On quasi Steinberg characters of complex reflection groups

Ashish Mishra

UFPA

(Joint work with Digjoy Paul and Pooja Singla)

Representation Theory and Applications ICTP-SAIFR 28th April 2022

(中) (종) (종) (종) (종) (종)

- Definition of quasi *p*-Steinberg characters
- Quasi *p*-Steinberg characters of symmetric groups
- Murnaghan-Nakayama rule for Symmetric groups
- Murnaghan–Nakayama rule for the groups G(r, 1, n)
- Complex reflection groups and their representation theory
- Main results
- Sketch of the proof

Notation: *p* is a prime; *G* denotes a finite group.

Definition (*p*-regular element of a group G)

An element whose order is not divisible by p.

Let p divide the order of G.

Definition (*p*-Steinberg character)

An irreducible character χ of G such that $\chi(x) = \pm |C_G(x)|_p$, for every p-regular element x in G, where $C_G(x)$ denotes the centralizer of x in G.

Definition (quasi *p*-Steinberg character)

An irreducible character χ of G is called a quasi p-Steinberg character if $\chi(g) \neq 0$ for all p-regular elements g in G.

< □ > < □ > < □ > < □ > < □ > < □ >

Example

- All irreducible characters of a *p*-group are quasi *p*-Steinberg characters.
- Linear characters of a finite group are quasi *p*-Steinberg characters.

So, we concentrate on nonlinear characters when talking about quasi p-Steinberg characters.

Theorem (Paul and Singla, 2021)

For $n \ge 3$, let λ be a partition of n such that $\lambda \ne (n), (1^n)$ and p be a prime. All triplets (n, λ, p) such that χ_{λ} is a quasi p-Steinberg character of S_n are given in Table below.

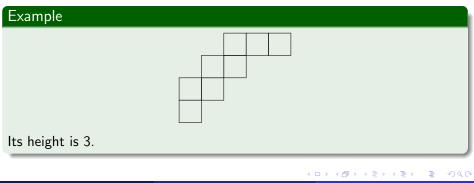
n	λ	р
3	(2,1)	2
4	(2,2)	2
4	(3,1), (2,1,1)	3
5	(4,1), (2,1,1,1)	2
5	(3,2), (2,2,1)	5
6	(3, 2, 1)	2
6	(4,2), (2,2,1,1)	3
8	(5, 2, 1), (3, 2, 1, 1, 1)	2

< ロ > < 同 > < 三 > < 三 > 、

Definition (Skew hook/Rim hook/Ribbon)

A skew diagram that is edgewise connected and contains no 2×2 subset of boxes.

The height of a ribbon is equal to one less than the number of rows in the ribbon.



Definition

A ribbon tableau is a generalized tableau T with positive integral entries such that the entries in the rows and columns of T weakly increase, and all occurrences of a given entry lie in a single ribbon. The height of ribbon tableau T, denoted by ht(T), is the sum of heights of all of its ribbons.

Theorem (Murnaghan–Nakayama rule)

For a partition λ of n and $\sigma \in S_n$, the character χ^{λ} is given by

$$\chi^{\lambda}(\sigma) = \sum_{T} (-1)^{ht(T)},$$

where the sum is over all ribbon tableaux T of shape λ and content given by the lengths of the cycles in σ .

A B K A B K

Example

Let $\lambda = (4,2)$ and $\sigma = (1,2,3)(4,5)$. Then, the ribbon tableaux are

So, $\chi^{\lambda}(\sigma) = 0$.

э

$$G(r,1,n) := \mathbb{Z}_r^n \rtimes S_n$$

= {(z₁, z₂,..., z_n, σ) | z_i $\in \mathbb{Z}_r$ for all $1 \le i \le n, \sigma \in S_n$ }.

Various ways to study representation theory of G(r, 1, n)

- Theory of symmetric functions (Specht's Thesis/Macdonald's book on "Symmetric functions and Hall polynomials")
- Wigner–Mackey method of little groups
- The Okounkov–Vershik approach [Mishra and Srinivasan, 2016]

Theorem

The irreducible representations of G(r, 1, n) are parametrized by r-partite partitions of n.

