

LHCb latest results and new perspectives

Alvaro Gomes Universidade Federal do Triângulo Mineiro – UFTM on behalf of LHCb

SILAFAE XII3/4, ICTP-SAIFR, São Paulo, Brazil, November 2021

outline

- Updates on lepton universality
- CKM y and mixing parameters measurements
- CP violation measurement: 2 body K- π puzzle
- Spectroscopy
- Future and conclusions

LHCb detector

LHCb detector

- Electrons radiate bremsstrahlung photons when interacting with detector.
 - When it happens before the magnet it lead to increased uncertainties on momentum and energy.
- Bremsstrahlung recovery: seaches for energy deposits in the calorimeter and adds back to electron energy.

Data aquisition

- Large heavy flavour dataset collected (9.0 fb⁻¹) during run 1 and 2.
 - Precision tracking
 - Excellent PID using RICH
- Trigger described in details here: Int.J.Mod.Phys. A30 (2015) no.07, 1530022

Lepton Universality

Lepton universality overview

arXiv:2110.09501v2[hep-ex]

- B → s l⁺ l⁻ transitions are flavour-changing neutral currents (FCNC) which means they are suppressed in the standard model (SM).
- Branching fractions of $O(10^{-7})-O(10^{-8})$.
- In the SM coupling of gauge fields to the three charged leptons (e, μ , τ) are identical \rightarrow Lepton Universality (LU)

Lepton universality overview

• Ratios of the form:

$$R_{H} = \frac{B \rightarrow H \,\mu \,\mu}{B \rightarrow H \,e \,e} \approx 1$$

in SM, except for small corrections due to different lepton masses.

- Easy method to be applied:
 - Hadronic uncertainties cancel in ratio $(O(10^{-4}))$.
 - QED corrections up to $O(10^{-2})$.

Significant deviation from unitity \rightarrow New physics (NP) beyond SM

• Two tests for LU using 9.0 fb⁻¹ dataset

•
$$B^0 \rightarrow K_s^0 l^+ l^-$$
: $R_{K_s^0} = \frac{B^0 \rightarrow K_s^0 \mu \mu}{B^0 \rightarrow K_s^0 e e}$

•
$$B^+ \rightarrow K^{*+} l^+ l^*$$
: $R_{K^{*+}} = \frac{B^+ \rightarrow K^{*+} \mu \mu}{B^+ \rightarrow K^{*+} e e}$

• Isospin partners of $B^+ \rightarrow K^+ I^+ I^-$ and $B^0 \rightarrow K^{*0} I^+ I^-$ and the same NP is expected.

- Yields and R_{Ks} are extracted from a simultaneous maximum likelihood fits to data.
- First observation for both channels!

arXiv:2110.09501v2[hep-ex]

• Yields and R_{K^*} are extracted from a simultaneous maximum likelihood fits.

arXiv:2110.09501v2[hep-ex]

•
$$B^{0} \rightarrow K_{s}^{0} l^{+} l^{:} R_{K_{s}^{0}} = \frac{B^{0} \rightarrow K_{s}^{0} \mu \mu}{B^{0} \rightarrow K_{s}^{0} e e} = 0.66^{+0.20}_{-0.15} (stat)^{+0.02}_{-0.04} (syst)$$
 1.50

•
$$B^+ \to K^{*+} l^+ l^-$$
: $R_{K^{*+}} = \frac{B^+ \to K^{*+} \mu \mu}{B^+ \to K^{*+} e e} = 0.70^{+0.18}_{-0.13} (stat)^{+0.03}_{-0.04} (syst)$ **1.40**

• Same pattern seen in other LU tests

arXiv:2103.11769v2[hep-ex]

• The lhcb also investigated the LU in the isospin partner $B^+ \rightarrow K^+ I^+ I^-$

$$R_{K^+} = \frac{B^+ \rightarrow K^+ \mu \mu}{B^+ \rightarrow K^+ e e}$$

arXiv:2103.11769v2[hep-ex]

• $B^+ \rightarrow K^+ I^+ I^-$:

$$R_{K^{+}} = \frac{B^{+} \rightarrow K^{+} \mu \mu}{B^{+} \rightarrow K^{+} e e} = 0.846^{+0.042}_{-0.039} (stat)^{+0.013}_{-0.012} (syst)$$
3.10

Flavour Anomalies

- In addition to LU violation, several other anomalies in b → s l⁺ l⁻ decays emerged over the past decade:
 - Branching fractions of $b \rightarrow s \mu^+ \mu^-$ decays. JHEP 1406 (2014) 133 JHEP 04 (2017) 142 Phys. Rev. Lett., 127 (2021) 15
 - Multiple measurements below SM predictions.
 - Branching fraction of $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ decays.

- Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ and $B^+ \rightarrow K^{*+} \mu^+ \mu^-$.
 - Some observables offering complementary evidence for NP with a standard devition above 3σ . JHEP 02 (2016) 104 Phys. Rev. Lett., 125 (2020) 1 15

CKM y and mixing parameters

CKM y overview

 Huge progress in measurement of CKM parameters, largely driven by the LHCb experiment

CKM y combination

arXiv:2110.02350v1[hep-ex]

• CKM γ is measured in decays sensitive to interference between favored $b \rightarrow c$ and supressed $b \rightarrow u$ transitions.

 Unkown parameters from a single B → Dh decays can be obtained by combining D-decays modes to overconstrains.

CKM y combination

arXiv:2110.02350v1[hep-ex]

<i>B</i> decay	D decay	Ref.	Dataset	Status since
				Ref. [24]
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ h^-$	27	Run 1&2	Updated
$B^\pm \to D h^\pm$	$D \to h^+ \pi^- \pi^+ \pi^-$	28	Run 1	As before
$B^\pm \to D h^\pm$	$D \to h^+ h^- \pi^0$	29	Run 1	As before
$B^\pm \to D h^\pm$	$D \rightarrow K^0_{ m S} h^+ h^-$	26	Run 1&2	$\mathbf{Updated}$
$B^\pm \to D h^\pm$	$D \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	30	Run 1&2	$\mathbf{Updated}$
$B^\pm \to D^* h^\pm$	$D ightarrow h^+ h^-$	[27]	Run 1&2	$\mathbf{Updated}$
$B^\pm \to D K^{*\pm}$	$D \rightarrow h^+ h^-$	31	Run $1\&2(*)$	As before
$B^\pm \to D K^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	31	Run $1\&2(*)$	As before
$B^\pm \to D h^\pm \pi^+ \pi^-$	$D \rightarrow h^+ h^-$	32	Run 1	As before
$B^0 \to DK^{*0}$	$D ightarrow h^+ h^-$	33	Run $1\&2(*)$	$\mathbf{Updated}$
$B^0 \to DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	33	Run $1\&2(*)$	New
$B^0 \to DK^{*0}$	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	34	Run 1	As before
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	35	Run 1	As before
$B^0_s ightarrow D^{\mp}_s K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	36	Run 1	As before
$B^0_s \to D^\mp_s K^\pm \pi^+ \pi^-$	$D_s^+ \rightarrow h^+ h^- \pi^+$	37	Run 1&2	New
_	$D^0 ightarrow h^+ h^-$	[38-40]	Run 1&2	New
_	$D^0 ightarrow h^+ h^-$	41	Run 1	New
_	$D^0 ightarrow h^+ h^-$	42 - 45	Run 1&2	New
_	$D^0 \to K^+ \pi^-$	46	Run 1	New
_	$D^0 \to K^+ \pi^-$	47	Run $1\&2(*)$	New
_	$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	48	Run 1	New
_	$D^0 ightarrow K_{ m S}^0 \pi^+ \pi^-$	49,50	Run 1&2	New
_	$D^0 \rightarrow K^0_S \pi^+ \pi^-$	51	Run 1	New

19

CKM y combination results arXiv:2110.02350v1[hep-ex]

 The combination uses a total of 151 input observables to measure 52 free parameters. Most notably,

$$\gamma = (65.4^{+3.8}_{-4.2})^{o}$$

most precise measurement from a single experiment.

• Charm mixing parameters (most precise to date):

$$x = (0.400^{+0.052}_{-0.053})\%$$
$$y = (0.630^{+0.033}_{-0.030})\%$$

CP violation

K-π puzzle

Phys. Rev. Lett. 126 (2021) 091802

Isospin symmetry predicts that

$$A_{CP}(B^0 \rightarrow K^+ \pi^-) = A_{CP}(B^+ \rightarrow K^+ \pi^0)$$

- But BaBar and Belle measured these asymmetries to be different at more than 5σ .

$$A_{CP}(B^{0} \rightarrow K^{+} \pi^{-}) = -0.084 \pm 0.004$$
$$A_{CP}(B^{+} \rightarrow K^{+} \pi^{0}) = 0.040 \pm 0.021$$

• Possibly NP in electroweak penguin sector.

K-π puzzle results

Phys. Rev. Lett. 126 (2021) 091802

• Use $B^+ \rightarrow J/\psi K^+$ as control channel to cancel detection/production asymmetries. (result already comparable with world average!).

 $A_{CP}(B^{+} \rightarrow K^{+} \pi^{0}) = 0.025 \pm 0.015 \pm 0.006 \pm 0.003 \quad 1.5\sigma$ $\Delta A_{CP}(K\pi) \equiv A_{CP}(B^{0} \rightarrow K^{+} \pi^{-}) - A_{CP}(B^{+} \rightarrow K^{+} \pi^{0}) = 0.115 \pm 0.014 \quad >8.0\sigma$

Spectroscopy

Exotic tetra and pentaquarks

https://www.nikhef.nl/~pkoppenb/Masses_LHCb.pdf

T_{cc} tetraquark

arXiv:2109.01056v2[hep-ex]

- All exotic states so far decay via strong interaction.
 - A discovery of a log-lived exotic state stable wrt strong interaction would be intriguing.
 - A hadron with two heavy quarks Q and two light quarks q, $Q_1Q_2\overline{q_1q_2}$, is a prime candidate \rightarrow bbud hadron state.
 - Before LHCb, no consensus whether bcud and ccud exists and were narrow enough to be detected.
- Prediction: Phys. Rev. Lett. 119 (2017) 202001
 - T(bbud) with $J^P = 1^+$ at 10,389 ± 12 MeV (near $B^{(*)}\overline{B}^{(*)}$ threshold)
 - T(ccud) with $J^P = 1^+$ at 3882 ± 12 MeV (near $D^{(*)}\overline{D}^{(*)}$ threshold)

T_{cc} tetraquark

arXiv:2109.01056v2[hep-ex]

- The LHCb analysed the $D^0D^0\pi^+$ final state and observed a T(ccud) state with mass of about 3875 MeV/c².
- Narrow peak just below the D^(*)D^(*) mass threshold, as predicted.
- Reinforces the possibility of a T(bbud) tetraquark state that is stable wrt to strong interactions.

The future

- The LHCb upgrade for Run3/Run4 aims to:
 - Collect ~50 fb^{-1} at L = 2 X 10³³ cm^{-2} s⁻¹
 - ~5 visible interactions
 - 40 MHz readout of detector
 - Full software trigger will lead to a factor two gain for hadronic channels.
- Upgrade 2 for Run5/Run6
 - Collect ~300 fb^{-1} at L = 1.5 X 10³⁴ cm^{-2} s⁻¹

Conclusions

- Many important results from LHCb Run 2 dataset:
 - Evidence of LU violation.
 - Improved precision of CKM y measurement.
 - CP violation in the B \rightarrow hh decays leads to a intriguing K- π puzzle.
 - Many new exotic states observed.
- Many important results to come in the next 2 years.
- LHCb uograde to increase the dataset by a factor 5-10 will help to pin down many evidences revealed so far.

backup

