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This talk is another way of refusing Hardy’s thoughts (G.H. Hardy, A Mathematician’s 
Apology; 1940) regarding number theory applications. 

`’Real mathematics has no effects on war. No one has yet discovered any warlike purpose 
to be served by the theory of numbers or relativity, and it seems very unlikely that 
anyone will do so for many years. 

It is true that there are branches of applied mathematics, such as ballistics and 
aerodynamics, which have been developed deliberately for war and demand a quite 
elaborate technique; it is perhaps hard to call them ``trivial´´, but none of them has any 
claim to rank ``real´´. They are indeed repulsively ugly and intolerably dull. 

Mathematics is, as I said at Oxford, a harmless and innocent occupation. 

The trivial mathematics, on the other hand, has many applications in war. The gunnery 
experts and airplane designers, for example could not do their work without it. And the 
general effect of these applications is plain: mathematics facilitates (if not so obviously 
as physics or chemistry) modern, scientific, total war’’.
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In this talk, interactions between 
Brauer configuration algebras and 
quadratic forms with a problem 
proposed by Ramanujan in 1917 are 
used to define a wargame based on 
a missile defense system (MDS).



The Road Map of the Talk 

1. Quadratic forms and their relationships with the Gabriel’s theorem. 

2. The Bert Kostant’s game. 

3. Brauer configuration algebras. 

4. Wargaming with admissible paths. 

5. Cauchy’s polygonal number theorem and a Ramanujan’s problem 
regarding quadratic forms.
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Quadratic forms and their relationships 
with the Gabriel’s theorem. 
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A quadratic form  in  indeterminates  is said to be an 
integral quadratic form, if it is of the form: 

                                 

Where,  for all . 

A vector  is called positive if  and , for all , 
. If a vector  is positive, then we write . 

An integral quadratic form  is called weakly positive if , for any 
vector . 

 is positive semidefinite if , for any . It is positive if  for 
any . 

A vector  such that  is called a root of .

q = q(x1, …, xn) n x1, …, xn

q(x1, …, xn) =
n

∑
i=1

x2
i + ∑

i<j

aijxixj

aij ∈ ℤ i, j

x = [x1, …, xn]t ∈ ℤn x ≠ 0 xj ≥ 0 j
1 ≤ j ≤ n x x > 0

q q(x) > 0
x > 0

q q(x) ≥ 0 x ∈ ℤn q(x) > 0
x ≠ 0

x ∈ ℤn q(x) = 1 q
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The quadratic form  of a quiver  has the form: 

                          . 

If , then the Euler quadratic form of ,  

where,  . These quadratic forms coincide if  is 
acyclic and connected. 

For instance, the quadratic form of 

is given by the equality . Note that,  
are positive roots of .

qQ(x) Q

qQ(x) = ∑
i∈Q0

x2
i − ∑

α∈Q1

xs(α)xt(α)

A = kQ A qA(x) = ∑
i∈Q0

x2
i − ∑

i, j∈Q0

aijxixj

aij = dimk Ext1A(s(i), s( j)) Q

qQ(x) = x2
1 + x2

2 − x1x2 (1,0), (0,1), (1,1)
qQ(x)
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The reflection  at a vertex  of a finite, connected, and 
acyclic quiver  is given by 

                                  

In terms of the coordinates of , we see that  has coordinates  

                           if ,     . 

The Weyl group  is the group of automorphisms of  generated 
by the set of reflections . 

In our example,  

       

si : ℚn → ℚn i
Q

si(x) = x − 2(x, ei)ei

x y = si(x)

yj = xj j ≠ i yj = − xi + ∑
k−i

xk

Q E = ℚn

{si}i∈Q0

s1(1,0) = (−1,0), s1(0,1) = (1,1), s2(1,0) = (1,1), s2(0,1) = (0, − 1) .
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The Coxeter transformation  of  is given by the product                         
. 

If  is a quiver and  is its Coxeter transformation. Then, 
. 

If  is the least integer such that  then the set  then the set 
, equals the set of all positive roots of . 

Gabriel’s Theorem. If  is a path -algebra of a Dynkin graph . 
Then, t he mapp ing , induce s a b ij ect ion of 
indecomposable -modules and the set of positive roots of the 
quadratic form  of .  