Ashish Mishra (UFPA)

• • • • • • • • • • • •

It was first proved by Stembridge in 1989. The version we state here is by Adin, Postnikov and Roichman in 2010.

Sequence of ribbons

A sequence of ribbons $\mathbf{b} = (b_1, b_2, \dots, b_t)$ corresponding to an *r*-partite Young diagram $\boldsymbol{\lambda} = (\lambda_0, \dots, \lambda_{r-1})$ is obtained from a sequence of *r*-partite Young diagrams

$$\emptyset = \boldsymbol{\lambda}^{(0)} \subseteq \ldots \subseteq \boldsymbol{\lambda}^{(t)} = \boldsymbol{\lambda}$$

by defining $b_i := \lambda^{(i)} \setminus \lambda^{(i-1)}$ for $1 \le i \le t$ such that each b_i has r-1 empty components and the **nonempty component is a ribbon**.

< □ > < □ > < □ > < □ > < □ > < □ >

r-partite ribbon tableau

An *r*-partite ribbon tableau T of shape λ is obtained by filling the boxes in the nonempty component of the ribbon b_i with entry *i* for each $1 \le i \le t$.

i-th index, *i*-th length and *i*-th height of T

 $f_T(i) :=$ index in $\lambda^{(i)}$ of the nonempty component in the *r*-tuple b_i ; $l_T(i) :=$ number of boxes in the nonempty component in b_i ; $ht_T(i) :=$ one less than the number of rows in the nonempty component in b_i . Murnaghan–Nakayama rule for G(r, 1, n)

$$\chi^{\boldsymbol{\lambda}}(\pi) = \sum_{T \in RT_c(\boldsymbol{\lambda})} \prod_{i=1}^t (-1)^{ht_T(i)} \omega^{f_T(i).z(c_i)}$$

where

$$\pi = (z_1, z_2, \ldots, z_n, \sigma),$$

cycle decomposition of σ is given by $c = (c_1, c_2, \ldots, c_t)$,

for $1 \le i \le t$, $l(c_i) =$ length of the cycle c_i , $z(c_i) =$ color of the cycle c_i ,

 ω is a primitive *r*-th root of unity,

 $RT_c(\lambda)$ is the set of *r*-partite ribbon tableaux *T* of shape λ such that $I_T(i) = I(c_i)$ for all $1 \le i \le t$.

Definition

For a positive integer q which divides r, we define a subgroup G(r, q, n) of G(r, 1, n) as follows:

$$G(r,q,n) := \{(z_1, z_2, \ldots, z_n, \sigma) \in G(r,1,n) \mid \sum_{i=1}^n z_i \equiv 0 \pmod{q}\}.$$

By Shephard–Todd classification, the family G(r, q, n) is the only infinite family of finite irreducible complex reflection groups.

Special subfamilies in the family G(r, q, n)

- Cyclic group of order r, $\mathbb{Z}/r\mathbb{Z} = G(r, 1, 1)$;
- Dihedral group of order 2r, $D_{2r} = G(r, r, 2)$;
- Symmetric group $S_n = G(1, 1, n)$;
- Weyl group of type B_n is G(2, 1, n);
- Solution Weyl group of type D_n is G(2, 2, n).

Notation: $m = \frac{r}{q}$

Representation theory of G(r, q, n)

The irreducible G(r, q, n)-modules are parametrized by the ordered pairs $(\tilde{\lambda}, \delta)$, where $\tilde{\lambda}$ is an (m, q)-necklace with total n boxes and $\delta \in C_{\lambda}$, the stabilizer subgroup for the necklace $\tilde{\lambda}$.

Main Results

æ

< □ > < □ > < □ > < □ > < □ >

Theorem (M., Paul and Singla)

Given a partition λ of n, define $\hat{\lambda}^{j} = (\lambda_{0}, \lambda_{1}, \dots, \lambda_{j}, \dots, \lambda_{r-1})$, where $\lambda_{j} = \lambda$ for some $0 \leq j \leq r-1$, and $\lambda_{k} = \emptyset$ for $k \neq j$. Then, $\chi^{\hat{\lambda}^{j}}$ is a quasi *p*-Steinberg character of G(r, 1, n) if and only if χ^{λ} is a quasi *p*-Steinberg character of S_{n} .

