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Talk based on two papers:

o-o-o

F. T., Z2 × Z2-parastatistics in multiparticle quantum Hamiltonians,
J. Phys. A: Math. Theor. 54, 115203 (2021); arXiv:2008.11554[hep-th].

Comment: Z2 × Z2-graded paraparticles are theoretically observable

o-o-o

F. T., Inequivalent quantizations from gradings and Z2 × Z2-parabosons,
J. Phys. A: Math. Theor. 54, 355202 (2021); arXiv:2104.09692[hep-th].

Comment: Fundamental ambiguity in quantization: a given single
particle quantum Hamiltonian implies inequivalent multiparticle sectors
induced by gradings.
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Framework:

‘‘Color” Lie algebras and superalgebras introduced in

V. Rittenberg and D. Wyler, Generalized Superalgebras, Nucl. Phys. B 139, 189
(1978).

V. Rittenberg and D. Wyler, Sequences of Z2 ⊗ Z2 graded Lie algebras and
superalgebras, J. Math. Phys. 19, 2193 (1978).

M. Scheunert, Generalized Lie algebras, J. Math. Phys. 20, 712 (1979).

Parastatistics recovered from graded Hopf algebras endowed with a

braided tensor product:

S. Majid, Foundations of Quantum Group Theory, Cambridge University Press,
Cambridge (1995).
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- In the ’80s, Z2 × Z2-superalgebras received some attention from physicists
(but no systematic investigation of their properties, e.g. Z2 × Z2-fields, ... ):
Lukierski, Vasiliev, Tolstoy, Jarvis, Yang, Wybourne, Zheltukhin, Wills-Toro, ...

- Mathematicians continued to investigate them (Scheunert, ... ).

- From 2000 their connection with parastatistics started being investigated:
Yang, Jing, Kanakoglou, Daskaloyannis, Tolstoy, Stoilova, Van der Jeugt

- Renewed attention to Rittenberg-Wyler Z2 × Z2-graded superalgebras since

N. Aizawa, Z. Kuznetsova, H. Tanaka and F. Toppan, Z2 × Z2-graded Lie
symmetries of the Lévy-Leblond equations, Prog. Theor. Exp. Phys. 2016,
123A01 (2016); arXiv:1609.08224[math-ph].

Comment: Z2 × Z2–graded superalgebras are dynamical symmetries of a
well-known system of PDEs, describing the nonrelativistic Lévy-Leblond
spinors.

- Current wave:
N. Aizawa, K. Amakawa, S. Doi, Z. Kuznetsova, J. Segar, A. J. Bruce, S.
Duplij, J. Grabowski, N. Poncin, E. Ibarguengoytia, J. Van der Jeugt, N.
Stoilova, P. S. Isaac, C. Quesne, ...
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Z2 × Z2-graded superalgebras

versus

Z2 × Z2-graded algebras:

the difference is in the assignment of

commutators, [A,B] = AB − BA,

and

anticommutators, {A,B} = AB + BA.

5 / 42



Ordinary physics

0 1
0 [·, ·] [·, ·]
1 [·, ·] {·, ·}

In ordinary physics we deal with two types of particles,
bosons and fermions, which are accommodated in 1 bit of
information:
- bosons (0),
- fermions (1).

Comment: the anticommutator {·, ·} encodes the Pauli
exclusion principle for fermions.
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Z2 × Z2-graded superalgebras

00 10 01 11
00 [·, ·] [·, ·] [·, ·] [·, ·]
10 [·, ·] {·, ·} [·, ·] {·, ·}
01 [·, ·] [·, ·] {·, ·} {·, ·}
11 [·, ·] {·, ·} {·, ·} [·, ·]

Comment. In Z2 × Z2-graded superalgebra physics the
particles are accommodated in 2 bits of information:

- ordinary bosons (00),
- exotic bosons (11),
- parafermions of (10) type,
- parafermions of (01) type.
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Comment

Z2 × Z2-graded superalgebra physics
is an extension of ordinary physics:

- ordinary bosons are accommodated
in the 00-graded sector,

- ordinary fermions are accommodated
in the 10-graded sector,

- the graded sectors 01- and 11- are empty.

Remark: the 10- and 01- sectors are on equal footing.

