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This talk is another way of refusing Hardys thoughts (GH. Hardy, A Mathematician’s
Apology; 1940) regarding number theory applications.

YReal mathematics has no effects on war. No one has yet discovered any warlike purpose
to be served by the theory of numbers or relativity, and it seems very unlikely that
anyone will do so for many years.

It is true that there are branches of applied wathematics, such as ballistics and
aerodynamics, which have been developed detibera&etj for war and demand a quite
elaborate technique; it is perhaps hard to call them “trivial”™, but none of them has any
claim to rank “'real™. They are indeed repulsively ugly and intolerably dull.

Mathematics is, as I said at Oxford, a harmless and innocenkt occupation,

The Erivial mathematics, on the other hand, has many appti.cal‘:ions in war. The guinery
experts and airplane designers, for example could not do their work without it. And the
general effect of these applications is plain: mathematics facilitates (if not so obviously
as physics or chemistry) modern, sclentific, total war”,
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. HOSTILE BALLISTIC MISSILE ATTACK !

o In this talk, inkeractions bebtween
Brauer cownfiquration alqgebras and
quadratic forms with a problem
proposed. by Ramanujan in 1917 are
used to define a warqame based on
a missile defense svs%em (MDS).



The Road Map of the Talk

Quadratic forms and their relationships with the Gabriel’s theorem.

. The Bert Kostants game,

. Wargaming with admissible paths.

. Cauchy’s polygonal number theorem and a Ramanujan's problem
regarding quadratic forms.



Quadratic forms and their relationships
with the Gabriels theorem.



e A quadra&it: form g =q(x;,...,x) in n indeterminates x;,...,x, is said to be an

integral quadratic form, if it is of the form:

o q(xq, ... x)—Zx +Zal]xlx

i<j

o Where, q; € Z for all i, .

o A vector x = [x,...,x,]' € Z" is called positive f x#0 and x>0, for all j,
1 <j<n If a vector x is positive, then we write x > 0.

@ An integral quadratic form ¢ is called weakly positive ¢ g(x) >0, for any
vector x > 0,

® g is positive semidefinite if g(x) >0, for any x € Z". 1t is positive f g(x) >0 for
any X =+ 0.

o A vector x € 7" such that g(x) =1 is called a of g.



The quadratic form qo(X) of a quiver O has the form:

0 2
CIQ(-X) = Z X — Z xs(a)xt(a)'

€0, a0,

If A=kQ, then the Euler quadratic form of A, q,(x) = Z X7 — Z a; XX,

€0, 1,j€Qy
where, a; = dim; Ext}(s(i), s(j)). These quadratic forms coincide if O is

m:jci,i,c and conneckted.

For instance, the gquadratic form of [N
2 1

is given by the equality gy(x) = X7 + x; — XX, Note that, (1,0), (0,1), (1,1)
are positive roots of qp(x).



® The reflection s.: Q" —> Q" ok a vertex i of a finite, connected, and
acyclic quiver O is given by

o 5:(x) = A0 ae,
® In terms of the coordinates of x, we see that y = 5.(x) has coordinates

X =X j#i yj=—xl-+zxk«
k—i

@ The Weyl group Q is the group of automorphisms of E= Q" generated
by the set of reflections {s;},cq.

o In our exampte.,

) 51(1,0) = (=1,0), s0,1)=(1,1), s,(1,0) =(1,1), s,(0,1)=(0,—-1).

10



The Coxeter transformation ¢ of O is given by the product

Cim= 8 S v Sa 00 M(c) = CI)kQ.

n—1

If O is a quiver and ¢ is its Coxeter transformation. Then,
Pi = Sl...Si_l(ei), 1 S l S n.

1f m; is the least integer such that then the set then the set
{c™P|1<i<n, 0<s<m}, equals the set of all positive roots of g,.

Gabriel’s Theorem, If A =£kQ is a path k-algebra of a Dynkin graph 0.
Then, the mapping dim: M — dim(M), induces a of
indecomposable A-modules and the set of positive roots of the
quadratic form g, of Q.