Proof of the easier part

Assuming $\chi^{\hat{\lambda}'}$ to be a quasi *p*-Steinberg character of G(r, 1, n), it follows that χ^{λ} is a quasi *p*-Steinberg character of S_n by the following identity:

$$\chi^{\lambda}(\sigma) = \chi^{\hat{\lambda}^{j}}((0,\ldots,0,\sigma)).$$

Theorem (M., Paul and Singla)

For an *r*-partite partition $\lambda = (\lambda_0, \lambda_1, \dots, \lambda_{r-1})$ of *n*, the irreducible character χ^{λ} is a quasi *p*-Steinberg character of G(r, 1, n) in exactly the following cases:

General case

()
$$\lambda_i \vdash n$$
 for some j and $\lambda_k = \emptyset$ for all $j \neq i$, and

(χ^{λ_j} is a quasi p-Steinberg character of S_n .

Additional cases for n < 5:

- For n = 2, the character χ^{λ} is a quasi 2-Steinberg character when $\lambda_j = (1)$ for some $j, \lambda_k = (1)$ for some $k \neq j$, and $\lambda_l = \emptyset$ for all $l \notin \{j, k\}$.
- For n = 3, the character χ^{λ} is a quasi 3-Steinberg character when $\lambda_j \vdash 2$ for some j, $\lambda_k = (1)$ for some $k \neq j$ and $\lambda_l = \emptyset$ for all $l \notin \{j, k\}$.
- For n = 4, the character χ^{λ} is a quasi 2-Steinberg character when $\lambda_j \vdash 3$ for some $j, \lambda_k = (1)$ for $k \neq j$, and $\lambda_l = \emptyset$ for all $l \notin \{j, k\}$.

Sketch of the proof

 $p \nmid n$: Consider the element $\alpha = (0, ..., 0, (1, 2, ..., n))$ whose type is $((n), \emptyset, ..., \emptyset)$. Now $\chi^{\lambda}(\alpha) \neq 0$ implies that $\lambda_j \vdash n$ for some $j, \lambda_k = \emptyset$ for $k \neq j$, and

$$\chi^{\boldsymbol{\lambda}}(\alpha) = \chi^{\lambda_j}((1, 2, \dots, n)).$$

Thus, χ^{λ_j} is a quasi *p*-Steinberg character of S_n .

Why are there additional cases for n < 5?

 $p \mid n: p \nmid n-1$. One of the subcases is $\lambda_j \vdash n-1$ for some $j, \lambda_k = (1)$ for some $k \neq j$ and $\lambda_l = \emptyset$ for all $l \notin \{j, k\}$. When $n \geq 5$, we have the following observations:

(a) Either
$$\alpha_2 = (0, \dots, 0, (1, 2, \dots, n-2)(n-1, n))$$
 or $\alpha_3 = (0, \dots, 0, (1, 2, \dots, n-3)(n-2, n-1, n))$ is *p*-regular;

() Also,
$$\chi^{oldsymbol{\lambda}}(lpha_2)=\chi^{oldsymbol{\lambda}}(lpha_3)=0.$$

3

< □ > < □ > < □ > < □ > < □ > < □ >

Notation: $(\chi^{\lambda})^*$ denotes an irreducible character of G(r, q, n) which appears in $\operatorname{Res}_{G(r,q,n)}^{G(r,1,n)}\chi^{\lambda}$. Note that $(\chi^{\lambda})^*$ may not be unique.

Theorem (M., Paul and Singla)

The irreducible character $(\chi^{\lambda})^*$ is a quasi p-Steinberg character of G(r, q, n) in exactly the following cases:

General case

 χ^{λ} is a quasi p-Steinberg character of G(r, 1, n). In this case,

$$(\chi^{\boldsymbol{\lambda}})^* = \operatorname{Res}_{G(r,q,n)}^{G(r,1,n)} \chi^{\boldsymbol{\lambda}}.$$

Theorem (cont.)