An algebra  is representation-finite if its underlying diagram  is 
one of the Dynkin diagrams  , , , .

c Q
c = san

san−1
…sa2

sa1
, M(c) = ΦkQ

Q c
Pi = s1…si−1(ei), 1 ≤ i ≤ n

mi
{c−sPi ∣ 1 ≤ i ≤ n, 0 ≤ s ≤ mi} qQ

A = kQ k Q
dim : M → dim(M)

A
qQ Q

A = kQ Q
𝔸n, 𝔻n, n ≥ 4 𝔼6 𝔼7 𝔼8
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The Bert Kostant’s game. 
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In 2018 A. Postnikov gave a series of lectures at 
the MIT entitled Topics in Combinatorics. 

Among others, he introduced the Bert Kostant’s 
game (finding the highest root) as follows: 

Let  be a simple graph, and set . 

For , let  denote the neighbors of . 

For , we have  chips; the vector 
 is called a configuration.

G = (V, E) V = [n]

i ∈ V N(i) i

i ∈ V ci ≥ 0
(ci)1≤i≤n = (c1, c2, …, cn)
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We say a vertex  is: 

😺 Happy if . 

😾 Unhappy if . 

😹 Excited if . 

Goal: Make everyone happy or excited.

i

ci =
1
2 ∑

j∈N(i)

cj

ci <
1
2 ∑

j∈N(i)

cj

ci >
1
2 ∑

j∈N(i)

cj
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The game is played as follows:  

Initially no chips are present (hence  for all  and all 
vertices are happy). Then we place a chip at vertex , 
so  is excited but neighbors of  are unhappy. 
Subsequently, do the following ‘’reflection’’: 

Pick an unhappy vertex , and replace  by 

.

ci = 0 i
vi0 = 1

i0 i0

i ci

ci ⟶ − ci + ∑
j∈N(i)

cj
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Definition. The graph  is of finite type if 
the game ends. 

Proposition. If there is a way to play so that 
the game ends, then any sequence of moves 
eventually leads to a terminating state. 
Moreover, the final configuration vector 
does not depend on the choice of moves, 
nor the initial vertex we add a chip on.

G
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Theorem. The following statements are equivalent for a graph : 

1. Kostant’s game is finite. 

2.  has no subgraph isomorphic to any extended Dynkin diagram. 

3.  is isomorphic to one of the laced Dynkin diagrams, 
 and .

G

G

G
𝔸n, 𝔻n, 𝔼6, 𝔼7, 𝔼8
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Brauer configuration algebras. 

19



Brauer configuration algebras (introduced by Green and Schroll in 2017) 
arise from some Brauer configurations which are quadruples of the form 

, where; 

 Is a set of vertices, 

 is collection multisets called polygons. Polygons consist of vertices 
(vertex repetition is allowed). 

 is a multiplicity map,  with , for any  

 is an orientation defined by way that a given vertex occurs in polygons 
on . Actually, if  is the maximal set of polygons where a 
non-truncated vertex  occurs considering also repetitions then the 
orientation  at  is defined by endowing  with a linear order  and 
adding a relation .

Γ = (Γ0, Γ1, μ, 𝒪)

Γ0

Γ1

μ μ : Γ0 → ℕ μ(α) ≥ 1 α ∈ Γ0

𝒪
Γ1 Sα = {V1, …, Vk}

α
𝒪 α Sα <

Vk < V1
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To each vertex  it is associated the valency . 

 is the number of times that the vertex  occurs in a polygon 
. 

 is said to be truncated if . Otherwise  is a non-
truncated vertex. 

Fix a polygon  and suppose that  then there are  
indices  such that . Then the  special -cycles at  are the 
cycles  where  corresponds to the polygon . 

If  occurs only once in  and  then there is only one special 
special -cycle at .

α ∈ Γ0 Val(α) = ∑
U∈Γ1
α∈U

Occ(α, U)

Occ(α, U) α
U

α μ(α)Val(α) = 1 α

V ∈ Γ1 occ(α, V ) = t ≥ 1 t
i1, …, it V = Vi, j α v

Si1, …, Sit v ∈ (QΓ)1 V

α V μ(α) = 1
α v
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Some Properties of BCA’s (Green and Schroll, 2017)

There is a bijective correspondence between the set of indecomposable projective 
modules over  and polygons in . 

The BCA   is a multiserial algebra. 

The number of summands in the heart of an indecomposable projective module  over 
 with radical square distinct of zero equals the number of non-truncated vertices 

of the polygons corresponding to  counting repetitions. 

