constructed Mock Catalogues to get information about galaxies in their respective halos using the genealogic tree for each halo at z = 0
- Using this catalogues a HCG classification has been applied taking into account the original classification by Paul Hickson.

• It is convenient to implement zoom simulations to study the HCG as well as their environment.