Dark Matter in the time of Primordial Black Holes

Based on: NB & Óscar Zapata – arXiv:2010.09725, 2011.02510, 2011.12306 NB, Fazlollah Hajkarim & Yong Xu – arXiv:2107.13575 NB, Yuber Perez-González, Yong Xu & Óscar Zapata – arXiv:2110.04312

SILAFAE XII ³/₄ November 8-12, 2021

El conocimiento es de todos

Minciencias

Dark Matter in the time of Primordial Black Holes

Based on: NB & Óscar Zapata – arXiv:2010.09725, 2011.02510, 2011.12306 NB, Fazlollah Hajkarim & Yong Xu – arXiv:2107.13575 NB, Yuber Perez-González, Yong Xu & Óscar Zapata – arXiv:2110.04312

SILAFAE XII ³⁄₄ November 8-12, 2021

El conocimiento es de todos

Minciencias

Evidences for Dark Matter

Several observations indicate the existence of non-luminous Dark Matter (missing *gravitational* force) at very different scales!

- * Galactic rotation curves
- * RC in Clusters of galaxies
- * Clusters of galaxies
- * CMB anisotropies

Dark Matter: WIMP vs FIMP

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle v\sigma_{\chi}\rangle \left[n_{\chi}^2 - (n_{\chi}^{\rm eq})^2\right]$$

What if DM only couples to the SM via gravitational interactions?

What if DM only couples to the SM via gravitational interactions?

DM is *unavoidably* produced by PBH Hawking evaporation!

Primordial Black Holes

* Density fluctuations can collapse into a PBH in the early universe

- * Lose mass by emitting *all* particles via Hawking evaporation \rightarrow PBH have a ~black body spectrum, with temperature $T_{BH} \sim 1/M_{BH}$ \rightarrow PBHs unavoidable radiate DM!
- * If $M_{in} < 10^9$ g, PBH completely evaporate before BBN \rightarrow poorly constrained

Primordial Black Holes

* Density fluctuations can collapse into a PBH in the early universe

- * Lose mass by emitting *all* particles via Hawking evaporation
 - \rightarrow PBH have a ~black body spectrum, with temperature $T_{\rm BH} \sim 1/M_{\rm BH}$
 - \rightarrow PBHs unavoidable radiate DM!
- * If $M_{in} < 10^9$ g, PBH completely evaporate before BBN \rightarrow poorly constrained

Effective theory: <u>Two free parameters</u>

* A single PBH characterized by its mass at formation M_{in} (or equivalently, by the SM temperature T_{in} at formation)

* Initial PBH energy density $\beta = \rho_{BH}/\rho_{SM}$ Nicolás BERNAL @ UAN

DM from PBHs

DM density = PBH density x # DM emitted per PBH

 M_P

Number of DM particles radiated per PBH \rightarrow Only depends on initial PBH mass!

$$N_j = \frac{15\,\zeta(3)}{\pi^4} \frac{g_j \,\mathcal{C}_n}{g_\star(T_{\rm BH})} \begin{cases} \left(\frac{M_{\rm in}}{M_P}\right) \\ \left(\frac{M_P}{m_j}\right) \end{cases}$$

for
$$m_j \le T_{\rm BH}^{\rm in}$$

for $m_j \ge T_{\rm BH}^{\rm in}$

 $T_{\rm BH}^{\rm in}$

DM from PBHs

DM density = PBH density x # DM emitted per PBH

Number of DM particles radiated per PBH \rightarrow Only depends on initial PBH mass!

$$N_{j} = \frac{15\,\zeta(3)}{\pi^{4}} \frac{g_{j}\,\mathcal{C}_{n}}{g_{\star}(T_{\rm BH})} \begin{cases} \left(\frac{M_{\rm in}}{M_{P}}\right)^{2} & \text{for } m_{j} \leq T_{\rm BH}^{\rm in} \\ \left(\frac{M_{P}}{m_{j}}\right)^{2} & \text{for } m_{j} \geq T_{\rm BH}^{\rm in} \end{cases}$$

As PBH scale like non-relativistic matter, they can dominate the total energy density of the universe → Nonstandard expansion!

Nicolás BERNAL

Nicolás BERNAL

13

Nicolás BERNAL

14

- If DM possess sizable self-interactions:
 - \rightarrow DM thermalizes
 - → Number-changing interactions: $2 \leftrightarrow 3$, $2 \leftrightarrow 4$...

- If DM possess sizable self-interactions:
 - \rightarrow DM thermalizes
 - → Number-changing interactions: $2 \leftrightarrow 3$, $2 \leftrightarrow 4$...
 - * What is the energy transferred from PBHs to DM?
 - * What is the DM temperature?

(kinetic equilibrium)

* What is DM equilibrium number density?

(chemical equilibrium)

- If DM possess sizable self-interactions:
 - → DM thermalizes
 - → Number-changing interactions: $2 \leftrightarrow 3$, $2 \leftrightarrow 4$...
 - * What is the energy transferred from PBHs to DM?
 - * What is the DM temperature?

(kinetic equilibrium)

* What is DM equilibrium number density?