If  is an indecomposable projective module over  corresponding to a polygon  
then the radical of  is a sum of  uniserial modules, where  is the number of non-
truncated vertices of  and where the intersection of any two of the uniserial modules 
is a simple module. 

Let  be a Brauer configuration algebra associated to the Brauer configuration  and 
let  be a full set of equivalence class representatives of special cycles. 
Assume that for  is a special -cycle where  is a non-truncated vertex in 
 then  where  denotes the number of vertices 

of ,  denotes the number of arrows in the -cycle  and .

kQΓ /I Γ1

kQΓ /I

P
kQΓ /I

P

P kQΓ /I V
P r r

V

Γ Λ
𝒞 = {C1, …, Ct}

i = 1,…, t, Ci αi αi
Γ dimk(Λ) = 2 |Q0 | + ∑

Ci∈𝒞

|Ci | (ni |Ci | − 1), |Q0 |

Q |Ci | αi Ci ni = μ(αi)
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On the center of a Brauer Configuration Algebra

Let  be a reduced (i.e, without truncated vertices) 
and connected Brauer configuration and let  be 
its induced quiver and let  be the induced Brauer 
configuration algebra such that , then the 
dimension of the center of  denoted  is 
given by the formula (Sierra, 2017)  

 

where .

Γ
Q

Λ
rad2Λ ≠ 0

Λ dimk(Z(Λ))

dimk(Z(Λ)) = 1 + ∑
α∈Γ0

μ(α) + |Γ1 | − |Γ0 | + #Loops(Q) − |𝒞Γ |

|𝒞Γ | = {α ∈ Γ0 ∣ Val(α) = 1, and μ(α) > 1}

24
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Wargaming with admissible paths. 



A Modified version of the Bert Kostant’s Game (Firing Admissible Paths) 

Let us consider a digraph , where: 

. 

Any arrow  belongs to a product of at most three admissible paths  (the left boundary path, ),  and , where 
 and  are nonnegative integers. (the symbol  for   means that the path  does not appear in the product. 

Moreover, ),  is a composition of  copies of  whose set of arrows , , and 

, respectively satisfy the following conditions: 

1. . 

2. If  is the slope of an arrow  then , in particular, , and 
. 

3. For  it holds that the set of arrows  of  are such that 

,  for all possible values of  and . And . 

4. , for  and all the possible values of  and . 

5. Two admissible paths  and  are said to be equivalent if one is obtained from the other via slope permutations (e.g. 

 is equivalent to ).

Q(a, b, c) = (Q0, Q1, s, t)

Q0 ⊂ ℕ × ℕ

α ∈ Q1 𝒜a
1 l . b . p 𝒜b

2 𝒜c
3

a > 0 b, c 𝒜0
j j ∈ {2,3} 𝒜j

𝒜0
j 𝒜i′ 

j′ = 𝒜i′ 
j′ 𝒜

0
j = 𝒜i′ 

j′ 𝒜i
j i 𝒜j {αa

1,1, αa
1,2, …, αa

1,n1
} {βb

2,1, βb
2,2, …, βb

2,n2
}

{γc
3,1, γc

3,2, …, γc
3,n3

}

n3 ≤ n2

m(δj,t) ∈ ℕ, δ ∈ {α, β, γ}, 1 ≤ j ≤ 3 δj,t ∈ 𝒜j m(δj,t) = m(δj,t−1) + 1 s(α1,1) = (0,0)
m(α1,1) = m(β2,1) = m(γ3,1) = 0

i ≥ 2, 1 ≤ r ≤ nj, 1 ≤ j ≤ 3, δ ∈ {α, β, γ} {δi
j,1, δi

j,2, …, δi
j,nj

} 𝒜i
j

m(δi
j,r) = m(δj,r), | |δj,r | | = | |δi

j,r | | t (δi−1
j,nj

) = s(δi
j,1) i, δ j t (αa

1,n1
) = s(β2,1), t (βb

2,n2
) = s(γ3,1)

αa
1,n1

β2,s = βb
2,n2

γ3,s′ = αi
1,tγ

i′ 
3,t′ = βl

2,uαl′ 
1,u′ = 0 s, s′ > 1 i, i′ , l, l′ , t, t′ , u u′ 

𝒜i
j 𝒜i′ 

j′ 
𝒜j = {0,1,0,1,0} 𝒜j′ = {0,0,1,0,1}
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Definition. For a fixed positive integer  and a 
nonnegative integer . Let  be a subset of  
such that 

            

We let  denote the points of  whose 
coordinates have the form . 

