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Motivation

Study representation theory of affine VOA Lk (g).

Idea: use affine W -algebras to study Lk (g).

New concepts/constructions

Collapsing levels

Semi-simplicity of KLk for k beyond admissible

Free-field realizations motiviated by inverses of QHR (Rio talk)
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Affine vertex and W –algebras

g simple Lie (super)algebra over C.

ĝ = g⊗ C[t, t−1] + CK the affine Kac–Moody Lie algebra.

V k (g) universal affine VOA of level k (k is not critical).

As ĝ–module V k (g) = U(ĝ)⊗U(ĝ≥0+CK) C.1.

Lk (g) simple quotient of V k (g)

Lg Sugawara Virasoro vector in Lk (g) of central charge

c(sug) =
ksdimg

k + h∨
.

Let V are VOA with conformal vector ωV , U subVOA with
conformal vector ωU . U is conformally embedded into V if

ωU = ωV .
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Affine vertex and W –algebras

For f nilpotent element in g and k ∈ C one associate the universal
affine W -algebra W k (g, f ) as Hf (V k (g)) where Hf is quantum
Hamiltonian reduction function

Wk (g, f ) simple quotient of W k (g, f ).

Let V(g\) be the affine vertex subalgebra of Wk (g, f ).

If Wk (g, f ) collapses to its affine subalgebra V(g\), we say that k is
a collapsing level.

If V(g\) is conformally embedded in Wk (g, f ) we say that k is a
conformal level .

Note: each collapsing level is conformal.
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Construction and classification of collapsing levels

The case of minimal nilpotent f = fθ [D.A, Kac, Moseneder, Papi, Peřse ’18]

(Method: using KW λ–bracket for W k (g, fθ))

In general, OPE formulas for W k (g, f ) are not completely known.

Studying general cases requires different approaches:

f general, k admissible [Arakawa, van Ekeren, Moreau ’21]

k general, f of hook and rectangular type (case A) [D.A, Moseneder, Papi ’22]

Some cases based on explicit OPE [D.A, Peřse, Vukorepa ’21], [Fasquel ’21]

More to be done
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Conformal and collapsing levels: the case f = fθ

The central charge of minimal affine W –algebra Wk (g, fθ) is
c(g, k, fθ) = sdimg

k+h∨ − 6k + h∨ − 4.

Theorem (D.A, Kac, Moseneder, Papi, Peřse ’18)

The embedding V(g\) ↪→Wk (g, fθ) is conformal if and only if
cg\ = c(g, k, fθ) where cg\ is the Sugawara central charge of V(g\).

Assume that k is conformal and non-collapsing, then

k = −2

3
h∨ or k = −h∨ − 1

2
.

k is collapsing if and only if p(k) = 0 for certain quadratic polynomial p.
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Collapsing levels: the case f = fθ

The polynomial p(k)

g p(k) g p(k)

sl(m|n), n 6= m (k + 1)(k + (m − n)/2) E6 (k + 3)(k + 4)

psl(m|m) k(k + 1) E7 (k + 4)(k + 6)

osp(m|n) (k + 2)(k + (m − n − 4)/2) E8 (k + 6)(k + 10)

spo(n|m) (k + 1/2)(k + (n − m + 4)/4) F4 (k + 5/2)(k + 3)

D(2, 1; a) (k − a)(k + 1 + a) G2 (k + 4/3)(k + 5/3)

F (4), g\ = so(7) (k + 2/3)(k − 2/3) G(3), g\ = G2 (k − 1/2)(k + 3/4)

F (4), g\ = D(2, 1; 2) (k + 3/2)(k + 1) G(3), g\ = osp(3|2) (k + 2/3)(k + 4/3)
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Classification of conformal levels: the general case

Let c(g, k, f ) denotes the central charge of W k (g, f ). Let L be conformal

vector in W k (g, f ) and Lg\

Sugawara conformal vector in its affine vertex
subalgebra.

Theorem (D.A, Moseneder, Papi ’22)

Assume that W k (g, f ) is generated by g\ and by

(L− Lg\

)
⋃

S

with S homogeneous such that

(L− Lg\

)(2)X = 0, if X ∈ S and L(0)X = 2X .

Then V(g\) is conformally embedded into Wk (g, f ) if and only if

cg\ = c(g, k , f ).
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Example: Hook affine W -algebras of type A

Consider W -algebra Wk (g, fm,n) for g = sl(m + n),

The partition representing the nilpotent element fm,n is the hook
(m, 1n)

g\ = gl(n). V(g\) is certain quotient of V k+m−1(gl(n)).

In [D.A, Moseneder, Papi ’22] we prove

(1) The embedding V(g\) ↪→Wk (g, fm,n) is conformal if and only if

k = k(i)
m,n, 1 ≤ i ≤ 4,

where k
(1)
m,n = − m

m+1 h∨ (n > 1), k
(2)
m,n = − (m−1)h∨−1

m (n ≥ 1),

k
(3)
m,n = − (m−2)h∨+1

m−1 (n ≥ 1, m > 1), k
(4)
m,n = − (m−1)h∨

m .

(2) Levels k
(3)
m,n (m 6= n − 1) and k

(4)
m,n are collapsing.
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Collapsing vs conformal levels

Collapsing level is always conformal.

Problem: Determine when certain conformal level is collapsing or
non-collapsing.

In the case m = 2 (minimal nilpotent case) we know that k
(i)
m,n is

non-collapsing iff i = 1, 2.

In the hook case m ≥ 3, we can prove that k = k
(i)
m,n, for i = 1, 2 is

non-collapsing only if k is admissible.

We conjecture that k = k
(1)
m,n is always non-collapsing.

k = k
(2)
m,n is sometimes collapsing, sometimes non-collapsing.
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Level k
(1)
p−1,2 and R(p)–algebra.

In [D.A. ’16] we introduce logarithmic vertex algebra R(p), which is an
infinite-direct sum of L

−2+
1
p

(gl(2))–modules.

It was proved in [D.A, Creutzig, Genra, Yang ’21] that

W
k

(1)
p−1,2

(sl(p + 2), fp−1,2) ∼= R(p).

=⇒ k
(1)
p−1,2 is non-collapsing.

We proved that k
(2)
3p,2 = −3p − 1 + 1

p
is collapsing by using a tensor

category/ fusion rules argument.

Note that main difference is that k
(1)
p−1,2 = − p2−1

p
is admissible for

sl(p + 1), while k
(2)
3p,2 = −3p − 1 + 1

p
is not admissible for sl(3p + 2).
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Theorem

Assume that k = k
(i)
m,n for i ∈ {1, 2} is admissible for sl(m + n), n ≥ 3.

Then
Wk = Wk (g, fm,n) =

⊕
i∈Z

W
(i)
k ,

and each W
(i)
k = {v ∈Wk | J(0)v = iv} is an irreducible W

(0)
k –module:

W
(i)
k = L

sl(n)
k1

(iω1)⊗M(k0, i) if i ≥ 0,

W
(i)
k = L

sl(n)
k1

(−iωn−1)⊗M(k0, i) if i < 0.

In particular, V(g\) ∼= Wk (g, fm,n)(0) = V (sl(n))⊗ V k0 (CJ) is a simple
vertex algebra which is conformally embedded in Wk (g, fm,n).

Remark.

Note that level k1 is not admissible for sl(n), and that the above theorem

implies that L
sl(n)
k1

(iω1), L
sl(n)
k1

(−iωn−1) are Lk1 (sl(n))–modules. We
believe that these modules provide a complete list of Lk1 (sl(n))–modules
in the category of ordinary modules.
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The category KLk

A V k (g)–module M is in KLk if

(1) M is locally finite as a g–module;

(2) M admits decomposition into generalized eigenspaces for Lg(0)
whose eigenvalues are bounded below.

Category KLk : Lk (g)–modules which are in KLk .

For g Lie superalgebra, we introduce KLfin
k , subcategory of KLk

consists of weight modules.

Semi-simpilicty of KLk and KLfin
k [D.A-Kac-Moseneder-Papi-Peřse ’18]

Tensor category of KLk modules [Creutzig-Yang ’21]

But Lk (g) usually has weak modules outside KLk (Tomoyuki talk)
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Semi-simplicity of KLk

We prove the following results on complete reducibility result in KLk

Theorem (AKMPP, 2018)

Assume that g is a simple Lie algebra and k ∈ C \ Z≥0. Then KLk is a
semi-simple category in the following cases:

k is a collapsing level.

Wk (g, fθ) is a rational vertex operator algebra.

Wk (g, fθ) has semi-simple category of ordinary modules.

Theorem (AMP, 2021)

Assume that g is a simple Lie superalgebra and k ∈ C \ Z≥0. Then KLfin
k

is a semi-simple category in the following cases:

k is a collapsing level.

Wk (g, fθ) is a rational vertex operator superalgebra.
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When KLk = KLfin
k ?

Example L1(gl(1|1)) shows that in general KLk 6= KLfin
k .

Theorem

Assume that KLfin
k is semi-simple and that for any irreducible Lk (g)–module M

in KLk we have
Ext1(Mtop,Mtop) = {0} (1)

in the category of finite-dimensional g–modules. Then KLk is semisimple and
KLk = KLfin

k .

Applications of theorem require:

Classification of irreducible modules in KLk

Identification of top components as irreducible, highest weight g–modules.

Study extensions of irreducible, finite-dimensional modules for Lie
superalgebras.

Dražen Adamović
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The category KL−1 for g = sl(m|1)

Level k = −1 is collapsing =⇒ KLfin
k is semisimple.

We need to show Ext1(M,M) = {0} for any irreducible module M in KLk .

So we need to exclude non-split self extensions

0→ M → Mext → M → 0

such that Mext is non-weight and/or logarithmic module in KLk .

We prove that top components of irreducible modules in KLk are singly
atypical g–modules.

It was proved in [Germoni ’98] that singly atypical modules don’t have
non-trivial self-extensions in the category of finite-dimensional g–modules.

=⇒ KLk is semi-simple.

Dražen Adamović
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g = sl(2|1)

Let k = −(m + 1)/(m + 2), m ∈ Z≥0.

Wk (g, fθ) is a rational N = 2 superconformal algebra [D.A, 2001].

=⇒ KLfin
k is semisimple.

g0 = sl(2)× Cz , where z is center of g0.

We prove that the center of g0 belongs to a rational vertex algebra
Dm+1,2 ⊂ Lk (g), and we have conformal embedding

V(sl(2))⊗ Dm+1,2 ↪→ Lk (g).

=⇒ KLk is semi-simple.
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Examples when KLk is not semisimple

Let g = sl(m|1), k = 1.

Kac-Wakimoto realization of Lk (g) ↪→ S ⊗ Fm,

S is Weyl vertex algebra of rank 1 (βγ system), which is generated
by fields a± such that

[a±λ a±] = 0, [a+
λ a−] = 1.

Fm the Clifford vertex algebra of rank m (bc–system), generated by
fermionic fields Ψ±i , i = 1, . . . ,m.

The Weyl vertex algebra S can be embedded into a lattice type
vertex algebra Π(0) such that negative powers (a+)−m of a+ belong
to Π(0) (localisation).
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Examples when KLk is not semisimple

Theorem

Define w̃ := (a+)−m⊗ : Ψ+
1 · · ·Ψ+

m :∈ Π(0)⊗ Fm. Then:

W̃ = L1(g)w̃ is a highest weight L1(g)–module in the category KLfin
k .

W̃ is reducible and it contains a proper submodule isomorphic to
L1(g).

In particular, the category KLfin
k is not semisimple for k = 1.
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Examples when KLk is not semisimple

Let now k ∈ Z>0 is arbitrary.

In [ Gorelik-Serganova ’18] the authors proved that Lk (g) = V k (g)/I , where I is the
ideal in V k (g) generated by the singular vector eθ(−1)k+11.

Applying this together with previous theorem we get:

Theorem

The category KLfin
k is not semisimple for any k ∈ Z>0.

Conjecture

Let g = sl(2|1). The category KLk is semisimple if and only if
k ∈ {−1,−m+1

m+2
| m ∈ Z≥0}.
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Thank you
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