Space Observatories for Ultrahigh Energy Astroparticles POEMMA & EUISO-SPB

Astroparticle Physics Questions:

What are the sources of the **Ultra-High Energy Cosmic Rays** (UHECRs)? Measure Spectrum, Composition, Anisotropies $E>10^{19} eV = 10 EeV$

What are the sources of **Astrophysical Neutrinos**?

Multi-Messenger coincidence gamma-ray, gravitational waves, and neutrinos with $E>10^{16} eV = 10 PeV$

What is the physics and astrophysics at energies >> "ground-based" accelerators? Are there Extra-Dimensions, Supermassive Dark Matter, Topological Defects?

Fermi Gamma-ray Telescope

Astronomy: 14 orders of magnitude

Cosmic Particles

Cosmic Rays = relativistic atomic nuclei: Hydrogen (protons), He, heavier elements

~ double the energy range for Astrophysics

Multi-Messengers

~ triple the energy range for Astrophysics : 40 orders of magnitude

Extensive Air Showers

Leading Observatories of Ultrahigh Energy Cosmic Rays

Telescope Array Utah, USA (5 country collaboration) 700 km² array 3 fluorescence telescopes

Pierre Auger Observatory Mendoza, Argentina (19 country collaboration) $3,000 \text{ km}^2 \text{ array}$ 4 fluorescence telescopes - see talk by Federico Sanchez

3,000 km² array of 1660 tanks with 1.5km distancing

4 telescopes overlooking the site

F. G. Schröder '19¹²

Anisotropy Hints > 40 EeV

Auger Spectrum ICRC 2021

Auger Spectrum ICRC 2021

GZK Cutoff

Greisen, Zatsepin, Kuzmin 1966

Greisen-Zatsepin-Kuzmin Effect

 $p + \gamma_{cmb} \rightarrow \Delta^{+} \rightarrow p + \pi^{0}$ $\rightarrow n + \pi^{+}$

GZK Cutoff

Greisen, Zatsepin, Kuzmin 1966

Greisen-Zatsepin-Kuzmin Effect

 \rightarrow n + π^+ 10⁵ lengths [Mpc] 04 03 OSS energy 0^2 photo-pion production proton energy loss length interaction length 101 interaction length, IR pair production cosmological expansion 10⁰ 10²² 10²⁰ 10¹⁷ 10¹⁸ 10¹⁹ 10²¹ E [eV] Kotera & AVO arXiv:1101.4256

 $\mathbf{p} + \gamma_{cmb} \rightarrow \Delta^+ \rightarrow \mathbf{p} + \pi^0$

Auger Spectrum ICRC 2021

Auger Spectrum+Composition ICRC 2021

Cosmogenic (GZK, BZ*) Neutrinos & Photons

$$p+\gamma_{cmb} \rightarrow \Delta^{+} \rightarrow p + \pi^{0} \rightarrow \gamma\gamma$$
$$\rightarrow n + \pi^{+}$$

$$n \rightarrow p + e^{-} + v_{e}$$

$$\pi^{+} \rightarrow \mu^{+} + v_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + v_{e} + v_{\mu}$$

*Berezinsky & Zatsepin '69

The Sun in neutrinos **2015 Nobel Prize in Physics**

Neutrino Oscillations

Cosmogrenic Messengrers

Batista et al, arXiv:1903.06714.pdf

estimated neutrino energy of 300TeV

GW170817

Neutron Star- Neutron Star Merger

Albert et al, arXiv:1710.05839 ²⁷

LIGO et al ApJL, arXiv:1710.05833

Astroparticle Physics Questions:

What are the sources of the **Ultra-High Energy Cosmic Rays** (UHECRs)? Measure Spectrum, Composition, Anisotropies E>10¹⁹ eV = 10 EeV

What are the sources of **Astrophysical Neutrinos**?

Multi-Messenger coincidence gamma-ray, gravitational waves, and neutrinos with $E>10^{16} eV = 10 PeV$

What is the physics and astrophysics at energies >> "ground-based" accelerators? Are there Extra-Dimensions, Supermassive Dark Matter, Topological Defects?

