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In a recent seminar, G. ’t Hooft, used
a Penrose embedding diagram to des-
cribe trajectories of particles falling in-
side a quantum black hole.

“I commented that such simplified description of embedded
universes requires the definition of geometry at the quantum
scale of events (in which the quantum principles applies).
Therefore the question whether or not the basic axioms of
geometry hold at that scale. Here we show:
I That the perturbative quantization of gauge fields (’t

Hooft-Veltman 1972), necessarily implies that the
affine geometry of the internal spaces of quantum
fields is well defined.

I That the non-renormalizable gravitation in Einstein’ GR
(’t Hooft-Veltman 1974), together with the recent
CMBR data, imply that Einstein’s gravitation cannot
be limited to ordinary matter (lumps of atoms).
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Affine geometry was introduced by Brunelleschi in 1415 and
it was applied to gauge field theory by Emmy Noether in
1918, when she defined the “gauge covariant derivative”
Dµ = ∂µ+Aµ, with components

(Da
b)µ = (δa

b)∂µ+ (Aa
b)µ

so as to obtain the gauge conserved quantities*.
Due to such somewhat “ad hoc” definition, we require a
proof of its existence. This was already proved by the
Frobenius theorem on differential topology stating that:
An affine connection in a manifold
exists if the associated
curvature is integrable.

Differential topology shows how to cons-
truct differentiable manifolds out of a dif-
ferentiable wire mesh.
——————
* Leite Lopes: Classical symmetries (Download
from the CBPF Library)

Differential topology in computer graphics
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Curvature in Affine Manifolds
Consider a differentiable manifold co-
vered by a diferentiable wire made of
geodesics with respect to a covari-
ant derivative Dµ = ∂µ +Aµ. Take
two geodesics α and β with respec-
tive tangent vectors u and v , crossing
at the point A: Duu = 0 and Dvv = 0.
By parallel transporting v along u and
u along v , and using the closing con-
dition Duv = Dvu at the point D we

The quadrangle ABCD in
the hand manifold

obtain a closed quadrangle. Finally, drag an arbitrary
vector field w along the quadrangle from A, back to A.
The local curvature of the hand manifold at A is the
difference

w ′−w = C(u,v)w def= [Du,Dv ]w −D[u,v ]w
In a tangent basis {eµ}, the curvature components are

C(eµ,eν) = [Dµ,Dν ] = (∂µAν−∂νAµ) + [Aµ,Aν ] = Fµν
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In the renormalization procedure, redefine Aµ = gAµ, where
Aµ is the gauge potential satisfying the Yang-Mills
equations. Then, g is expanded in powers of the Planck
energy ε= h̄ν, where the coefficients are adjusted so that
gAµ remain finite for any subsequent terms of the expansion.
Translating this in therms of geometry, the Frobenius
theorem says that a normalizable gauge potential exists if the
field force (the curvature) is integrable at the quantum scale

Fµν = g(∂µAν−∂νAµ) +g2[Aµ,Aν ]

In other words, the renormalization of gauge fi-
elds is equivalent to say in the geometric language
that the concepts of parallel lines, parallel transport,
geodesics and curvature, remain consistent at the
quantum scale of events.
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The geometry of quantum Gravity

Would the space-time geometry be also consistent with
quantum mechanics?
The ’t Hooft- Veltman result of 1974 (shows that the
gravitational field of RG is non- renormalizable), is due
to the presence of the Newtonian coupling constant G
in Einstein’s Equations: More specifically in the
presence of the term [M]−1 in the physical dimensions
of G

[G ] = [L]3[T ]2
[M]

↗
the problem is here

Recall that the constant G was originally conceived and
measured for the gravitational attraction between lumps
made of ordinary matter (atoms), while the recent CMBR
measurements persistently confirm that ordinary matter is
responsible for only ≈ 4.5% of the estimated total energy of
the universe.
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However, the presence of Einstein’s gravitation is given by
the the eigenvalues of the space-time curvature measured in
the 3-dimensional hypersurface of the observers:

RµνρσXρσ = λµνXρσ

There are five non-trivial such eigenvalues or “degrees of
freedom” (dof=5). Equivalently, the spin-statistics theorem
says that

The fundamental particle of the gravitational field, the
gravitation, is a massless particle with

spin = (dof −1)/2 = 2

It means that all spin-2 fundamental particles of may also
contribute to the gravitational field in the sense of Einstein



Geometry
at the

Quantum Scale

maia@unb.br

1-Affinities and
Connections

2-Renormalizing
Geometry

3-Geometry in
Quantum gravity

4-Quantum
Gravity from
Quantum Fields

The general Lagrangian for a spin-2 field hµν in Minkowski
space-time was described by Fierz and Pauli in 1939 as

L= 1
4 [h,µh,µ−hνρ,µhνρ,µ−2hµν,µh,ν +2hνρ,µhµρ,ν−U]

U = potential energy = µ2(hµνhµν−h2ηµν)
with Euler-Lagrange equations (22−µ2)hµν = 0.
The required minimal energy conditions to measure the dof
of this field are given by the solutions of

∂U
∂hµν

= 2µ2(hµν−hηµν) = 0⇒
{
µ 6= 0,h = 0,short range field
µ= 0,h = 0, long range field

in the second case, the equations of motion become

22hµν = 0

Only this case coincide with the long range traceless
-transverse -plane -polarized linear gravitational wave
equation in the sense of Einstein.
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Such coincidence suggests that the full non-linear relativistic
gravitational field equation can be obtained from higher
order perturbations of ηµν by powers of hµν

gµν = ηµν +hµν +h2µν + · · ·
Indeed, it has been found that gµν satisfies Einstein’s
equations* Rµν− 1

2Rgµν = kTµν
Since hµν is a quantum field and k is completely unrelated
to the Newtonian gravitational constant G , the main
objection to the perturbative quantization of gravitation has
just been removed.Does this means that the Gravitational
field describe by the above equation is renormalizable?

In fairness such renormalization must be checked-out
against the ’t Hooft-Veltman previous result of 1974,
and of the computer aided Goroff-Sagnotti verification
of 1985.

———————-
*Originally derived by R. Kraichnan and S. Gupta. See “Feynman
Lectures on Gravitation”.
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Falsifiability

If the answer of the previous question is positive, then the
substitution of 8πG by k implies that the hierarchy of
Einstein’s gravitational field no longer applies. Consequently
it becomes passive of being falsifiable in the following lines:
I 1. The detection of the linear gravitational wave

22hµν = 0 resulting from the spin-2 field.
For that purpose, a virtual spherical laser interferometer
gravitational wave observatory (VSLIGO) capable of
detecting quadrupole waves can be built as a detector
of gravitational waves in the LHC 32km circumference.

I 2. The predicted production and detection of Hawking’s
quantum black holes and their subsequent evaporation
in the laboratory, using a Kerr-Kruskal solution of
Einstein’s equations with k.

The use of a geometric language in quantum fundamental
interactions may turn out to be valuable asset to the
understanding of quantum mechanics processes as a whole.
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