On the representation theory of affine vertex algebras on conformal and collapsing levels

Dražen Adamović University of Zagreb, Croatia

ICTP-SAIFR, Sao Paulo, April 26, 2022

向下 イヨト イヨト

Znanstveni centar izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri

Projekt KK.01.1.1.01.0004

Projekt je sufinancirala Europska unija iz Europskog fonda za regionalni razvoj. Sadržaj ovog seminara isključiva je odgovornost Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu te ne predstavlja nužno stajalište Europske unije.

Europska unija Zajedno do fondova EU

EUROPSKA UNIJA Europski fond za regionalni razvoj

イロト 不得 トイヨト イヨト

Э

- Study representation theory of affine VOA $L_k(\mathfrak{g})$.
- Idea: use affine W-algebras to study $L_k(\mathfrak{g})$.

New concepts/constructions

- Collapsing levels
- Semi-simplicity of KL_k for k beyond admissible
- Free-field realizations motiviated by inverses of QHR (Rio talk)

イロト イポト イヨト イヨト

3

Affine vertex and W-algebras

- \mathfrak{g} simple Lie (super)algebra over \mathbb{C} .
- $\hat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] + \mathbb{C}K$ the affine Kac–Moody Lie algebra.
- $V^k(\mathfrak{g})$ universal affine VOA of level k (k is not critical).
- As $\hat{\mathfrak{g}}$ -module $V^k(\mathfrak{g}) = U(\hat{\mathfrak{g}}) \otimes_{U(\hat{\mathfrak{g}}_{\geq 0} + \mathbb{C}K)} \mathbb{C}.1.$
- $L_k(\mathfrak{g})$ simple quotient of $V^k(\mathfrak{g})$
- $L^{\mathfrak{g}}$ Sugawara Virasoro vector in $L_k(\mathfrak{g})$ of central charge

$$c(sug) = rac{ksdim \mathfrak{g}}{k+h^{ee}}.$$

 Let V are VOA with conformal vector ω_V, U subVOA with conformal vector ω_U. U is conformally embedded into V if

$$\omega_U = \omega_V$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Affine vertex and W-algebras

- For f nilpotent element in \mathfrak{g} and $k \in \mathbb{C}$ one associate the universal affine W-algebra $W^k(\mathfrak{g}, f)$ as $H_f(V^k(\mathfrak{g}))$ where H_f is quantum Hamiltonian reduction function
- $W_k(\mathfrak{g}, f)$ simple quotient of $W^k(\mathfrak{g}, f)$.
- Let $\mathcal{V}(\mathfrak{g}^{\natural})$ be the affine vertex subalgebra of $W_k(\mathfrak{g}, f)$.
- If $W_k(\mathfrak{g}, f)$ collapses to its affine subalgebra $\mathcal{V}(\mathfrak{g}^{\natural})$, we say that k is a collapsing level.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- If V(g^{\$\$}) is conformally embedded in W_k(g, f) we say that k is a conformal level.
- Note: each collapsing level is conformal.

Construction and classification of collapsing levels

- The case of minimal nilpotent $f = f_{\theta}$ [D.A, Kac, Moseneder, Papi, Perše '18] (Method: using KW λ -bracket for $W^{k}(\mathfrak{g}, f_{\theta})$)
- In general, OPE formulas for W^k(g, f) are not completely known.
 Studying general cases requires different approaches:
- f general, k admissible [Arakawa, van Ekeren, Moreau '21]
- k general, f of hook and rectangular type (case A) [D.A, Moseneder, Papi '22]

<ロ> <四> <四> <四> <三</td>

- Some cases based on explicit OPE [D.A, Perše, Vukorepa '21], [Fasquel '21]
- More to be done

Conformal and collapsing levels: the case $f = f_{\theta}$

The central charge of minimal affine *W*-algebra $W_k(\mathfrak{g}, f_\theta)$ is $c(\mathfrak{g}, k, f_\theta) = \frac{\text{sdim}\mathfrak{g}}{k+h^{\vee}} - 6k + h^{\vee} - 4.$

Theorem (D.A, Kac, Moseneder, Papi, Perše '18)

• The embedding $\mathcal{V}(\mathfrak{g}^{\natural}) \hookrightarrow W_k(\mathfrak{g}, f_{\theta})$ is conformal if and only if $c_{\mathfrak{g}^{\natural}} = c(\mathfrak{g}, k, f_{\theta})$ where $c_{\mathfrak{g}^{\natural}}$ is the Sugawara central charge of $\mathcal{V}(\mathfrak{g}^{\natural})$.

• Assume that k is conformal and non-collapsing, then

$$k = -\frac{2}{3}h^{\vee}$$
 or $k = -\frac{h^{\vee}-1}{2}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• k is collapsing if and only if p(k) = 0 for certain quadratic polynomial p.