Additional cases:

- For n = 3, p = 2, the three two-dimensional characters (χ^λ)* in Res^{G(r,1,3)}_{G(r,q,3)}χ^λ are quasi 2-Steinberg characters. This case arises if and only if r and q are multiples of 3, and k = j + ^r/₃, l = j + ^{2r}/₃ for 0 ≤ j ≤ ^r/₃ − 1.
- For n = 4, p = 3, the two three-dimensional characters $(\chi^{\lambda})^*$ in $\operatorname{Res}_{G(r,q,4)}^{G(r,1,4)}\chi^{\lambda}$ are quasi 3-Steinberg characters. This case arises if and only if r and q are both even, and $k = j + \frac{r}{2}$ for $0 \le j \le \frac{r}{2} 1$.

イロト イヨト イヨト ・

Case 1: $p \nmid n$. **Subcase (1a):** $p \nmid n - 1$.

The element $\alpha_1 = (0, \ldots, 0, (1, 2, \ldots, n-1))$ is a *p*-regular element of G(r, q, n). So, $(\chi^{\lambda})^*(\alpha_1) \neq 0$. This implies that $\chi^{\lambda}(\alpha_1) \neq 0$. Then, λ can be of one of the two forms:

(i) either
$$\lambda_j \vdash n$$
 for some j , $\lambda_k = \emptyset$ for all $k \neq j$:

$$(\chi^{\lambda})^* = \operatorname{Res}_{G(r,q,n)}^{G(r,1,n)} \chi^{\lambda}.$$

Also, $\lambda = \hat{\lambda}^{j}$. $\chi^{\hat{\lambda}^{j}}$ is a quasi *p*-Steinberg character of G(r, 1, n),

or

(ii) $\lambda_j \vdash n-1$ for some j, $\lambda_k = (1)$ for some $k \neq j$, $\lambda_l = \emptyset$ for all $l \notin \{j, k\}$: the corresponding irreducible character $(\chi^{\lambda})^*$ is not a quasi *p*-Steinberg character of G(r, q, n) because of the following observations when $n \geq 3$:

$$(\chi^{\boldsymbol{\lambda}})^* = \operatorname{Res}_{G(r,q,n)}^{G(r,1,n)} \chi^{\boldsymbol{\lambda}};$$

• The element $\alpha = (0, \dots, 0, (1, 2, \dots, n))$ is *p*-regular;

For n = 2, $(\chi^{\lambda})^*$ is not a quasi *p*-Steinberg character if χ^{λ} does not decompose as a representation of G(r, q, n).

Subcase (1b): $p \mid n-1$. Then, $p \nmid n-2$ and $\alpha_2 = (0, \ldots, 0, (1, 2, \ldots, n-2))$ is *p*-regular. Then, $\chi^{\lambda}(\alpha_2) \neq 0$. Then one of the following is true:

()
$$\lambda_j \vdash n-1$$
 for some j , $\lambda_k = (1)$ for some $k \neq j$, $\lambda_l = \emptyset$ for all $l \notin \{j, k\}$;

◎
$$\lambda_j \vdash n-2$$
 for some j , $\lambda_k = (1)$ for some $k \neq j$, $\lambda_l = (1)$ for some $l \notin \{j, k\}$, and $\lambda_u = \emptyset$ for all $u \notin \{j, k, l\}$;

For $n \ge 5$, when λ is of one of the forms (ii)-(iv), $(\chi^{\lambda})^*$ is not a quasi *p*-Steinberg character of G(r, q, n). And, if it is of form (i), then $\chi^{\hat{\lambda}^j}$ is a quasi *p*-Steinberg character of G(r, 1, n). Here, $n \ne 2$ as $p \mid n - 1$.

What happens when n = 3, p = 2 or n = 4, p = 3?

n = 3, p = 2. The only important form is $\lambda_j = (1)$ for some $j, \lambda_k = (1)$ for some $k \neq j, \lambda_l = (1)$ for some $l \notin \{j, k\}$, and $\lambda_u = \emptyset$ for all $u \notin \{j, k, l\}$. Also, χ^{λ} decomposes into three two-dimensional irreducible characters of G(r, q, n) if and only if r and q are multiples of 3, and $k = j + \frac{r}{3}, l = j + \frac{2r}{3}$ for $0 \leq j \leq \frac{r}{3} - 1$. And, in such a case, all these three two-dimensional irreducible characters.

Case 2: $p \mid n$ is studied using similar types of arguments.

< 日 > < 同 > < 回 > < 回 > .

Thank you

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで