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1. Abstract
We consider conditions for existence and stability of a static cosmological solution in quadratic
gravity. It appears that such a solution for a Universe filled by only one type of perfect fluid is
possible in a wide range of the equation of state parameter w and for both positively and neg-
atively spatially curved Universe. We show that the static solution for the negative curvature is
always unstable if we require positive energy density of the matter content. On the other hand,
a static solution with positive spatial curvature can be stable under certain restrictions. Stability
of this solution with respect to isotropic perturbation requires that the coupling constant with the
R2 therm in the Lagrangian of the theory is positive, and the equations of state parameter w is
located in a rather narrow interval. Nevertheless, the stability condition does not require violation
of the Strong Energy Condition. Taking into account anisotropic perturbations leads to further
restrictions on the values of coupling constants and the parameter w.

2. Introduction
Quadratic gravity provides an extension of General Relativity for sufficiently
strong gravity, in the same sense as Maxwell theory is modified to the non lin-
ear Heisenberg-Euler electromagnetism. Apparently quadratic gravity was first
proposed by H. Weyl in 1918 [1]. Only many years after it was addressed again
by H. A. Buchdahl in 1962 [2]. Since it is a reasonable extension of GR for very
intense gravity it should be a reasonable effective theory in the some neighbor-
hood of a space time singularity. It is in this context that Starobinsky proposed his
inflationary model in 1980 [3] which is consistent with the latest measurements
in the CMBR by the Planck collaboration [4]. After the 1960s quadratic gravity
was intensively investigated by many reasearches. In this poster we summerize
recents results obtained by us and refere to [5] for further details.

3. General Relativity
Consider the metric of an isotropic spatially curved Universe filled with two types
of fluids with energy densities ρ1 and ρ2 and the equation of state parameters
w1 and w2 respectively. In order to have a static solution the spatial curvature of
spacetime must be positive. Stability is obtained in the rather unphysical situa-
tion of energy densities with opposite signs. For its existence it requires either
two types of matter with w1,2 < −1/3 or with w1,2 > −1/3. In the former case the
condition for stability is w2 < w1 where w1 corresponds to positive energy matter.
In the latter case the condition has the opposite form w2 > w1. From this point of
view there exists one particular interesting example of a stable static solution in
GR, realising in a Universe filled by a positive density matter with w < −1/3 and
a negative cosmological constant.

4. Quadratic Gravity
In 4 dimensions,
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is the most general lagrangian for quadratic gravity. For the spatial positively and
negatively curved cases, k = ±1, if all derivatives of a = lnR are zero, we have
the following static solution
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Ruzmaikina-Ruzmaikin-Starobinsky’s inflationay solution since it is one of the
outcomes

H ≈ H0 −
t

36β
. (2)

Singularity is characterized by curvature scalars.

4.1 Linearized modes

• a masseless spin 2 field from GR (at the tree level, graviton)
• a massive scalar field with mass ms = 1/

√
6β

• a ghost massive spin two field with mass m2 = 1/
√−α (the ghost mode has

energy with opposite sign)

5. Stability in the isotropic case
In the quadratic counterpart, there’s no need to consider a two fluid mixture for
a stable and static solution. Also, in contrast to GR, it is possible to have static
solution with negative spatial curvature, a detail that apparently was not known
[5]. Anyway, reasonable substance does not lead to stable negatively curved
universes.
We have the linearized frequencies
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•Static solution for negative spatial curvature for a single fluid satisfying the
strong energy condition and positive energy density ρ > 0. The solution is
unstable. Stability can be achieved if ρ < 0.
•Static and stable solution for positive spatial curvature for a single fluid satis-

fying the strong energy condition and positive energy density ρ > 0. Stability
is obtained for a narrow range of EOS parameter w ' [−0.33,−0.21]. Stability
occurs also in the presence of the tachyon, β < 0.

as � > 0. Note, that such a matter does not violate the Strong Energy Condition. Numerically,
this is a rather narrow interval of the EOS parameter from ⇠ �0.33 to ⇠ �0.21. We should
also remark that the range for existence of static solution with � < 0 does not overlap with
the stability interval for w, so there are no stable static solutions with � < 0. From physical
point of view, the case of � > 0 is more interesting since it includes the possibility of inflation
scenario.

It is also possible to obtain static spatial negatively curved universes k = �1 with the EOS
parameter in the range �1 < w < �1/3 for � > 0 and for � < 0 in the range (�1+

p
17)/24 <

w < 1/3. For negative spatial curvature in both cases the energy density is negative. In a
physically preferred situation with ⇢ > 0 and � > 0 the static solution with k = �1 is always
unstable and requires 1/3 < w < 1. Here it must be emphasized that in standard GR it is
not even possible a static spatial negatively curved universe with positive energy density.
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Figure 1: We choose � = 10 with EOS parameter in the stable region w = �0.22 for a
spatially positively curved universe k = 1. The x axis marks the difference between initial
a and the value for as = 2.839985913 for the static solution given in (9) and in the y axis
is the initial value for H = ȧ. This section is made for initial Ḣ = 0. Black points refer
to the singularity attractor, gray points is the attractor to the stable oscillatory region,
and the set of white points is the attractor to the asymptotic scalaron behavior ei!t with
! = 1/

p
6�. The static solution is located in the center of the plot and is surrounded by

the stable oscillatory region.