Collapsing levels: the case $f = f_{\theta}$

g	p(k)	g	p(k)
$sl(m n), n \neq m$	(k + 1)(k + (m - n)/2)	E ₆	(k+3)(k+4)
psl(m m)	k(k + 1)	E7	(k+4)(k+6)
osp(m n)	(k+2)(k+(m-n-4)/2)	E ₈	(k+6)(k+10)
spo(n m)	(k+1/2)(k+(n-m+4)/4)	F4	(k+5/2)(k+3)
D(2, 1; a)	(k - a)(k + 1 + a)	G2	(k+4/3)(k+5/3)
$F(4), \mathfrak{g}^{\natural} = so(7)$	(k + 2/3)(k - 2/3)	$G(3), \mathfrak{g}^{\natural} = G_2$	(k - 1/2)(k + 3/4)
$F(4), a^{\natural} = D(2, 1; 2)$	(k+3/2)(k+1)	$G(3), \mathfrak{a}^{\natural} = osp(3 2)$	(k+2/3)(k+4/3)

イロト イ団ト イヨト イヨト

E.

The polynomial p(k)

Classification of conformal levels: the general case

Let $c(\mathfrak{g}, k, f)$ denotes the central charge of $W^k(\mathfrak{g}, f)$. Let L be conformal vector in $W^k(\mathfrak{g}, f)$ and $L^{\mathfrak{g}^{\natural}}$ Sugawara conformal vector in its affine vertex subalgebra.

Theorem (D.A, Moseneder, Papi '22)

Assume that $W^k(\mathfrak{g}, f)$ is generated by \mathfrak{g}^{\natural} and by

$$(L-L^{\mathfrak{g}^{\mathfrak{p}}})\bigcup S$$

with S homogeneous such that

$$(L-L^{\mathfrak{g}^{\sharp}})(2)X=0, \quad \text{if } X\in S \text{ and } L(0)X=2X.$$

Then $\mathcal{V}(\mathfrak{g}^{\mathfrak{g}})$ is conformally embedded into $W_k(\mathfrak{g}, f)$ if and only if

$$c_{\mathfrak{g}^{\natural}} = c(\mathfrak{g}, k, f).$$

|田 | |田 | |田 |

Sao Paolo 2022

Example: Hook affine W-algebras of type A

- Consider W-algebra $W_k(\mathfrak{g}, f_{m,n})$ for $\mathfrak{g} = sl(m+n)$,
- The partition representing the nilpotent element $f_{m,n}$ is the hook $(m, 1^n)$
- $\mathfrak{g}^{\natural} = gl(n)$. $\mathcal{V}(\mathfrak{g}^{\natural})$ is certain quotient of $V^{k+m-1}(gl(n))$.
- In [D.A, Moseneder, Papi '22] WE prove

(1) The embedding $\mathcal{V}(\mathfrak{g}^{\natural}) \hookrightarrow W_k(\mathfrak{g}, f_{m,n})$ is conformal if and only if

$$k = k_{m,n}^{(i)}, \quad 1 \le i \le 4,$$

where
$$k_{m,n}^{(1)} = -\frac{m}{m+1}h^{\vee}$$
 $(n > 1)$, $k_{m,n}^{(2)} = -\frac{(m-1)h^{\vee}-1}{m}$ $(n \ge 1)$,
 $k_{m,n}^{(3)} = -\frac{(m-2)h^{\vee}+1}{m-1}$ $(n \ge 1, m > 1)$, $k_{m,n}^{(4)} = -\frac{(m-1)h^{\vee}}{m}$.
(2) Levels $k_{m,n}^{(3)}$ $(m \ne n-1)$ and $k_{m,n}^{(4)}$ are collapsing.

Collapsing vs conformal levels

- Collapsing level is always conformal.
- Problem: Determine when certain conformal level is collapsing or non-collapsing.
- In the case m = 2 (minimal nilpotent case) we know that $k_{m,n}^{(i)}$ is non-collapsing iff i = 1, 2.
- In the hook case $m \ge 3$, we can prove that $k = k_{m,n}^{(i)}$, for i = 1, 2 is non-collapsing only if k is admissible.

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○

- We conjecture that $k = k_{m,n}^{(1)}$ is always non-collapsing.
- $k = k_{m,n}^{(2)}$ is sometimes collapsing, sometimes non-collapsing.

Level $k_{p-1,2}^{(1)}$ and $\mathcal{R}^{(p)}$ -algebra.

