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Notation: p is a prime; G denotes a finite group.

Definition (p-regular element of a group G)

An element whose order is not divisible by p.

Let p divide the order of G.

Definition (p-Steinberg character)

An irreducible character x of G such that x(x) = £|Cg(x)|p, for every
p-regular element x in G, where Cg(x) denotes the centralizer of x in G.

Definition (quasi p-Steinberg character)

An irreducible character x of G is called a quasi p-Steinberg character if
x(g) # 0 for all p-regular elements g in G.
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@ All irreducible characters of a p-group are quasi p-Steinberg
characters.

@ Linear characters of a finite group are quasi p-Steinberg characters.

So, we concentrate on nonlinear characters when talking about quasi
p-Steinberg characters.
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Theorem (Paul and Singla, 2021)

For n > 3, let \ be a partition of n such that \ # (n),(1") and p be a
prime. All triplets (n, \, p) such that x is a quasi p-Steinberg character
of S, are given in Table below.

n ‘ A ‘ p
3 (2,1) 2
4 (2,2) 2
4 (3,1), (2,1,1) 3
5 (4,1), (2,1,1,1) 2
5 (3,2), (2,2,1) 5
6 (3,2,1) 2
6 (4,2), (2,2,1,1) 3
8 (5,2,1),(3,2,1,1,1) 2
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Murnaghan—Nakayama rule for S,

Definition (Skew hook/Rim hook/Ribbon)

A skew diagram that is edgewise connected and contains no 2 x 2 subset
of boxes.

The height of a ribbon is equal to one less than the number of rows in the
ribbon.

N

Its height is 3.
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Definition
A ribbon tableau is a generalized tableau T with positive integral entries
such that the entries in the rows and columns of T weakly increase, and
all occurrences of a given entry lie in a single ribbon. The height of ribbon
tableau T, denoted by ht(T), is the sum of heights of all of its ribbons.

v

Theorem (Murnaghan—Nakayama rule)
For a partition A\ of n and o € S,,, the character x* is given by
X o) = (=)™,
T

where the sum is over all ribbon tableaux T of shape A\ and content given
by the lengths of the cycles in o.

.
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Let A =(4,2) and 0 = (1,2,3)(4,5). Then, the ribbon tableaux are

1|3\ 1|1 2|2\
2 (2 1]3

So, x (o) = 0.
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Representation theory of G(r,1,n)

={(z1,22,...,2n,0) | zi € Z, for all 1 <i < n,o € S,}.

Various ways to study representation theory of G(r,1,n)

@ Theory of symmetric functions (Specht’s Thesis/Macdonald's book
on “Symmetric functions and Hall polynomials”)

o Wigner—Mackey method of little groups
@ The Okounkov—Vershik approach [Mishra and Srinivasan, 2016]

The irreducible representations of G(r,1,n) are parametrized by r-partite
partitions of n.
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Murnaghan—Nakayama rule for G(r, 1, n)

It was first proved by Stembridge in 1989. The version we state here is by
Adin, Postnikov and Roichman in 2010.

Sequence of ribbons

A sequence of ribbons b = (b1, by, ..., b;) corresponding to an r-partite
Young diagram X = (Ao, ..., A,_1) is obtained from a sequence of
r-partite Young diagrams

D =20 c .cad=)

by defining b; := A0 \ AU=1) for 1 < i < t such that each b; has r — 1
empty components and the nonempty component is a ribbon.

Ashish Mishra (UFPA) Quasi Steinberg characters ICTP-SAIFR, 28th April 2022 9/23



r-partite ribbon tableau

An r-partite ribbon tableau T of shape X is obtained by filling the boxes in
the nonempty component of the ribbon b; with entry i for each 1 </ < t.

i-th index, i-th length and i-th height of T

fr(i) := index in A of the nonempty component in the r-tuple b;;
I7(7) := number of boxes in the nonempty component in b;;

htr(i) := one less than the number of rows in the nonempty component
in b,'.
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Murnaghan—Nakayama rule for G(r,1, n)

t
XA(W)= Z H(—l)htT(i)wa(i).z(ci)

TERT(A) i=1
where
7= (z1,22,...,2n,0),
cycle decomposition of ¢ is given by ¢ = (c1, 2, ..., Ct),

for 1 <i<t, I(¢;) = length of the cycle ¢;, z(c;) = color of the cycle ¢;,
w is a primitive r-th root of unity,

RTc(A) is the set of r-partite ribbon tableaux T of shape A such that
I7(i) = I(¢j) forall 1 <j < t.
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Complex reflection groups G(r, g, n)

Definition

For a positive integer g which divides r, we define a subgroup G(r, g, n) of
G(r,1, n) as follows:

G(r7 q, n) = {(217227 ©00 ,Z,,,O') € G(r7 17”) | Zzi = O(mOd q)}
=l

By Shephard—Todd classification, the family G(r, g, n) is the only infinite
family of finite irreducible complex reflection groups.
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Special subfamilies in the family G(r, g, n)
Cyclic group of order r, Z/rZ = G(r,1,1);
Dihedral group of order 2r, Do, = G(r,r,2);
Symmetric group S, = G(1,1, n);

Weyl group of type B, is G(2,1, n);

Weyl group of type D, is G(2,2,n).

© e e 6@

Notation: m = g

Representation theory of G(r, g, n)

TNhe irreduciblg G(r, g, n)-modules are parametrized by the ordered pairs
(A, 6), where A is an (m, g)-necklace with total n boxes and § € Cy, the
stabilizer subgroup for the necklace A.
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Main Results
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Theorem (M., Paul and Singla)

Given a partition A of n, define S\j = (Aos A1, -5 Ajy oy A1), where

Aj =\ for some0 < j<r—1, and \y =0 for k # j. Then, XS‘J is a quasi
p-Steinberg character of G(r,1,n) if and only if x* is a quasi p-Steinberg
character of S,.

Proof of the easier part

Assuming Xj‘J to be a quasi p-Steinberg character of G(r, 1, n), it follows
that x* is a quasi p-Steinberg character of S, by the following identity:
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Theorem (M., Paul and Singla)

For an r-partite partition A = (Ao, A\1,...,Ar—1) of n, the irreducible
character x> is a quasi p-Steinberg character of G(r,1,n) in exactly the
following cases:

General case

@ )\t n for some j and A\ =0 for all j # i, and

@ XV is a quasi p-Steinberg character of S,,.

Additional cases for n < 5:

@ For n =2, the character x™ is a quasi 2-Steinberg character when
Aj = (1) for some j, \x = (1) for some k # j, and \; = ) for all
I'¢ {j, k}.

@ For n = 3, the character x> is a quasi 3-Steinberg character when
Aj 2 for some j, A\ = (1) for some k # jand \; = () for all
I'¢ {j, k}.

@ For n = 4, the character x> is a quasi 2-Steinberg character when
Aj |3 for some j, A\ = (1) for k # j, and Ay =0 for all | ¢ {j, k}.
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Sketch of the proof

p 1 n: Consider the element a = (0,...,0,(1,2,...,n)) whose type is
((n),®,...,0). Now x*(«) # 0 implies that \; - n for some j, Ay = 0 for
k # j, and

XA(oz) = X)‘f((1,2, ..y n)).

Thus, xV is a quasi p-Steinberg character of S

Why are there additional cases for n < 57

p | n: pfn—1. One of the subcases is A\; - n — 1 for some j, A\ = (1) for
some k # j and Ay =0 for all | ¢ {j, k}.
When n > 5, we have the following observations:
@ Either ap = (0 ,0, (1 2,...,n=2)(n—1,n)) or
=(0,...,0, (1 2 —3)(n—2,n—1,n)) is p-regular;
@ Also,x( 2) = x*Na )20-

=
\
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Notation: (x*)* denotes an irreducible character of G(r, g, n) which

appears in Resgg’z’z))xA. Note that (x*)* may not be unique.

Theorem (M., Paul and Singla)

The irreducible character (XA)* is a quasi p-Steinberg character of
G(r, g, n) in exactly the following cases:

General case
x> is a quasi p-Steinberg character of G(r,1,n). In this case,

* _ pacG(rln) A
= Resg(r g X"

0%
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Theorem (cont.)

Additional cases:

@ Forn=3,p=2, the three two-dimensional characters (x*)* in
Resgg::;?) x> are quasi 2-Steinberg characters. This case arises if and
only if r and q are multiples of 3, and k = j + 3,1 = j + % for
0<j<4-1

@ For n=4,p =3, the two three-dimensional characters (x*)* in
ResS(r1:4) x> are quasi 3-Steinberg characters. This case arises if and

G(r,q,4)
only if r and q are both even, and k = j+ 7 for0 < j < 5 — 1.
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Sketch of the proof

Case 1: p{n.
Subcase (1a): ptn—1.

The element a3 = (0,...,0,(1,2,...,n—1)) is a p-regular element of
G(r,q,n). So, (x*)*(a1) # 0. This implies that x*(a1) # 0. Then, A can
be of one of the two forms:

o

(i) either \; = n for some j, Ay = 0 for all k # j:

* G(r,1,n
o)t = ResGth’n;X)‘.

Also, A = e XXJ is a quasi p-Steinberg character of G(r,1,n),

or
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Sketch of the proof (cont.)

(i) Aj F n—1 for some j, Ay = (1) for some k # j, Ay = () for all
I ¢ {j, k}: the corresponding irreducible character (x*)* is not a quasi
p-Steinberg character of G(r, g, n) because of the following observations
when n > 3:

* G ’17
@ () =Resgio™
@ The element o = (0,...,0,(1,2,...,n)) is p-regular;
@ xMa)=0.
For n =2, (x*)* is not a quasi p-Steinberg character if xY* does not
decompose as a representation of G(r, g, n).
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Sketch of the proof (cont.)

Subcase (1b): p|n—1. Then, ptn—2 and
as=(0,...,0,(1,2,...,n—2)) is p-regular. Then, y*(a2) # 0. Then
one of the following is true:
@ )\t nfor some j, A\ =0 for all k # j;
@ )t n—1for some j, A\x = (1) for some k # j, A\; = () for all
I¢ {Ja k},
@ )\ n—2forsome j, A\t 2 for some k # j, Ay =0 for all | & {j, k};
@ )\ Fn—2forsomej, Ay = (1) for some k # j, \; = (1) for some
1¢{j,k}, and A\, =0 for all u ¢ {j, k, 1};
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Sketch of the proof (cont.)

For n > 5, when X is of one of the forms (ii)-(iv), (x*)* is not a quasi

p-Steinberg character of G(r, g, n). And, if it is of form (i), then X"J is a
quasi p-Steinberg character of G(r,1, n).
Here, n#£2asp|n—1.

What happens when n=3,p=2o0orn=4,p =37

n=3,p = 2. The only important form is \; = (1) for some j, A, = (1) for
some k # j, Ay = (1) for some | ¢ {j, k}, and A\, =0 for all u ¢ {j, k,I}.
Also, x* decomposes into three two-dimensional irreducible characters of
G(r,q,n) if and only if r and g are multiples of 3, and k = j + £,/ = j+ %
for 0 <j < 3 — 1. And, in such a case, all these three two-dimensional
irreducible characters of G(r, g, n) are quasi 2-Steinberg characters.

Case 2: p | nis studied using similar types of arguments. )
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