An algebra A =kQ is representation-finite if its underlying diagram O is
one of the Dynkin diagrams A,, D, n >4, E, E;, Es.
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In 201% A, Postnikov qave a series of lectures at
the MIT entitled Topics in Combinatorics.

Among others, he introduced the Bert Kostant’s
gane (finding the highest root) as follows:

Let G = (V,E) be a simple graph, and sek V = [n].
For i € V, let N(i) denocte the neighbors of i.
For 1€V, we have 20 chips; the vector

() 1<i<cn = (€1, Cps ..., C,) L5 called a configuration,
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We say a vertex 1 Ls’

B Happy U c =% Z C;.

JEN()
i , 1
JEN(@)
, 1
@ L“f Ci > E Z Cja
JEN()

Groal: Malee everyone kampv or excited,
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The game is played as follows:

@ Initially no chips are present (hence ¢; =0 for all i and all
vertices are happy). Then we place a chip ok vertex v, =1,

so i, is excited but neighbors of i, are unhappy.
Subsequently, do the following ‘reflection”:

® Pick an unhappy vertex i, and replace ¢; by

= Crimgeey = °C; + Z o
JEN()




16



Definition. The graph G is of finite bype i
the game ends.

Proposition. If there is a way to play so that
the game ends, then any sequence of moves
eventually leads to a terminating state.
Moreover, the final cownfiquration vector
does wnok d@.p@.ﬂd on the choice of moves,
nor the thitial vertex we add a chip on.

17



o Theorem. The following statements are equivalent for a graph G:
1. Kostants game is finite.
2. G has no subgraph isomorphic to any extended Dynkin diagram.

3. G is isomorphic to one of the laced Dynkin diagrams,
A,D EqE; and [Eg.
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o Brauer configuration algebras (introduced by Green and Schroll in 2017)

arise from some Brauer configurations which are quadruples of the form
F — (Fo, Fl,//l, @)) Wkere;

o I') Is a set of vertices,

o I'| is collection wnmulkisets called polygons. Polygons conmsist of vertices
(vertex repetition is allowed).

® p is o mulkiplicity map, p: ) = N with u(a) 2 1, for any a €I,

o 0 is an orientation defined by way that a given vertex occurs in polygons
on I'j. Actually, U S, =1{V,....,V,} is the moaximal set of polygons where a
non-truncated vertex @ occurs considering also repetitions then the
orientation 0 at a is defined by endowing S, with a linear order < and
adding a relation V, <V,
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To each vertex a €I it is associated the valency Val(a) = Z Occ(a, U).

Uel’,
=10

Occ(a, U) is the number of times that the vertex o occurs in a Fotvgon
U.

a is said to be bruncated if p(a)Val(a) = 1. Otherwise a is a non-
Eruncated verkex,

Fix a polygon Vel and suppose that occ(a, V) =1 2> 1 then there are ¢
indices iy, ...,7, such that V= Vl-,j. Then the spet:i,at a—tjz‘::ies ak v are the

cycles §;, ..., S; where v € (Op); corresponds to the polygon V.

If a occurs cw\bj once i V and u(a) =1 then there is m\i.j one s[oec:i,od.
spet:iai a—»a':jt:ie ak v,
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Algorithm 1: Construction of a Brauer configuration algebra

Input A reduced Brauer configuration I' = (I'y, I';, i, O).
Output The Brauer configuration algebra Ar = FQr /Iy
Construct the quiver Qr = ((Qr)o, (Qr)1,5: (Qr)1 — (Qr)o, t: (Qr)1 — (Qr)o)
@  (Qr)o=Ty,
(b) For each cover V; < V;;1 € I'1 define an arrow a € (Qr)1, such that
s(a) = V;and t(a) = Vi1,
(c) Each relation V; < V; defines a loop in Qr,
(d) Each ordered set C, defines a cycle in Qr called special cycle.
Define the path algebra FQr,
Construct It, which is generated by the following relations:

(a) Ifa;,aj € U, U € I'1 and Cy;, Cy; are corresponding special cycles then
Vi ()

Cgim s C‘]"l,z'a’ =0,

(b) If Cy, is a special cycle associated to the vertex a; then CHailg =0, if a is the
first arrow of Cy,,

(c) Ifa, 0’ €Ty, a #a',a,b € (Qr)1,a#b,ab ¢ Cy for any a € Ty thenab =0,
ifae C,,beC,andab € FQr,

(d)  Ifaisaloop associated to a vertex & with val(a) = 1 and p(a) > 1 then
ah@)+1 — 0.