8 / 42



Z2 × Z2-graded algebras

00 10 01 11
00 [·, ·] [·, ·] [·, ·] [·, ·]
10 [·, ·] [·, ·] {·, ·} {·, ·}
01 [·, ·] {·, ·} [·, ·] {·, ·}
11 [·, ·] {·, ·} {·, ·} [·, ·]

Comment. In Z2 × Z2-graded algebra physics the particles
are accommodated in 2 bits of information:

- ordinary bosons (00),
- parabosons of (11) type,
- parabosons of (10) type,
- parabosons of (01) type.
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Comment

Z2 × Z2-graded algebra physics applies
to models which do not contain fermions:

- the ordinary bosons are accommodated
in the 00-graded sector,

- the three types of parabosons are accommodated
in the remaining 11-, 10-, 01- graded sectors.

Remark 1: if the 10- and 01- graded sectors are empty,
00-bosons and 11-parabosons are indistinguishable.

Remark 2: the 10- , 01- and 11- sectors are on equal footing.
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Important Question

Even if the 2-bit “colored” particles (00,10,01,11) are an
extension of ordinary physics, can we observe their color?

Stated otherwise: is there a quantum measurement that
cannot be mimicked by black-white (0,1) pictures of
composite bosons/fermions?

A positive answer would prove that

• Rittenberg-Wyler (super)algebras can play a role in physics
• Z2 × Z2–graded paraparticles can in principle be detected

The answer is given by investigating a toy model case
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This question became relevant when Bruce-Duplij in 2020 produced a 4× 4

matrix quantum Hamiltonian which is both an example of supersymmetric

quantum mechanics and invariant under a Z2 × Z2-one-dimensional Poincaré

superalgebra:

H = 1
2


−∂2

x + W 2 + W ′ 0 0 0
0 −∂2

x + W 2 + W ′ 0 0
0 0 −∂2

x + W 2 −W ′ 0
0 0 0 −∂2

x + W 2 −W ′

 ,

with W ≡W (x) and W ′ ≡ d
dx
W (x).

The systematic construction of classical Z2 × Z2-invariant model was given in
Aizawa-Kuznetsova-F.T. in 2020 and the quantization of these models in 2021.

The question was formulated as such: is there a new physics implied by the
Z2 × Z2-invariance or is it just a nice redundant feature with no observationally
measurable consequences?
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Connection with parastatistics

For a single-particle quantum Hamiltonian the grading is just a conventional
label void of any physical significance.
For a multi-particle quantum Hamiltonians the statistics of the (para)particles
plays a physical role: the multi-particle wave functions possess mixed symmetry.

One approach to parastatistics is based on 1953 Green’s trilinear relations.
Palev and Ganchev proved that trilinear relations are recovered from graded
Jacobi identies of certain Lie superalgebras.

Yang-Jing, followed by Tolstoy and by Stoilova-Van der Jeugt investigated
Z2 × Z2-parastatistics in the context of trilinear relations.

An alternative (more flexible) approach derives the parastatistics in the
mixed-symmetry properties encoded in a Hopf algebra braided tensor products.

Kanakoglou and Daskaloyannis investigated Z2 × Z2-parastatistics in the Hopf
algebra context.

The connection between the Hopf algebras’ and trilinear relations’ approaches

to parastatistics is discussed by Aneva-Popov and Kanakoglou-Daskaloyannis.
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Basic properties of Z2-graded Lie algebras
and Z2 × Z2-graded color Lie (super)algebras

(comment: unified treatment with unified symbols)
The three (super)algebras under considerations are:

i) the Z2-graded Lie algebras,
ii) the Z2 × Z2-graded Lie algebras and
iii) the Z2 × Z2-graded Lie superalgebras.

Each one of the above classes of Lie (super)algebras will be defined over

the field of either real (R) or complex (C) numbers.

The round bracket (A,B) denotes:

either a commutator [A,B] = AB − BA
or an anticommutator {A,B} = AB + BA,

depending on the grading of the Lie (super)algebra generators A,B.
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Gradings

Let A,B,C be three Lie (super)algebra generators. Their respective

gradings are the vectors ~α = deg(A), ~β = deg(B), ~γ = deg(C ), where

case i:
~αT = ~α is a 1-component vector, such that ~α = (α), with α ∈ {0, 1};
cases ii and iii:
~α is a 2-component vector ~αT = (α1, α2) with α1, α2 ∈ {0, 1}.

A inner product (~α · ~β ∈ {0, 1}) is defined for a given pair of ~α, ~β
gradings. It is respectively given, for each of the three classes above, as

case i) : ~α · ~β := αβ ∈ {0, 1},
case ii) : ~α · ~β := α1β2 − α2β1 ∈ {0, 1},
case iii) : ~α · ~β := α1β1 + α2β2 ∈ {0, 1},

where the additions on the right hand sides are taken mod 2.
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Definition of brackets (A,B)

(A,B) := AB − (−1)~α·
~βBA,

so that

(B,A) = (−1)~α·
~β+1(A,B).

The grading deg((A,B)) of the Lie (super)algebra generator (A,B) is

deg((A,B)) = ~α + ~β,

where, in each of the vector components, the sums are taken mod 2.

A graded Lie (super)algebra G is endowed with a (·, ·) : G × G → G
bracket defined for each A,B pair of generators in G (A,B ∈ G).

A graded Lie (super)algebra satisfies, for any A,B,C triple of generators
of G, the graded Jacobi identity:

(−1)~γ·~α(A, (B,C )) + (−1)~α·
~β(B, (C ,A)) + (−1)

~β·~γ(C , (A,B)) = 0.
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To properly (anti)symmetrize bosons and fermions in the language of the

coproduct, the notion of braided tensor (which naturally incorporates a braid

statistics) has to be used.

The Z2-grading is the simplest non-trivial example of braiding.

The Z2 × Z2-grading is the next simplest case.

In a braided tensor product,

(UA ⊗ UB)(UC ⊗ UD) = UAΨ(UB ⊗ UC )UD ,

UB and UC are braided by an operator Ψ acting on their tensor product; Ψ is

called the “braiding operator”.

In applications to the Z[p]
2 , p = 1, 2 gradings, the braiding reads

(UA ⊗ UB)(UC ⊗ UD) = (−1)εB ·εC (UAUC )⊗ (UBUD)

and corresponds to a sign.
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For the creation operator f †, with (f †)2 = 0:
in the bosonic interpretation (for εf † = 0) the coproduct gives

∆((f †)2) = (1⊗ f † + f † ⊗ 1)(1⊗ f † + f † ⊗ 1) = 2f † ⊗ f † 6= 0.

In the fermionic interpretation (for εf † = 1) the coproduct gives

∆((f †)2) = (1⊗ f † + f † ⊗ 1)(1⊗ f † + f † ⊗ 1) = f † ⊗ 1 · 1⊗ f † + 1⊗ f † · f † ⊗ 1 =

= f † ⊗ f † − f † ⊗ f † = 0.

The physical consequence is that the coproduct, combined with the
braided tensor, encodes the Pauli exclusion principle for fermions.

The permutation of spaces for the tensor products U ⊗ . . .⊗ U of a graded
Universal Enveloping Lie superalgebra U(g) are defined as:

S
(2)
12 : UA ⊗ UB 7→ (−1)εA·εBUB ⊗ UA, (UA,B ∈ U and S

(2)
12 · S

(2)
12 = 1).

For the abstract Universal Enveloping Algebra U , represented on a vector

space V under the R representation, a hat denotes the action of the operators

induced by the coproduct:

for R : U → V , ∆̂ := ∆|R ∈ End(V ⊗ V ), with ∆̂(U) ∈ V ⊗ V .
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Multiparticle sectors

The M > 1 multiparticle Hilbert space H(M) is a subset of tensor products of
M single-particle Hilbert spaces:

H(M) ⊂ H(1) ⊗ . . .⊗H(1), (tensor product of M spaces) .

The coassociativity property allows to recursively determine ∆(M+1) as

∆(M+1) = (1⊗∆)∆(M) = (∆⊗ 1)∆(M) (with ∆(1) ≡ ∆),

where ∆(M) maps U in the tensor product of M + 1 spaces:

∆(M) : U → U⊗M+1 .

Example: an M-particle bosonic vacuum |vac〉(M) is determined by the Fock
conditions for the annihilation operator f :

̂∆(M−1)(f )|vac〉(M) = 0,

|vac〉(M) = |vac〉 ⊗ . . .⊗ |vac〉 ∈ H(M).

An excited state is created through

̂∆(M−1)((f †)r )|vac〉(M) .
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Comment:

In a non-interacting, first-quantized, multi-particle quantum theory, an
additive observable like energy is encoded in the coproduct.

The coassociativity of the coproduct ensures the construction of the
n-particle states:

1→ 2→ 3→ . . .→ n→ . . .
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Z2- and Z2 × Z2-gradings induce
inequivalent multiparticle quantizations

6 + 3 = 9 inequivalent multiparticle Hilbert spaces

induced by 6 standard and 3 non-standard gradings of
a single-particle quantum Hamiltonian.