- In [D.A. '16] we introduce logarithmic vertex algebra $\mathcal{R}^{(p)}$, which is an infinite-direct sum of $L_{-2+\frac{1}{2}}(gl(2))$ -modules.
- It was proved in [D.A, Creutzig, Genra, Yang '21] that

$$W_{k_{p-1,2}^{(1)}}(sl(p+2), f_{p-1,2}) \cong \mathcal{R}^{(p)}$$

- $\implies k_{p-1,2}^{(1)}$ is non-collapsing.
- We proved that $k_{3p,2}^{(2)} = -3p 1 + \frac{1}{p}$ is collapsing by using a tensor category/ fusion rules argument.
- Note that main difference is that $k_{p-1,2}^{(1)} = -\frac{p^2-1}{p}$ is admissible for sl(p+1), while $k_{3p,2}^{(2)} = -3p 1 + \frac{1}{p}$ is not admissible for sl(3p+2).

Theorem

Assume that $k = k_{m,n}^{(i)}$ for $i \in \{1,2\}$ is admissible for sl(m + n), $n \ge 3$. Then

$$\mathcal{W}_k = W_k(\mathfrak{g}, f_{m,n}) = \bigoplus_{i \in \mathbb{Z}} W_k^{(i)},$$

and each $W_k^{(i)} = \{v \in W_k \mid J(0)v = iv\}$ is an irreducible $W_k^{(0)}$ -module:

• $W_k^{(i)} = L_{k_1}^{sl(n)}(i\omega_1) \otimes M(k_0, i) \text{ if } i \ge 0,$ • $W_k^{(i)} = L_{k_1}^{sl(n)}(-i\omega_{n-1}) \otimes M(k_0, i) \text{ if } i < 0.$

In particular, $\mathcal{V}(\mathfrak{g}^{\natural}) \cong W_k(\mathfrak{g}, f_{m,n})^{(0)} = V(sl(n)) \otimes V^{k_0}(\mathbb{C}J)$ is a simple vertex algebra which is conformally embedded in $W_k(\mathfrak{g}, f_{m,n})$.

Remark.

Note that level k_1 is not admissible for sl(n), and that the above theorem implies that $L_{k_1}^{sl(n)}(i\omega_1)$, $L_{k_1}^{sl(n)}(-i\omega_{n-1})$ are $L_{k_1}(sl(n))$ -modules. We believe that these modules provide a complete list of $L_{k_1}(sl(n))$ -modules in the category of ordinary modules.

The category KL_k

- A $V^k(\mathfrak{g})$ -module M is in KL^k if
- (1) M is locally finite as a \mathfrak{g} -module;
- (2) *M* admits decomposition into generalized eigenspaces for $L^{\mathfrak{g}}(0)$ whose eigenvalues are bounded below.
 - Category KL_k : $L_k(\mathfrak{g})$ -modules which are in KL^k .
 - For g Lie superalgebra, we introduce KL_k^{fin} , subcategory of KL_k consists of weight modules.
 - Semi-simplicty of KL_k and KL_k^{fin} [D.A-Kac-Moseneder-Papi-Perše '18]
 - Tensor category of KL_k modules [Creutzig-Yang '21]
 - But $L_k(\mathfrak{g})$ usually has weak modules outside KL_k (Tomoyuki talk)

(ロ) (同) (ヨ) (ヨ) (ヨ) (000

Semi-simplicity of KL_k

We prove the following results on complete reducibility result in KL_k

Theorem (AKMPP, 2018)

Assume that g is a simple Lie algebra and $k \in \mathbb{C} \setminus \mathbb{Z}_{\geq 0}$. Then KL_k is a semi-simple category in the following cases:

- k is a collapsing level.
- $W_k(\mathfrak{g}, f_{\theta})$ is a rational vertex operator algebra.
- $W_k(\mathfrak{g}, f_{\theta})$ has semi-simple category of ordinary modules.

Theorem (AMP, 2021)

Assume that g is a simple Lie superalgebra and $k \in \mathbb{C} \setminus \mathbb{Z}_{\geq 0}$. Then KL_k^{fin} is a semi-simple category in the following cases:

- k is a collapsing level.
- $W_k(\mathfrak{g}, f_{\theta})$ is a rational vertex operator superalgebra.

When $KL_k = KL_k^{fin}$?

Example $L_1(\mathfrak{gl}(1|1))$ shows that in general $KL_k \neq KL_k^{fin}$.

Theorem

Assume that KL_k^{fin} is semi-simple and that for any irreducible $L_k(\mathfrak{g})$ -module M in KL_k we have

$$\operatorname{Ext}^{1}(M_{top}, M_{top}) = \{0\}$$

$$\tag{1}$$

イロン 不同 とくほう イヨン しほう

in the category of finite-dimensional g-modules. Then KL_k is semisimple and $KL_k = KL_k^{fin}$.

Applications of theorem require:

- Classification of irreducible modules in KL_k
- Identification of top components as irreducible, highest weight g-modules.
- Study extensions of irreducible, finite-dimensional modules for Lie superalgebras.