Ar = FQr /I is the Brauer configuration algebra.

For the construction of a basis of Ar follow the next steps:

(a) For each V' € I'1 choose a non-truncated vertex ay and exactly one special
a-cycle Cy, at V,
(b) Define:

A= {p| pisa proper prefix of some CL™},

B={cl" | vermn)}.

A U B is a F-basis of Ar.
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Some Properties of BCAs (Green and Schroll, 2017)

There is a bijective correspondence between the set of indecomposable projective
modules over kQr/I and polygons in I,

The BCA kQp/I is a nulkiserial algebra.

The number of summands in the heart of an indecomposable projective module P over
kOr/I with radical square distinct of zero equals the number of non-truncated vertices
of the polygons corresponding to P counting repetitions.

If P is an E,Mdecomposabte projective module over kQp/I corresponding to a polygon V
then the radical of P is a sum of r uniserial modules, where r is the number of non-
Eruncated vertices of V and where the intersection of any two of the uniserial modules
is a simple module,

Let ' be a Brauer configuration algebra associated to the Brauer configuration A and

let € ={C,...,C} be a full set of equivalence class representatives of special cycles.

Assume bthat afor p= 1% 1T Ces R speci,od. al--cjc:te where a; is a non-truncated vertex in

[' then dimy(A) =2|Q,| + Z |C.|(n;|C;| = 1), where |Q,| denoctes the number of vertices
CE€

of O, |C;| denotes the number of arrows in the a-cycle C; and n; = u(a)).
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On the center of a Brauer Configuration Algebra

o Lebt I' be a reduced (e, without btruncated vertices)
and connected Brauer confiquration and let O be
iks rduced guiver and let A be the induced Brauer
confiquration algebra such bhat rad’A # 0, then the
dimension of the center of A dencted dim;(Z(A)) is

given bv the formula (Sierra, 2017)

, dimZA) =1+ ) u(@) + |T,| = |Ty| + #Loops(Q) — | Gy |

a€l’,

® where |G| ={aecl| Val(a) =1, and u(a)>1}.
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A Modified version of the Bert Kostants Game (Firing Admissible Paths)
Lek us consider a d\igrapk Q(a,b,c) = (Qy, Oy, 5, 1), where:
0y € N x N,
Any arrow a € Q) belongs to a product of ot most three admissible paths 7 ( , L.b.pY, o5 and o5, where
a>0 and b,c are nonnegative integers. (the svmbot .szij(.) for j € {2,3} weans that the path d; does not appear i the Frodud:.

Moreover, .ij‘.),szij".: = .ij’::,szf](.) = gszij’::), .Qf]i. is a composition of i copies of A; whose set of arrows {of |, afy, ...,aﬁnl}, {ﬁé”l,ﬁé”z, o é),nz}’ and

(V51750 ...,7§’n3} , respectively so&isfj the following conditions:
ns S ny.

¥ m@)eN, de{a,fy}, 1<j<3 is the slope of an arrow §,, € o; then m(5;,) =m(5;,_)+1, in particular, s(a; ) = (0,0), and
m(a, ;) = m(p,,;) = m(y3) = 0.

. For i>2, 1<r<n, 1<j<3, é€{a,f.y} it holds that the set of arrows {@{1,5]{2,...,5]{”],} of .szfjli are such Ethat

m(8,) =m(;,), 118;,11=116,11, z(éj{;jl) = 5(5])) for all possible values of i,5 and j. And t(af,) = 5(fr), t(ﬂgnz) =5(3.)-
; ala,nIﬂZ,s = ﬁé”nzyls/ = “f,ﬂ’é}/ == ﬂé,u“ll:u/ =0, for 5,5’ > 1 and all the Possibte values of i,i',1,l,t,t',u and u'.

Two admissible paths &) and .Qf}l:: are said to be equivalent Y one is obtained from the other via slope permukations (e.q.
A;={0,1,0,1,0} is equivalent to o; = {0,0,1,0,1}).
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Definition. For a fixed positive integer m and a
nonnegative integer j. Let & be a subset of N XN
such thak

L= {(x,y) ENXN |y =—mx—))

We Llet P; denote the points of &, whose

coordinates have the nform (i, —m(i —j)).

Definition. 1 P,
Thus, subsets Z; constitute a partition of NXN.

P; € Z; then they are equivalent.

1
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For j > 1 fixed, the set A; consisting of all classes of admissible paths
ending at points P;; defines a Brauer comfiguration IV = (I ,Ffi,,uj, 0),

where
[ =[] = {0,1.2,...,13}, v; = max{m(5) | 6! is am arrow of o€ ).

Fﬁ =AU, Le. polygons are representative of classes admissible paths,

whose associabted word w(d}) is given bj the Cmrres[z:omdihg slope

sequence.
1W(s) =3 for any s € [y].

f A= (ol o2, ..., d" ), where I denotes a representative of a
]71 ]’2 ]S ],h :
class of admissible paths. Thus, an ordering O’ is defined in such o

waYy that i successor sequences, it holds bhat o/ < oft!
j,h j,h+1
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The game we define is similar to the way of a missile defense system (MDS) works.

‘Ptajers: Two ao\.versmv armies, A and B, Army B, Llaunches wmissiles from a Poih&
(h,0), 1<h<jto a target Tj, located at a point (x,y) in a region R C N2, if the set of
vertices of the Lleft bou.ud.o\rv path (/.b. pY is {(x0,y0) = (0,0), (xp, 1), .- o» (x,y,)} then for

some j, 0 < j <t ik holds that x =x, y>y.

Gaming: Army A pro&ec&s a region Dome C {(x,y) € N2 |0<x< t12j, 0Ly<t,>j} with
an MDS, which fires admissible paths. Missiles are endowed with a GPS device which
defines a wmissile as a missite.-—&mjea&orv, so we can say that army A launches
admissible brajectories as a Ground Based Interceptor (&RI) does.

Missiles launched by army B follows a Llinear trajectory with slope m. The launchers of
army A are locakted at the POEM& (0,0) their missiles have as qoal iuf:ercep&f.ug those
launched by B Llocated at the points in the dome,

End of the Game: The game is over once army A have launched all admissible paths
with maximal slope associated with the class Z; (the largest missile scope for which

n (P, J<j<z(PR), P, P eclbp

Xi_1,87 7 XS




o If a wmissile launched by army B follows a Erajectory
determined by a class Z; then a launch of the army A is said

to be:

1. Happy, f exactly one class of admissible paths (only one shot)
reaches Z; (le. IV | = 1)

2. , f no class of admissible paths reaches &, (lFfil = 0).

3. Excited, # more than one class of admissible paths reaches
Z; (e |T7 | > 1),

@ Problem. For which values of m,a,b and ¢ any launch of the

army A (to points of classes &) is happy or excited?
-

) %y




Cauchy’s polygonal number theorem
And

A Ramanujan’s problem regarding
quadratic forms.

3R



o In 1684 Fermab wrote the following
letter to Pascal claiming that any
number can be written as a sum of
at most k, k-qonal numbers:

d’un, de deux ou de trois triangles; d’un, de deux, de trois ou de quatre quarrés; d’un, de deux,
de trois, de quatre ou de cinq pentagones; d’un, de deux, de trois, de quatre, de cinq ou de six

hexagones, et a 'infiny.

Pour y parvenir, il faut demonstrer que tout nombre premier, qui surpasse de I'unité un multiple
de 4. ect comnngé de denx carrés comme 5, 13. 17. 29. 37, etc.
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Advances own this problem were reported by Liouville, Euler,
Lagrange, Legendre, Grauss, ete.