Probe Of Extreme Multi-Messenger Astrophysics UHECRs and Cosmic Neutrinos

DEMMA

POEMMA: study collaboration

USA: University of Chicago: A. V. Olinto (PI), S. S. Meyer, J. Eser, R. Diesing NASA/GSFC: J. F. Krizmanic (deputy PI), C. Guepin, E. Hays, J. McEnery, J. W. Mitchell, J. S Perkins, F. Stecker, T. M. Venters NASA/MSFC: P. Bertone, M.J. Christl, R. M. Young, University of Alabama, Huntsville: J. Adams, E. Kuznetsov, P. Reardon, University of Utah: D. R. Bergman Colorado School of Mines: F. Sarazin, L. Wiencke, G. Filippatos, V. Kungel, K.-D. Merenda City University of New York, Lehman College: L. Anchordoqu, T. C. Paul, J. F. Soriano Georgia Institute of Technology: A. N. Otte, M. Bagheri, E. Gazda, O. Romero Matamala Space Sciences Laboratory, University of California, Berkeley: E. Judd University of Iowa: M. H. Reno, Y. Onel, J. Nachtman, D. Winn KIPAC, Stanford: K. Fang CZECH Rep: K. Cerny, D. Mandát, M. Pech, P. Schovánek **DENMARK: NBI: M. Bustamante** FRANCE: APC Univerite de Paris 7: E. Parizot, G. Prevot; IAP, Paris: C. Guepin **GERMANY:** KIT: R. Engel, A. Haungs, R. Ulrich, M. Unger; ITALY: Universita di Torino: M. E. Bertaina, D. Barghini, M. Battisti, F. Bisconti, F. Fenu, H. Miyamoto, Z. Plebaniak; Gran Sasso Science Institute: R. Aloisio, A. L. Cummings, I. De Mitri; INFN Frascati: M. Ricci, INFN Tor Vergata: M. Casolino, L. Marceli, U. of Rome Tor Vergata: P. Picozza JAPAN: RIKEN: M. Casolino,, Y. Takizawa MEXICO: , G. Medina Tanco **NORWAY: NTNU: F. Oikonomou** POLAND: University of Warsaw: L. W. Piotrowski; NCNR, Lodz: K. Shinozaki RUSSIA: MSU: P. Klimov, M. Zotov SLOVAKIA: IEP, Slovak Academy of Science: S. Mackovjak 70 scientists from 32 institutions and 13 countries SWITZERLAND: University of Geneva: A. Neronov OWL, JEM-EUSO, Auger, TA, Veritas, CTA, Fermi, Theory

Nadir for UHECR: Radius 200-400 km

Observing Modes

Limb for Neutrinos & UHECRs Radius 2.6-3.7 10³ km

United States

16.48m

Each Observatory = Photometer + Spacecraft; POEMMA Mission = 2 Observatories

Lifetime

Orbit Period

Orbit

3 year (5 year goal)

525 km, 28.5° Inc

95 min

Observatory Sep. ~25 - 1000+ km

1,550 kg

<1 GB/day

590 W

Mass

Power

Data

POEMMA

Hybrid Focal Surface

UV Fluorescence MAPMTs with BG3 filter: 1 usec sampling

Cherenkov Detection SiPMs:

20 nsec sampling

Elementary Cell (EC) SiPM (8x8) PCB1 PCB2 Si-Diode Interconnector

30 SiPM focal surface units Total 15,360 pixels 512 pixels per FSU (64x4x2)

55 Photo Detector Modules (PDMs)= TOTAL 126,720 pixels (1 PDM = 36 MAPMTs = 2,304 pixels)

Auger Spectrum ICRC 2021

POEMMA: UIHECRS

significant increase in exposure E >50 EeV good energy, angular, and shower maximum resolutions, accurately measure **Composition**, Spectrum, Anisotropies Uniform sky coverage

to guarantee the discovery of UHECR sources

nearby Starburst Galaxies Fermi-LAT

0.7

0.6

0.5

0.4

0.3

0.2

0.1

POEMMA designed to observe neutrinos with E > 20 PeV through Cherenkov signal of tau decays.

High-Energy Astrophysical Events generates neutrinos (v_e , v_μ) and 3 neutrino flavors reach Earth (Oscillations). Tau neutrinos generate tau leptons on their way out of the Earth's surface which decay producing up-going showers, detected by POEMMA

POEMMA: Neutrino Target of Opportunity

arXiv:1906.07209 Venters et al 2019 Transient Events - 10s neutrinos/event from 10s of Mpc

Artist's rep NS-NS merger. Credit: NSF/LIGO/SSU/A. Simonnet.

Artist's rep WD-WD merger Credit: Ars Technica

Artist's rep BH-BH merger. Credit: NASA / JPL/ Swinburne Astron.Prods

NS-NS merger Animation

SWIFT NEUTRON STAR COLLISION V. 2

ANIMATION: DANA BERRY 310-441-1735 Binary Produced by Erica Drezek Coalescence

Long Bursts				
	No. of ν 's at	No. of ν 's at	Largest Distance for	
Source Class	GC	$3 { m Mpc}$	1.0 ν per event	Model Reference
TDEs	1.1×10^{5}	0.8	3 Mpc	Dai and Fang [17] average
TDEs	5.6×10^{5}	3.9	6 Mpc	Dai and Fang [17] bright
				Lunardini and Winter [18]
	9			$M_{ m SMBH}=5 imes10^6M_{\odot}$
TDEs	$2.2 imes10^{\circ}$	1.4×10^{3}	115 Mpc	Lumi Scaling Model
WDE	6 9 107	000	co M	Lunardini and Winter [18]
TDEs	0.3×10^{-5}	396	62 Mpc	Base Scenario
				RFGBW [19] – FSRQ
Blazar Flares	NA*	NA*	43 Mpc	model
ICBB Reverse	INA	INA	45 Mpc	model
Shock (ISM)	9.9×10^{4}	0.7	2 Mpc	Murase [15]
IGRB Reverse				
Shock (wind)	2.0×10^{7}	144	$37 \mathrm{Mpc}$	Murase [15]
BH-BH			10 - 2000 k 2007)	Kotera and Silk [20] (rescaled)
merger	$2.3 imes10^7$	160	39 Mpc	Low Fluence
BH-BH		the other statistics		Kotera and Silk [20] (rescaled)
merger	$2.4 imes10^8$	$1.7 imes10^3$	119 Mpc	High Fluence
NS-NS merger	$3.6 imes10^6$	24.8	13 Mpc	Fang and Metzger [21]
WD-WD merger	20.0	0	33 kpc	XMMD [22]
Newly-born				
Crab-like pulsars	1 0 102	1 1 1 1 0 - 3	00.1	D
(p)	1.6×10^{-2}	1.1×10^{-6}	98 kpc	Fang [23]
Newly-born	0.1104	0.1	1	I
Magnetars (p)	2.1 × 10	0.1	1 Mpc	Fang [23]
memory-born	1.1×10^{4}	0.3	2 Mpc	Fang [22]
magnetars (re)	4.1 × 10	0.5		Tang [20]
Snort Bursts				
C C	No. of ν 's at	No. of ν 's at	Largest Distance for	
Source Class	GC	3 Mpc	1.0 ν per event	Model Reference
sGRB Extended				
Emission	0.0 107	0 - 102	ot 11	
(moderate)	$9.0 \times 10^{\circ}$	6.5×10^{2}	81 Mpc	KMMK [16]

(*) Not applicable due to a lack of known blazars within 100 Mpc.

Artist's rep TDE (star torn BH). Credit: NASA / CXC / M. Weiss

Tidal Disruption Events

M87

EVENT HORIZON TELESCOPE COLLABORATION/MAUNAKEA OBSERVATORIES/ASSOCIATED PRESS

Gamma Ray Bursts

Crab 965 years ago.

Newborn Pulsars

Credits: X-ray: NASA/CXC/ASU/J.Hester et al.; Optical: NASA/HST/ASU/J.Hester et al.

Transient Neutrino Point Source Sensitivity

Fang & Metzger, arXiv:1707.04263

Kimura et al, arXiv:1708.07075

Venters et al, Snowmass2021, LOI, (2020)

Sky Coverage HE-UIHE Neutrinos

Complementary

POEMMA

POEMMA will open two new Cosmic Windows: Neutrinos from astrophysical Transients (> 20 PeV), and Extreme Energy Cosmic Rays (> 20 EeV)

Space provides order of magnitudes improved sensitivity over a wide range of energies.

POEMMA can discover the most extreme astrophysical accelerators and physics well above terrestrial accelerator energies.

JEM-EUSO program

Joint Experiment Missions Extreme Universe Space Observatory

EUSO-TA (2013-)

EUSO-Balloon (2014)

EUSO-SPB1 (2017) Mini-EUSO (2019) EUSO-SPB2 (2023) K-EUSO (2024+)

EECR

POEMMA (2028+)

12°

EUSO-BALLOON (2014) 40km

Fluorescence

TA-EUSO (2013)

EUSO-SPÉ

Atmosphe

Cherenkov

100km

EUISO=SPB1

Extreme Universe Space Observatory on a Super Pressure Balloon

EUISO-SPB 1 launch, April 24, 2017 23:51 UNC

and the second second second

Why New Zealand?

Wanaka South Island New Zealand

air flow at ~30 km June 9th 2017

https://earth.nullschool.net/#current/wind/isobaric/1 OhPa/orthographic=180,-90,300

Cameron Beccario 44

NASA completed its third mid-latitude Super Pressure Balloon (SPB) flight at May 7 3:40 UTC, after 12 days, 4 hours and 34 minutes aloft.

POEMMA & EUISO-SPB2

Earth's Atmosphere = Particle Observatory :

Discover the Origin of the Highest Energy Cosmic Rays ($E>10^{19}$ eV) and Observe High Energy Neutrino Emission ($E>10^{16}$ eV) from Astrophysical Events Study New Astro/Physics

Probe Of Extreme Multi-Messenger Astrophysics

Extreme Universe Space Observatory on a Super Pressure Balloon

EUSO-SPB1 Launch from Wanaka, NZ April 24, 2017