We choosed � = 10 just for qualitative behavior unless in Figure 2 and 3. In Figure 1 it
is shown the basin of the stable static orbit for EOS parameter chosen in the stable region
w = �0.22. It is addressed the positively curved k = 1 universe and the x axis marks the
difference between initial a and the value as = 2.839985913 for the static solution given in
(9) and the y axis is the initial value for H = ȧ. All initial conditions are set with Ḣ = 0.
The stability region is marked by gray color. Outside of stability region a trajectory either
go directly to singularity (black zone) or experience prolonged scalaron oscillations, possibly
preceded by inflationary regime H = �(t � t0)/(36�) (white zone).

In Figure 2 w = �0.22 and also k = 1 as in Figure 1 now with � = 1.305 ⇥ 109 which
is the value set by CMBR observations [25]. We can see that the stability region is shrinked
considerably in vertical dimension. As for white zone, it was specifically checked that there
are no initial conditions near the static solution that converge to the inflationary solution
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A mesh of initial conditions for β = 10, w = −0.22 for the isotropic with positive
spatial curvature case. We choose β > 0 since it does not exclude the infaltionary
solution (2). In the x axis we have the displacement from the logarithmic of scale
factor a = lnR, from its value for the static universe as. In the y axis the initial value
of the Hubble parameter H = ȧ. Grey points is the the basin of stable oscillations,
white points are solutions which appoach the oscillatory scaleron behavior eit/

√
6β

and black points approach the singularity

6. Stability with shear
The non isotropic generalization of the positive curvature case is given by the appropriate Bianchi
IX case, which can be seen in [5]. Shear must be non zero and defined as

σij =
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Besides the frequencies from the isotropic case, there are additional frequencies

λ = 0,

λ = ±i/6
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where

∆ = 36α2w2 − 12αw2β − 16αwβ + 24α2w + 9 β2w2 + 18 β2w + 9 β2 − 4αβ + 4α2.

This choice of structure constant for the group results in the following non zero 3-curvature
components of the Riemann tensor 3Ra

bcd which are constant in the t = const. slices
3R3

131 = �2dc + c2 � 3b2 + d2 + 2cb + 2db 3R3
232 = �2cb + c2 � 3d2 + b2 + 2dc + 2db

3R2
121 = d2 � 2db � 3c2 + b2 + 2cb + 2dc

In this setting remind that we are choosing as variable the connection instead of the metric
and following [26] there’s an additional condition which guaranties that the correct choice is
made which is Jacobi identity Rabcd+Racdb+Radbc = 0. Jacobi identity results in the following
first order differential equations which must be satisfied together with the field equations

� ḋ � (4�+ + H)d = 0 �ḃ � (H � 2�+ � 2
p

3��)b = 0

ċ + (2
p

3�� + H � 2�+)c = 0. (17)

This equations (17) together with (16), (13) and (14) completely specify the connection and
the general field equations (6) for this situation with perfect fluid source are written in the
Appendix.

For zero shear all the above relations converge to the inverse scale factor and components
for the Einstein tensor, for instance, are the same as for the closed Friedmann model

b = c = d = 1/ea = exp

✓
�
Z

Hdt

◆
, G00 = 3H2 + 3e�2a, Gii = �2Ḣ � 3H2 � e�2a.
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Figure 3: A mesh of initial conditions in �+, versus ��. This plot was made to check
the the attractor to the stable region when ↵ > 0 given in (20) with � = 1, ↵ = 10 and
w = �0.22 with static as = 1.688693366. Gray points are initial conditions which oscillate
near the static solution, and black points approach the singularity. As expected there are no
initial conditions which asymptotically approach the scalaron since for ↵ > 0 the Minkowski
weak field limit becomes unstable.

Besides the eigenvalues which are present in the isotropic case (11) there are these additional
eigenvalues

� = 0, (18)

� = ±i/6
p
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Figure 4: In this mesh it is verified the stability of the static solution shown in Figure 1
with respect to shear. For this � = 10, ↵ = �1 and w = �0.22 with static as = 2.839985913
as in Figure 1, and �+ and �� are the only non zero initial conditions. Again, gray points
oscillate near the static solution, black points are initial conditions that hit the singularity,
and white points are initial conditions that asymptote the scalaron oscillations.

Some of these solutions appear to be stable. Stability requires positivity of spatial constant
and positivity of the coupling constant �. Under this condition a solution is stable with respect
to isotropic perturbations if the equation of state parameter lies in a rather narrow interval
(�1/3,�(1 +

p
17)/24).

A novel feature of anisotropic homogeneous perturbation is appearance of zero eigenvalue.
It needs a separate study, and we in the current paper focus on restrictions on w which follows
from non-zero eigenvalues. They do not impose any other restrictions on the value of w is the
coupling constant ↵ is negative. For positive ↵ the picture of stability is more complicated
and depends on the ratio ↵/�. If this ratio is smaller than (3/4)(23 �

p
17)/(7 �

p
17), then

the static solution is unstable for any w. If this ratio exceeds this value, stability conditions
require additional restriction on the value of w.

As for static solution with negative spatial curvature, it is unstable for any w of its zone
of existence.
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Appendix
In this appendix the field equations for (6) in presence of shear and perfect fluid source with
EOS parameter w are presented. Together with (17) and

⇢̇ = �3H(1 + w)⇢

11

a) b)
In panel a) a mesh of initial conditions for β > 0 and α > 0, regime in which
the ghost becomes tachyonic. Grey points oscillate near the staticorbit and black
points approach the singularity. While in panel b) a mesh which exclude the
tachyon with both β > 0 and α < 0. Grey points form the stable basin, black points
approach the singularity and white points show both the scaleron and ghost linear
oscillatory modes.
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