Definition. If  then they are equivalent. 
Thus, subsets  constitute a partition of .

m
j ℒj ℕ × ℕ

ℒj = {(x, y) ∈ ℕ × ℕ ∣ y = − m(x − j)}

Pj,i ℒj

(i, − m(i − j))

Pj,i, Pj,i′ ∈ ℒj

ℒj ℕ × ℕ
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For  fixed, the set  consisting of all classes of admissible paths 
ending at points  defines a Brauer configuration , 
where 

, . 

, i.e. polygons are representative of classes admissible paths, 
whose associated word  is given by the corresponding slope 
sequence. 

 for any . 

If , where  denotes a representative of a 

class of admissible paths. Thus, an ordering  is defined in such a 
way that in successor sequences, it holds that .

j > 1 𝔄j
Pj,i Γj = (Γj

0, Γj
1, μj, 𝒪j)

Γj
0 = [νj] = {0,1,2,…, νj} νj = max{m(δi

j) ∣ δi
j is an arrow of 𝒜i

j ∈ 𝔄j}

Γj
1 = 𝔄j

w(𝒜i
j)

μj(s) = 3 s ∈ [νj]

𝔄j = {𝒜i1
j,1, 𝒜i2

j,2, …, 𝒜is
j,s} 𝒜ih

j,h
𝒪j

𝒜ih
j,h < 𝒜ih+1

j,h+1
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The game we define is similar to the way of a missile defense system (MDS) works. 

1. Players: Two adversary armies, A and B. Army B, launches missiles from a point 
 to a target , located at a point  in a region , if the set of 

vertices of the left boundary path ( ) is  then for 

some , , it holds that .  

2. Gaming: Army A protects a region  with 
an MDS, which fires admissible paths. Missiles are endowed with a GPS device which 
defines a missile as a missile-trajectory, so we can say that army A launches 
admissible trajectories as a Ground Based Interceptor (GBI) does. 

3. Missiles launched by army B follows a linear trajectory with slope . The launchers of 
army A are located at the point  their missiles have as goal intercepting those 
launched by B located at the points in the dome.  

4. End of the Game: The game is over once army A have launched all admissible paths 
with maximal slope associated with the class  (the largest missile scope for which 

).

(h,0), 1 ≤ h ≤ j TB (x, y) R ⊂ ℕ2

l . b . p {(x0, y0) = (0,0), (x1, y1), …, (xt, yt)}
j 0 ≤ j ≤ t x = xj, y > yj

Dome ⊆ {(x, y) ∈ ℕ2 ∣ 0 ≤ x ≤ t1 ≥ j, 0 ≤ y ≤ t2 ≥ j}

m
(0,0)

ℒj
πx(Pxt−1,s) ≤ j ≤ πx(Pxt,s′ ), Pxt−1,s, Pxt,s′ ∈ l . b . p
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If a missile launched by army B follows a trajectory 
determined by a class  then a launch of the army A is said 
to be: 

1. Happy, if exactly one class of admissible paths (only one shot) 
reaches  (i.e. ). 

2. Unhappy, if no class of admissible paths reaches  ( ). 

3. Excited, if more than one class of admissible paths reaches 
 (i.e. ). 

Problem. For which values of  and  any launch of the 
army A (to points of classes ) is happy or excited?

ℒj

ℒj |Γj
1 | = 1

ℒj |Γj
1 | = 0

ℒj |Γj
1 | > 1

m, a, b c
ℒj

31



Cauchy’s polygonal number theorem 

And  

A Ramanujan’s problem regarding 
quadratic forms.
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In 1654 Fermat wrote the following 
letter to Pascal claiming that any 
number can be written as a sum of 
at most , -gonal numbers: k k
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Advances on this problem were reported by Liouville, Euler, 
Lagrange, Legendre, Gauss, etc. 

Gauss wrote in his 1796-07-10 diary entry: 

                             EUREKA!  

Meaning that any number can be written as a sum of three 
triangular numbers. 

Lagrange in 1772 proved that any number is the sum of four square 
of numbers. 

In 1798 Legendre and Gauss in 1801 proved that no number of the 
form  can be written as a sum of three square of numbers.

num = Δ + Δ + Δ

4a(8b + 7)
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Ramanujan-Conway-Barghava 

According to Duke, in 1917 Ramanujan published a paper which was to have a big 
impact on subsequent research on representations by quadratic forms. He 
considered the problem of finding all integers  for which every 
positive integer is represented in the form . Dickson observed 
that 54 forms out the 55 conjectured by Ramanujan were correct and that the 
quadruple (1, 2, 5, 5) does not represent the number 15. 

Conway and one of his students Schneeberger conjectured in 1993 the following 
result proved by Barghava in 2000: 

Fifteen theorem. If a positive integer-matrix quadratic form represents each of 1, 
2, 3, 5, 6, 7, 10, 14, 15, then it represents all positive integers.

0 ≤ a ≤ b ≤ c ≤ d
ax2

1 + bx2
2 + cx2

3 + dx2
4
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New results regarding mixed sums of triangular and square numbers are given recently by Sun 
et al. 
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Theorem. If  and  then  

1.  , where  denotes the th pentagonal number and  

denotes the number of partitions of  into at most three triangular numbers. 

2.  .  

3. For corresponding Brauer configurations, it holds that , for any . 

4. Any GBI launch from  to a class  is happy or excited if the triplet  with 
 is among the following list: 

(1,1,1), (1,1,2), (1,1,4), (1,1,5), (1,2,2), (1,2,3), (1,2,4). 

4. Any GBI launch from  to a class  is happy or excited for a choice of , and  if 
and only if it is happy or excited for . 

Proof. Items 3 and 4 are consequences of the works of Liouville (1862) and Kane (2009), 
respectively.          

m = 1 j ≥ 1

dimk ΛΓj ≤ 2p3Δ( j)(νj p5
(a+b+c)νj

+ 1) p5
i i p3Δ( j)

j

dimk Z(ΛΓj) ≤ 1 + 3νj + p3Δ( j)(1 + (a + b + c − 3)νj)

|Γ27j+12
1 | = 3 |Γ3j+1

1 | j ≥ 0

(0,0) ℒj (a, b, c)
a ≤ b ≤ c

(0,0) ℒj a, b c
j ∈ {1,2,4,5,8}

□
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Definition. An extension  of an admissible path 
 i s a p r o d u c t o f t h e f o r m 

. Extensions define 
new quivers  under the transformation 

 whose arrows belong to products 
of admissible paths one or  two of them being extended.  

For the sake of clarity, if it is necessary, we assume 
p r o d u c t s o f t h e fo r m  o r 

 to define arrows in extended quivers 
denoted  and , respectively.

(𝒜j)*
𝒜j = {aj,1, aj,2, …, aj,t}
(𝒜j)* = {aj,1, aj,2, …, aj,t−1, aj,1, aj,2, …, aj,t}

Q*(a, b, c)
Q(a, b, c) ⟶ Q*(a, b, c)

𝒫1(a, b, c) = 𝒜a
1𝒜

b
2(𝒜

c
3)*

𝒫2 = 𝒜a
1(𝒜

b
2)*(𝒜b

3)*
𝒬1

*(a, b, c) 𝒬2
*(a, b, c)
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Theorem. If  then 

1. In  any GBI launch from  to a class  is happy or excited if the triplet 
 is among the following list: (1,1,1), (1,1,2), (1,1,4), (1,2,1), (1,2,2), (1,2,3), (1,2,4), 

(2,1,1), (2,4,1), (2,5,1), (1,3,1), (1,4,1), (1,4,2), (1,6,1), (1,8,1). 

2.  In  any GBI launch from  to a class  is happy or excited if the triplet is 
among the following list: (1,1,1), (1,1,2), (1,1,3), (1,1,4), (1,1,8), (1,2,2), (1,2,4), (2,1,1), (2,1,2), 
(4,1,2). 

Proof. It is a consequence of the Sun et al. works, 2007-2009.      

Corollary (advice for army B). If . Then launches to classes of points with the form 
 and , with , and , are unhappy. 

Proof. It is a consequence of the work of Legendre and Gauss in 1798 and 1801 respectively.     

m = 1

𝒬1
*(a, b, c) (0,0) ℒj

(a, b, c)

Q2
*(a, b, c) (0,0) ℒj

□

m = 2; a = b = c = 1
(32h + 2m,2h−1(72h − 3) + m(22(h+1) − 1))) (2(i + s) + 3,2 + 7i + 3s) i ≥ 0, h ≥ 1, m ≥ 0 s ≥ 0

□



Thank You
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