(chemical equilibrium)

Self-interactions:

- \rightarrow Increase the DM density
- \rightarrow Decrease the mean DM kinetic energy

* DM production more efficient

 \rightarrow smaller β could be explored

* DM cools down

 \rightarrow keV DM becomes viable

* **Model independent result** Nicolás BERNAL @ UAN

- * DM production more efficient
- * DM cools down

- \rightarrow smaller β could be explored
- \rightarrow keV DM becomes viable

* Model independent result Nicolás BERNAL @ UAN

2. Gravitational UV freeze-in

DM from PBHs

 10^{18}

 10^{-3}

 10^{-1}

 10^{1}

 $\cdot 10^{3}$

 10^{5}

 -10^{7}

 -10^{9}

 -10^{11}

 $M_{
m in}$ [g]

DM from PBHs

Gravitational UV Freeze-in

An example of UV FIMP, mediated by massless SM gravitons

Gravitational UV Freeze-in

An example of UV FIMP, mediated by massless SM gravitons

Gravitational DM: PBHs & UV Freeze-in

Gravitational UV freeze-in strongly constrains super heavy DM radiated by PBHs!

Gravitational DM: PBHs & UV Freeze-in

Gravitational UV freeze-in strongly constrains super heavy DM radiated by PBHs!

3. QCD Axion and PBHs

Strong CP Problem

Electric dipole moment of the neutron...

$$d_n = (2.4 \pm 1.0) \,\theta \times 10^{-3} \,e \,\mathrm{fm}$$

Electric dipole moment of the neutron... not observed!

$$d_n = (2.4 \pm 1.0) \,\theta \times 10^{-3} \,e \,\mathrm{fm}$$

$$|\theta| < 1.3 \times 10^{-10}$$
 \leftarrow Strong CP problem!

Axion

If θ is a *dynamical field*, QCD will relax it to its minimum...

→ Strong QCD problem explained!

Peccei & Quinn '77

Axion

If θ is a *dynamical field*, QCD will relax it to its minimum...

→ Strong QCD problem explained!

Peccei & Quinn '77

Axion oscillates in a ~ quadratic potential → natural cold dark matter candidate

Producing Axion DM: Misalignment

Effective axion potential

 $V(\theta) = \chi(T) \left(1 - \cos \theta\right)$

 $\ddot{\theta} + 3H(T)\dot{\theta} + m_a^2(T)\sin\theta = 0$ Evolution of the axion field f_a [GeV] 10^{19} 1018 1017 10^{16} 10^{15} 10^{14} 10^{13} 10^{12} 10^{11} 10^{1} $\theta_i > \pi$ 10^{0} $\theta_1 = \pi/\sqrt{3}$ $\theta_i = 0.5$ $\overset{10^{-1}}{\hat{\pmb{artheta}}}$ Standard cosmology 10^{-2} 10^{-3} 10^{-4} $^{-12}10^{-11}10^{-10}10^{-9}$ 10^{-7} 10^{-8} 10^{-6} 10^{-5} 10 $m_a | eV$

Producing Axion DM: Misalignment

Effective axion potential

 $V(\theta) = \chi(T) \left(1 - \cos \theta\right)$

 $\ddot{\theta} + 3H(T)\dot{\theta} + m_a^2(T)\sin\theta = 0$ Evolution of the axion field f_a [GeV] 10^{19} 10^{18} 10^{17} 10^{16} 10^{15} 10^{14} 10^{13} 10^{12} 10^{11} 10^{1} $\theta_i > \pi$ 10^{0} $\theta_1 = \pi/\sqrt{3}$ $\theta_i = 0.5$ $\overset{10^{-1}}{\hat{\pmb{artheta}}}$ Standard cosmology 10^{-2} 10^{-3} 10^{-4} 10^{-5} $10^{-12} 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7} 10^{-6}$ $m_a \,|\, \mathrm{eV}$

Axions from PBHs: Dark Radiation

As these axions are ultra-relativistic:

- \rightarrow can't be the cold DM
- \rightarrow contribute to dark radiation $\Delta N_{
 m eff} \simeq 0.04$

Nicolás BERNAL @ UAN

within the reach of future CMB-S4 experiment!

Even axions radiated by PBHs can't be the DM, PBHs can have a strong impact on the DM genesis via the misalignment mechanism Non-standard cosmological evolution:

- \rightarrow enhanced Hubble expansion rate
- \rightarrow entropy injection by PBH evaporation

Even axions radiated by PBHs can't be the DM, PBHs can have a strong impact on the DM genesis via the misalignment mechanism Non-standard cosmological evolution:

- → enhanced Hubble expansion rate
- \rightarrow entropy injection by PBH evaporation

Even axions radiated by PBHs can't be the DM, PBHs can have a strong impact on the DM genesis via the misalignment mechanism Non-standard cosmological evolution:

- → enhanced Hubble expansion rate
- \rightarrow entropy injection by PBH evaporation

4. ALPs and PBHs

Nicolás

43

Conclusions

• It's possible that DM *only* features *gravitational* interactions

- 0.1 g < M_{in} < 10⁹ g evaporate before BBN
- PBHs could Hawing radiate the whole DM density
- DM masses: $1 \text{ MeV} < m_{\text{DM}} < 10^{18} \text{ GeV}$
- DM self-interactions:
 - \rightarrow boost DM density
 - Boost factors of several order of magnitude can be computed in a model independent way!
 - \rightarrow cools down DM: keV DM becomes viable
- Gravitational DM production is unavoidable!
- PBHs radiates axions \rightarrow Dark radiation within the reach of CMB-S4
- Nonstandard cosmology due to PBHs have a strong impact on misalignment
 - $\rightarrow\,$ preferred axion mass wider: lighter axions allowed

→ ALPs within the read of future ABRACADABRA, KLASH, ADMX, and DM-Radio Nicolás BERNAL @ UAN

¡Muchas gracias!

Muito Obrigado!