The category KL_{-1} for $\mathfrak{g} = sl(m|1)$

- Level k = -1 is collapsing $\implies KL_k^{fin}$ is semisimple.
- We need to show $Ext^1(M, M) = \{0\}$ for any irreducible module M in KL_k .
- So we need to exclude non-split self extensions

$$0 \to M \to M^{e \times t} \to M \to 0$$

such that M^{ext} is non-weight and/or logarithmic module in KL_k .

- We prove that top components of irreducible modules in *KL_k* are singly atypical g-modules.
- It was proved in [Germoni '98] that singly atypical modules don't have non-trivial self-extensions in the category of finite-dimensional g-modules.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• \implies *KL*_k is semi-simple.

$\mathfrak{g} = \mathfrak{sl}(2|1)$

- Let k = -(m+1)/(m+2), $m \in \mathbb{Z}_{\geq 0}$.
- $W_k(\mathfrak{g}, f_\theta)$ is a rational N = 2 superconformal algebra [D.A, 2001].
- \implies KL_k^{fin} is semisimple.
- $\mathfrak{g}_{\overline{0}} = \mathfrak{sl}(2) \times \mathbb{C}z$, where z is center of $\mathfrak{g}_{\overline{0}}$.
- We prove that the center of $\mathfrak{g}_{\overline{0}}$ belongs to a rational vertex algebra $D_{m+1,2} \subset L_k(\mathfrak{g})$, and we have conformal embedding

$$\mathcal{V}(sl(2))\otimes D_{m+1,2}\hookrightarrow L_k(\mathfrak{g}).$$

イロト (四) (日) (日) (日) (日) (日)

• \implies *KL*_k is semi-simple.

Examples when KL_k is not semisimple

• Let
$$\mathfrak{g} = sl(m|1)$$
, $k = 1$.

• Kac-Wakimoto realization of $L_k(\mathfrak{g}) \hookrightarrow \mathcal{S} \otimes \mathcal{F}_m$,

 ${\cal S}$ is Weyl vertex algebra of rank 1 ($\beta\gamma$ system), which is generated by fields a^\pm such that

•
$$[a_{\lambda}^{\pm}a^{\pm}] = 0, \quad [a_{\lambda}^{+}a^{-}] = \mathbf{1}.$$

- F_m the Clifford vertex algebra of rank m (*bc*-system), generated by fermionic fields Ψ_i^{\pm} , i = 1, ..., m.
- The Weyl vertex algebra S can be embedded into a lattice type vertex algebra Π(0) such that negative powers (a⁺)^{-m} of a⁺ belong to Π(0) (localisation).

イロト 不得 トイヨト イヨト 二日

Examples when KL_k is not semisimple

Theorem

Define $\widetilde{w} := (a^+)^{-m} \otimes : \Psi_1^+ \cdots \Psi_m^+ :\in \Pi(0) \otimes F_m$. Then:

• $\widetilde{W} = L_1(\mathfrak{g})\widetilde{w}$ is a highest weight $L_1(\mathfrak{g})$ -module in the category KL_k^{fin} .

イロト 不得 トイヨト イヨト 二日

• *W* is reducible and it contains a proper submodule isomorphic to $L_1(\mathfrak{g})$.

In particular, the category KL_k^{fin} is not semisimple for k = 1.

Sao Paolo 2022

Examples when KL_k is not semisimple

• Let now $k \in \mathbb{Z}_{>0}$ is arbitrary.

• In [Gorelik-Serganova '18] the authors proved that $L_k(\mathfrak{g}) = V^k(\mathfrak{g})/I$, where I is the ideal in $V^k(\mathfrak{g})$ generated by the singular vector $e_{\theta}(-1)^{k+1}\mathbf{1}$.

(ロ) (同) (ヨ) (ヨ) (ヨ) (000

• Applying this together with previous theorem we get:

Theorem

The category KL_k^{fin} is not semisimple for any $k \in \mathbb{Z}_{>0}$.

Conjecture

Let $\mathfrak{g} = sl(2|1)$. The category KL_k is semisimple if and only if $k \in \{-1, -\frac{m+1}{m+2} \mid m \in \mathbb{Z}_{\geq 0}\}.$

- D. A. V. G. Kac, P. Möseneder Frajria, P. Papi, O. Perše, An application of collapsing levels to the representation theory of affine vertex algebras, IMRN (2020)
- D. A., P. Möseneder Frajria, P. Papi, On the semisimplicity of the category *KL_k* for affine Lie superalgebras, arXiv:2107.12105 [math.RT]
- D. A., P. Möseneder Frajria, P. Papi, New approaches for studying conformal embeddings and collapsing levels for W-algebras arXiv:2203.08497[math.RT]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you

・ロン ・四 と ・ ヨ と ・ ヨ と