LHCb latest results and new perspectives

Alvaro Gomes
Universidade Federal do Triângulo Mineiro – UFTM
on behalf of LHCb
outline

• Updates on lepton universality
• CKM γ and mixing parameters measurements
• CP violation measurement: 2 body K-π puzzle
• Spectroscopy
• Future and conclusions
LHCb detector

- Muon System
- RICH Detectors
- Vertex Locator (VELO)
- Calorimeters
- Tracking System

~1 cm
pp collision Point
LHCb detector

- Electrons radiate bremsstrahlung photons when interacting with detector.
 - When it happens before the magnet it lead to increased uncertainties on momentum and energy.
- Bremsstrahlung recovery: searches for energy deposits in the calorimeter and adds back to electron energy.
Data aquisition

- Large heavy flavour dataset collected (9.0 fb\(^{-1}\)) during run 1 and 2.
 - Precision tracking
 - Excellent PID using RICH
Lepton Universality
Lepton universality overview

- B → s l^+ l^- transitions are flavour-changing neutral currents (FCNC) which means they are suppressed in the standard model (SM).
- Branching fractions of $O(10^{-7})$-$O(10^{-8})$.
- In the SM coupling of gauge fields to the three charged leptons (e, μ, τ) are identical → Lepton Universality (LU)

arXiv:2110.09501v2[hep-ex]
Lepton universality overview

• Ratios of the form:

\[R_H = \frac{B \to H \mu \mu}{B \to H e e} \approx 1 \]

in SM, except for small corrections due to different lepton masses.

• Easy method to be applied:
 - Hadronic uncertainties cancel in ratio \((O(10^{-4})) \).
 - QED corrections up to \(O(10^{-2}) \).

Significant deviation from unitity \(\rightarrow \) New physics (NP) beyond SM
Lepton universality Run II

- Two tests for LU using 9.0 fb\(^{-1}\) dataset

- \(B^0 \rightarrow K_s^0 l^+ l^-\): \(R_{K_s^0} = \frac{B^0 \rightarrow K_s^0 \mu \mu}{B^0 \rightarrow K_s e e}\)

- \(B^+ \rightarrow K^{*+} l^+ l^-\): \(R_{K^{*+}} = \frac{B^+ \rightarrow K^{*+} \mu \mu}{B^+ \rightarrow K^{*+} e e}\)

- Isospin partners of \(B^+ \rightarrow K^+ l^+ l^-\) and \(B^0 \rightarrow K^{*0} l^+ l^-\) and the same NP is expected.
Yields and R_{K_S} are extracted from a simultaneous maximum likelihood fits to data.

First observation for both channels!
Yields and R_{K^*} are extracted from a simultaneous maximum likelihood fits.
Lepton universality Run II

- $B^0 \rightarrow K_s^0 \mu^+ \mu^-$: $R_{K_s^0} = \frac{B^0 \rightarrow K_s^0 \mu \mu}{B^0 \rightarrow K_s^0 e e} = 0.66^{+0.20}_{-0.15} \text{(stat)} +0.02_{-0.04} \text{(syst)}$ 1.5σ

- $B^+ \rightarrow K^{*+} \mu^+ \mu^-$: $R_{K^{*+}} = \frac{B^+ \rightarrow K^{*+} \mu \mu}{B^+ \rightarrow K^{*+} e e} = 0.70^{+0.18}_{-0.13} \text{(stat)} +0.03_{-0.04} \text{(syst)}$ 1.4σ

- Same pattern seen in other LU tests
Lepton universality Run II

arXiv:2103.11769v2[hep-ex]

• The lhcb also investigated the LU in the isospin partner $B^+ \rightarrow K^+ l^+ l^-$

$$R_{K^+} = \frac{B^+ \rightarrow K^+ \mu\mu}{B^+ \rightarrow K^+ e\,e}$$
Lepton universality Run II

- $B^+ \to K^+ l^+ l^-$:

$$R_{K^+} = \frac{B^+ \to K^+ \mu \mu}{B^+ \to K^+ e e} = 0.846^{+0.042}_{-0.039} \text{(stat)}^{+0.013}_{-0.012} \text{(syst)}$$

3.1σ
Flavour Anomalies

- In addition to LU violation, several other anomalies in $b \rightarrow s \ell^+ \ell^-$ decays emerged over the past decade:
 - Branching fractions of $b \rightarrow s \mu^+ \mu^-$ decays.
 - Multiple measurements below SM predictions.
 - Branching fraction of $B^0_{(s)} \rightarrow \mu^+ \mu^-$ decays.

- Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ and $B^+ \rightarrow K^{*+} \mu^+ \mu^-$.

- Some observables offering complementary evidence for NP with a standard deviation above 3σ.

[References]
JHEP 1406 (2014) 133
JHEP 04 (2017) 142
ATLAS-CONF-2020-049
ArXiv:2108.09284
JHEP 02 (2016) 104
CKM γ and mixing parameters
CKM γ overview

- Huge progress in measurement of CKM parameters, largely driven by the LHCb experiment
CKM γ combination

- CKM γ is measured in decays sensitive to interference between favored $b \to c$ and suppressed $b \to u$ transitions.

- Unknown parameters from a single $B \to Dh$ decays can be obtained by combining D-decays modes to overconstrains.
CKM γ combination

<table>
<thead>
<tr>
<th>B decay</th>
<th>D decay</th>
<th>Ref.</th>
<th>Dataset</th>
<th>Status since Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_{\pm} \to D h_{\pm}$</td>
<td>$D \to h^+ h^-$</td>
<td>27</td>
<td>Run 1&2</td>
<td>Updated</td>
</tr>
<tr>
<td>$B_{\pm} \to D h_{\pm}$</td>
<td>$D \to h^+ \pi^- \pi^+ \pi^-$</td>
<td>28</td>
<td>Run 1</td>
<td>As before</td>
</tr>
<tr>
<td>$B_{\pm} \to D h_{\pm}$</td>
<td>$D \to h^+ h^- \pi^0$</td>
<td>29</td>
<td>Run 1</td>
<td>As before</td>
</tr>
<tr>
<td>$B_{\pm} \to D h_{\pm}$</td>
<td>$D \to K_S^0 h^+ h^-$</td>
<td>26</td>
<td>Run 1&2</td>
<td>Updated</td>
</tr>
<tr>
<td>$B_{\pm} \to D h_{\pm}$</td>
<td>$D \to K_S^0 K^+ \pi^- \pi^+$</td>
<td>30</td>
<td>Run 1&2</td>
<td>Updated</td>
</tr>
<tr>
<td>$B_{\pm} \to D^* h_{\pm}$</td>
<td>$D \to h^+ h^-$</td>
<td>27</td>
<td>Run 1&2</td>
<td>Updated</td>
</tr>
<tr>
<td>$B_{\pm} \to D K^{*\pm}$</td>
<td>$D \to h^+ h^-$</td>
<td>31</td>
<td>Run 1&2(*)</td>
<td>As before</td>
</tr>
<tr>
<td>$B_{\pm} \to D K^{*\pm}$</td>
<td>$D \to h^+ \pi^- \pi^+ \pi^-$</td>
<td>31</td>
<td>Run 1&2(*)</td>
<td>As before</td>
</tr>
<tr>
<td>$B_{\pm} \to D h_{\pm}^\mp \pi^+ \pi^-$</td>
<td>$D \to h^+ h^-$</td>
<td>32</td>
<td>Run 1</td>
<td>As before</td>
</tr>
<tr>
<td>$B^0 \to D K^{*0}$</td>
<td>$D \to h^+ h^-$</td>
<td>33</td>
<td>Run 1&2(*)</td>
<td>Updated</td>
</tr>
<tr>
<td>$B^0 \to D K^{*0}$</td>
<td>$D \to h^+ \pi^- \pi^+ \pi^-$</td>
<td>33</td>
<td>Run 1&2(*)</td>
<td>New</td>
</tr>
<tr>
<td>$B^0 \to D K^{*0}$</td>
<td>$D \to K_S^0 \pi^+ \pi^-$</td>
<td>34</td>
<td>Run 1</td>
<td>As before</td>
</tr>
<tr>
<td>$B^0 \to D^\mp \pi^\pm$</td>
<td>$D^+ \to K^- \pi^+ \pi^+$</td>
<td>35</td>
<td>Run 1</td>
<td>As before</td>
</tr>
<tr>
<td>$B^0 \to D_S^\mp K^\pm$</td>
<td>$D_s^+ \to h^+ h^- \pi^-$</td>
<td>36</td>
<td>Run 1</td>
<td>As before</td>
</tr>
<tr>
<td>$B^0 \to D_S^\mp K^\pm$</td>
<td>$D_s^+ \to h^+ h^- \pi^-$</td>
<td>37</td>
<td>Run 1&2</td>
<td>New</td>
</tr>
<tr>
<td>$D^0 \to h^+ h^-$</td>
<td></td>
<td>38</td>
<td>Run 1&2</td>
<td>New</td>
</tr>
<tr>
<td>$D^0 \to h^+ h^-$</td>
<td></td>
<td>40</td>
<td>Run 1</td>
<td>New</td>
</tr>
<tr>
<td>$D^0 \to h^+ h^-$</td>
<td></td>
<td>41</td>
<td>Run 1&2</td>
<td>New</td>
</tr>
<tr>
<td>$D^0 \to h^+ h^-$</td>
<td></td>
<td>42</td>
<td>Run 1&2</td>
<td>New</td>
</tr>
<tr>
<td>$D^0 \to K^+ \pi^-$</td>
<td></td>
<td>46</td>
<td>Run 1</td>
<td>New</td>
</tr>
<tr>
<td>$D^0 \to K^+ \pi^-$</td>
<td></td>
<td>47</td>
<td>Run 1&2(*)</td>
<td>New</td>
</tr>
<tr>
<td>$D^0 \to K^+ \pi^-$</td>
<td></td>
<td>48</td>
<td>Run 1</td>
<td>New</td>
</tr>
<tr>
<td>$D^0 \to K_S^0 \pi^+ \pi^-$</td>
<td></td>
<td>49</td>
<td>Run 1&2</td>
<td>New</td>
</tr>
<tr>
<td>$D^0 \to K_S^0 \pi^+ \pi^-$</td>
<td></td>
<td>50</td>
<td>Run 1 & 2</td>
<td>New</td>
</tr>
<tr>
<td>$D^0 \to K_S^0 \pi^+ \pi^-$</td>
<td></td>
<td>51</td>
<td>Run 1</td>
<td>New</td>
</tr>
</tbody>
</table>
CKM γ combination results

- The combination uses a total of 151 input observables to measure 52 free parameters. Most notably,

$$\gamma = (65.4^{+3.8}_{-4.2})^o$$

most precise measurement from a single experiment.

- Charm mixing parameters (most precise to date):

$$x = (0.400^{+0.052}_{-0.053})\%$$

$$y = (0.630^{+0.033}_{-0.030})\%$$

arXiv:2110.02350v1[hep-ex]
CP violation
K-π puzzle

• Isospin symmetry predicts that

$$A_{CP}(B^0 \rightarrow K^+ \pi^-) = A_{CP}(B^+ \rightarrow K^+ \pi^0)$$

• But BaBar and Belle measured these asymmetries to be different at more than 5σ.

$$A_{CP}(B^0 \rightarrow K^+ \pi^-) = -0.084 \pm 0.004$$
$$A_{CP}(B^+ \rightarrow K^+ \pi^0) = 0.040 \pm 0.021$$

• Possibly NP in electroweak penguin sector.
K-π puzzle results

- Use $B^+ \rightarrow J/\psi K^+$ as control channel to cancel detection/production asymmetries. (result already comparable with world average!).

\[
A_{CP}(B^+ \rightarrow K^+ \pi^0) = 0.025 \pm 0.015 \pm 0.006 \pm 0.003 \quad 1.5\sigma
\]

\[
\Delta A_{CP}(K \pi) \equiv A_{CP}(B^0 \rightarrow K^+ \pi^-) - A_{CP}(B^+ \rightarrow K^+ \pi^0) = 0.115 \pm 0.014 \quad >8.0\sigma
\]
Spectroscopy
Exotic tetra and pentaquarks
T\textsubscript{cc} tetraquark

- All exotic states so far decay via strong interaction.
 - A discovery of a log-lived exotic state stable wrt strong interaction would be intriguing.
 - A hadron with two heavy quarks Q and two light quarks q, $Q_1Q_2\bar{q}_1\bar{q}_2$, is a prime candidate \rightarrow $bb\bar{u}\bar{d}$ hadron state.
 - Before LHCb, no consensus whether $bc\bar{u}\bar{d}$ and $cc\bar{u}\bar{d}$ exists and were narrow enough to be detected.

- $T(bb\bar{u}\bar{d})$ with $J^P = 1^+$ at $10,389 \pm 12$ MeV (near $B^{(*)}\overline{B}^{(*)}$ threshold)
- $T(cc\bar{u}\bar{d})$ with $J^P = 1^+$ at 3882 ± 12 MeV (near $D^{(*)}\overline{D}^{(*)}$ threshold)
T_{cc} tetraquark

- The LHCb analysed the $D^0D^0\pi^+$ final state and observed a $T(cc\bar{u}\bar{d})$ state with mass of about 3875 MeV/c2.
- Narrow peak just below the $D^{(*)}\bar{D}^{(*)}$ mass threshold, as predicted.
- Reinforces the possibility of a $T(bb\bar{u}\bar{d})$ tetraquark state that is stable wrt to strong interactions.

arXiv:2109.01056v2[hep-ex]
The future

- The LHCb upgrade for Run3/Run4 aims to:
 - Collect $\sim 50 \, fb^{-1}$ at $L = 2 \times 10^{33} \, cm^{-2} \, s^{-1}$
 - ~ 5 visible interactions
 - $40 \, MHz$ readout of detector
 - Full software trigger will lead to a factor two gain for hadronic channels.

- Upgrade 2 for Run5/Run6
 - Collect $\sim 300 \, fb^{-1}$ at $L = 1.5 \times 10^{34} \, cm^{-2} \, s^{-1}$
Conclusions

• Many important results from LHCb Run 2 dataset:
 – Evidence of LU violation.
 – Improved precision of CKM γ measurement.
 – CP violation in the B → hh decays leads to a intriguing K-π puzzle.
 – Many new exotic states observed.

• Many important results to come in the next 2 years.

• LHCb upgrade to increase the dataset by a factor 5-10 will help to pin down many evidences revealed so far.
backup