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ABSTRACT

Gravitational waves higher-modes improve parameter estimation and bring into play waveform
additional features of source dynamics. In this project, we investigate which set of higher-modes
is necessary to improve the precision of parameter estimation – in particular, the luminosity
distance – of massive binary black holes. We rely exclusively on numerical waveforms for
Bayesian estimation, interpolating them for all needed values of intrinsic parameters. Prelimi-
nary results for non-spinning waveforms show that the luminosity distance estimation improves
dramatically, including modes (l ≤ 4, l − 1 ≤ |m| ≤ l).

Introduction

In gravitational wave (GW) spectroscopy, we study the sensitivity of waveform morphology, mode-
mixing, and parameter estimation (PE) regarding the modes from the GW decomposition into spher-
ical/spheroidal harmonics [1, 2]. The more modes played into account in the signal-to-noise ratio
(SNR) templates, the more accurately the PE is. In the parameter set of a binary black hole (BBH), we
will focus on the luminosity distance measurement since it is a key for GW Astronomy and Cosmol-
ogy research. To compute Bayesian inference, we interpolate numerical relativistic (NR) waveforms
from the SXS catalog [3].

Methods

We employed 23 NR waveforms of spinless BBH. For each strain mode we interpolate its amplitude
Alm(t) and phase Φlm(t) over the mass-ratio q = [1 : 10]. Those modes are time-series coefficient of
the spin-weighted spherical harmonics decomposition, given by NR simulations,

rhlm(t)/M = Alm(t) e−iΦlm(t) =

∫
dΩh(t, ~x)−2Ylm(θ, φ) . (1)

To compute the Bayesian estimation, we first defined the inner product between two arbitrary func-
tions as

〈a | b〉k ≡ 4<

{∫
ã(f )∗ b̃(f )

Sk(f )
df

}
, (2)

where Sk(f ) is the power spetral density (PSD) of a given the detector k. The SNR of a detector
network is then SNR2 =

∑
k SNR

2
(k)

=
∑
k 〈h |h〉k.

From the Fourier Transformation of the Eq.1, we separate the waveform polarizations,

h̃+(f ) =
∑
l,m

1

2

(
h̃lm(f ) + h̃∗lm(−f )

)
−2Ylm(ι, φ) , (3)

h̃×(f ) =
∑
l,m

i

2

(
h̃lm(f )− h̃∗lm(−f )

)
−2Ylm(ι, φ) , (4)

and compile the strain observed by the detector k,

h̃(k)(f ) =
{
F

(k)
+ (α, δ, ψ) h̃+(f ) + F

(k)
× (α, δ, ψ) h̃×(f )

}
e−2iπf(τ (k)+t0) , (5)

where F+/× are the antenna pattern functions.

Our set of parameters Θ is divided into:

i) Intrinsic: symmetric mass-ratio η = q/(1 + q)2, and the chirp mass Mc = η3/5M ;

ii) Extrinsic: luminosity distance r → dL; coalescence time t0; the GW propagation direction an-
gles, from the orbital plane, inclination ι and phase φ; the angular sky coordinates right-ascension
α and declination δ; and the GW polarization angle ψ.

For the posterior distribution p(Θ|data) ∝ L(data|Θ) π(Θ), we defined all priors π(Θ) as uniform,
and the logarithm of the likelihood as

logL(h̃|Θ) = −1

2

∑
k

〈∆ |∆〉k , (6)

such that ∆ ≡ h̃injection − h̃template. Here, both injection and template are interpolated NR wave-
forms, but with different modes set:

i) Injections: (l ≤ 8, |m| ≤ l);

ii) Templates: (l = |m| = 2), (l ≤ 3, |m| = l), (l ≤ 4, l − 1 ≤ |m| ≤ l), (l ≤ 4; |m| ≤ l).

Preliminary results

In our preliminary results, we considered:

i) Single detector;

ii) Zero noise approximation;

iii) Parameter set Θ = (η = 0.16, Mc = 40M�; dL = 600Mpc, cos ι = 0.5, φ = 0.0, t0 = 0.4s);

iv) Bayesian inference: dynesty sampler [4].

Figure 1 shows the relative bias between the injection parameters and the estimative results, taken
from the posterior distribution for different modes set used in the templates computation. The x-axis
labels each parameter on Θ; the bias is flagged by the different dot shapes representing the modes
set. The plot on the right is a zoom from the left one, such that the dL bias values can be better
distinguished from each modes set. For this particular parameter, we notice that the dominant modes
do not guarantee enough accuracy for the estimative and bring degeneracy for the cos(ι) estimative.
It happens since the signal amplitude is sensitive to both parameters. However, for l ≤ 4, and when
the modes |m| = l − 1 is introduced (see the green diamond dot shape), the estimative improves at
its maximum. The additional subdominant modes in (l ≤ 4, |m| ≤ l) saturates the estimative in
this single detector test. The figure 2 presents similar analysis but shows the error between injection
parameters and estimative results which conforms our conclusions.

Figure 1: Relative bias.

Figure 2: Error.

Forthcoming Steps

To improve our results, we will consider:

i) Four detectors with their respective pattern functions and PSD;

ii) Use the all extrinsic parameters in the PE;

iii) Non-precessing spinning black holes.
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