Crauss wrote i his 1796-07-10 diarv evxﬁrjz
EUREKA! num=A+A+ A

Meaning that any number can be written as a sum of three
Eriangular numbers.

Lagrange in 1772 proved that any number is the sum of four square
of numbers,

In 179% Legendre and Gauss in 1%01 proved that no number of the
form 498b +7) can be written as a sum of three square of numbers.
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f&amamu\}QMch)v\waijargkava

According to Duke, in 1917 Ramanujan published a paper which was to have a big
impact on subsequent research on representations by quadratic forms. He
considered the problem of finding all integers 0 <a<b<c<d for which every
positive integer is represented in the form axi+ bx; + cxj +dx;. Dickson observed
that 54 forms oubt the §5 conjectured bj Ramanujan were correct and that the
quadruple does not represent the number 15,

Conway and one of his students Schneeberger conjectured in 1993 the following
result proved by Barghava in 2000:

Fifteen theorem. If a positive integer-matrix quadratic form represents each of 1,
R, 3,8 &, 7 10, 14, 15, then it represem&s all Posif:ive integers.
385



o New results regarding mixed sums of triangular and square numbers are given recently by Sun
ek al.

>ums of four squares
. Lagrange’s Four-square Theorem (1770). Each
Triangular numbers are those neN={0,1,2,...} can be written as the sum of four squares.

Triangular numbers

n(n+1) S. Ramanujan's Observation (confirmed by L.E. Dickson in
Th= Z e (neN). 1927). There are totally 54 quadruples (a. b, c,d) € (Z")* with
r=0 a < b < ¢ <d such that each n € N can be written as
Note that aw? + bx? 4 cy?® + dz? with w, x,y.z € Z. The 54 quadruples are

LA D L) (1,2,22) (L LS, (W23,
(1,2,3,3), (1,1,1,4), (1,1,2,4), (1,2,2,4),
(1:2:4:4); (1.1 1:5); (1:1,2:5); (1,2,2.5);
)
)

S s [ G ; ; (
) ) i
(1,2,4,5), (1,1,1,6), (1,1,2,6), (1,2,2,6),
) ). (1,
) ). (1,
) )

5 forall neN. 02y 2:3) (1.1, 3,3

):

23 4)

Theorem (conjectured by Fermat and proved by Gauss). Each .5),
6),

n € N can be written as T, + T, + T, with x,y,z € N.

N - 4 (1,2,4,6), (1,2,5,6 11.7). (1;1,2.7),
Liouville’s Theorem (Liouville, 1862).. Let f9.b,c € Z™ and .2“3.7)’ (1,2,4.7), (1,2,5,7 1.2.8), (1,2,3,8),
a< b< c. Then any n € N can be written in the form
aTy+ bT, + cT, if and only if (a, b, c) is among :2,4,8), (1,2,5,8), (1,1,2,9). (1,2,3,9), (1,2,4,9), (1,1,5,9),
.1,2,10), (1,2,3,10), (1,2,4,10), (1,2,5,10), (1,1,2,11),(1,2,4,11

(1,1,1), (1,1,2), (1,1,4), (1,1,5), (1,2,2), (1,2,3), (1,2,4). 11,2,12), (1.2,4,12), (1,1,2,13), (1,2,4,13), (1,1,2,14), (1,2,4, 14}

On x(ax + 1) + y(by + 1) + z(cz + 1) with x,y. z € Z
Theorem (Z.-W. Sun [JNT 171(2017)]) (i) Let a, b,c € Z" with
In 2005 Z. W. Sun [Acta Arith. 2007] investigated what kind of | asb<c Iffapc(x,y,z):=x(ax+1)+y(by+1)+z(cz+1) is

mixed sums ax? + by? + cT, or ax? + bT, + cT, (with universal over Z, then (a, b, ¢) is among the following 17 triples:
a, b,c € Z*) are universal (i.e., all natural numbers can be so (1.1,2), (1.2,2), (1,2,3), (1,2,4), (1,2,5)

represented). This project was completed via three papers: Z. W. .
Sun [Acta Arith. 2007], S. Guo, H. Pan & Z. W. Sun [Integers, (2,2,2), (2,2,3), (2,2,4), (2,2,5), (2,2,6),
2007], and B. K. Oh & Sun [JNT, 2009]. j. (2,3,3), (2,.3,4), (2,3,5), (2,3,7), (2,3,8), (2,3,9), (2,3,10).

List of all universal ax? + by? + cT, or ax* + bT, + cT: ' (ii) f.b.c(x,y,2z) is universal over Z if (a, b, c) is among
Tut T+ 2, Tet Ty 4222, Tut T, +42, Ty 42T, + 2, | (1,2.3), (1,2,4), (1,2.5), (2.2.4), (2.2.5), (2.3,3), (2.3,4).
Tx+2T,+222, T +2T, +32%, T, + 2T, +42%, 2T, + T, + 2%, | Conjecture (Sun). f,p.c(x,y,z) is universal over Z if (a. b, ¢) is

OT 4T, + 2, 0T 45T, + 2, To £ 3T, + 22, T, £ 4T, + 22 among (2,2,6), (2,3,5), (2,3,7), (2,3,8), (2,3,9), (2,3,10).
1 In 2017, Ju and Oh [arXiv:1701.02974] proved that

Vlixed Sums of Squﬂaré’s and Triahgular Numbers

T AT, 422%, Tu+8T, 22, TutBT, + 22, T4y 422 :
Tx+y2+222, Tx+y2+322. Tx+y +422. T, +y + 822, h2e(x.y.z) and fo3c(x,y.2) (c=5,7)

T+ 2y2 +222 T+ 2y2 +422 2T, + yz +22 2T, +y2 n 2y2, ] are universal over' Z. The universality of £, 5 (x. y, z) over Z for
‘ c = 8,9, 10 remains open.

AT, + y? +22°. -




Theorem. If m =1 and j > 1 then

1. dim, A < 2pya( j)(z/jp(sa TR 1), where pl-5 denotes the ith Peu&ago—no& number and p;A(j)

denotes the number of partitions of j into at most three triangular numbers.
2, dim; Z(Ap) < 1+ 30+ p3a()(1 +(a+b+c—3)).
3. For corresponding Brauer configurations, it holds that |F§7j+12| — 3|F§j+1| , for any j > 0.

4. Any GBI launch from (0,0) to a class &, is happy or excited f the briplet (a,b,c) with
a < b < ¢ is among the following Lisk:

4. Any GBI launch from (0,0) to a class &; is happy or excited for a choice of a,b, and ¢ i
and only if it is happy or excited for

Prook. Ikems 3 and 4 are consequences of the works of Liouville (1%62) and Kane (2009),
respecf:ivetj. []
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Definition. An extension (o ) of an admissible path
d;=1{a;1,45....a;,} is a product of the form
(d)s=1{a,1,85,....,0;,_1,0;1,0;5, ...,a;,}. Extensions define
new quivers 0u(a,b,c) under the transformation
Q(a,b,c) — QO«(a,b,c) whose arrows belong ko pmdut&s
of admissible paths one or two of them being extended.

For the sake of clarity, if ik is necessary, we assume
produt&s of the form P (ab,c)= ﬂ‘f&iﬁ(&zﬁg)* or
Ci— d?(&ig)*(ﬂg)* to define arrows in extended quivers
denoted Qi(a,b,c) and Qi(a,b,c), respectively,
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Theorem. If m =1 then

1. In @la,b,c) any GBI launch from (0,0) to a class Z; is happy or excited f the briplet
(a,b,c) is among the following List:

2. In QZa,b,c) any GBI launch from (0,0) to a class Z; is happy or excited if the briplet is
amohg the following List:

Proof, It is a consequence of the Sun ek al. works, 2007-2009, []

Corollary (advice for army B). If m =2;a =b =c = 1. Then launches to classes of points with the form
(32" + 2m 25NTI2R 2 3) - m(220ED Z13)) amd (26 +5) + 3,2 + i+ 3s5), with i 20, h>1, m>0, and 5 >0, are unhappy.

Proof. It is a consequence of the work of Legendre and Gauss in 179% and 1%¥01 respectively,

[l
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