Toy-model example: a 4× 4 matrix quantum oscillator
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Once more about the 4× 4 matrix Hamiltonian

Hosc =
1

2


−∂2

x + x2 − 1 0 0 0
0 −∂2

x + x2 − 1 0 0
0 0 −∂2

x + x2 + 1 0
0 0 0 −∂2

x + x2 + 1

 .

It is also invariant under a Z2 × Z2-Lie algebra:

Q10 =
−i√

2


0 0 ∂x − x 0
0 0 0 ∂x − x

∂x + x 0 0 0
0 ∂x + x 0 0

,

Q01 =
1√
2


0 0 0 ∂x − x
0 0 ∂x − x 0
0 −∂x − x 0 0

−∂x − x 0 0 0

,

Z =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 .
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The Hamiltonian H is invariant under the Z2 × Z2-abelian Lie algebra a defined
by the following set of (all vanishing) 6 (anti)commutators:

[H,Q10] = [H,Q01] = [H,Z ] = 0, {Q10,Q01} = {Z ,Q10} = {Z ,Q01} = 0.

The grading assignment is

H ∈ a00, Q10 ∈ a10, Q01 ∈ a01, Z ∈ a11.

The creation/annihilation oscillators a†, a, given by

a =
i√
2

(∂x + x), a† =
i√
2

(∂x − x),

satisfy the commutator

[a, a†] = 1.

The matrix raising (lowering) operators f †11, f
†

10, f
†

01 (f11, f10, f01) are

f †11 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

, f †10 =


0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

 , f †01 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 ,

f11 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , f10 =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , f01 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 .
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In terms of these operators the Hamiltonian Hosc can be re-expressed as

Hosc = a†a · I4 + f †10f10 + f †01f01 = a†a · I4 + Λ, with Λ = diag(0, 0, 1, 1).

We denote a m ×m identity matrix as Im.
The normalized lowest weight vector |0; 00〉 satisfies the conditions

a|0; 00〉 = f11|0; 00〉 = f10|0; 00〉 = f01|0; 00〉 = 0.

|0; 00〉 = π−
1
4 e−

1
2
x2


1
0
0
0

.
The single-particle Hilbert space H is spanned by the orthonormal vectors
|n; 00〉, |n; 11〉, |n; 10〉, |n; 01〉:

|n; 00〉 = (a†)n√
n!
|0; 00〉, |n; 10〉 = (a†)n√

n!
f †10|0; 00〉,

|n; 11〉 = (a†)n√
n!
f †11|0; 00〉, |n; 01〉 = (a†)n√

n!
f †01|0; 00〉.

At most a single power of f †11, f
†

10, f
†

01 enters the spanning vectors since we
have, for any pair of such operators,

f †] f
†
[ = 0, with ], [ ∈ {11, 10, 01}.
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Due to the commutators

[Hosc , a
†] = a†, [Hosc , f

†
10] = f †10, [Hosc , f

†
01] = f †01, [Hosc , f

†
11] = 0,

the states are energy eigenstates whose eigenvalues are read from

Hosc |n; 00〉 = n|n; 00〉, Hosc |n; 10〉 = (n + 1)|n; 10〉,
Hosc |n; 11〉 = n|n; 11〉, Hosc |n; 01〉 = (n + 1)|n; 01〉.

One should note that the vacuum state is doubly degenerate:

Hosc |0; 00〉 = Hosc |0; 11〉 = 0.

We introduce the exchange matrices X11,X10,X01. They are hermitian
operators which mutually interchange the 11, 10 and 01 sectors:

X11 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , X10 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 , X01 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 .

The matrices X11,X10,X01 are building blocks in the construction of the

observables that we will discuss later.
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The 6 standard Z2- and Z2 × Z2-gradings

the Z2-grading assignment the 4× 4 matrix Hamiltonian Hosc corresponds to a
block-diagonal supermatrix of (4− p|p) type, with p = 0, 1, 2, 3. The (4|0)
case for p = 0 coincides with the ordinary bosonic matrix. The p = 4 case is
excluded if we require the vacuum state to be even (bosonic).
The six assignments are:

1) {f †11, f
†

10, f
†

01} ∈ 0, {∅} ∈ 1 for (4|0);
2) {f †11, f

†
10} ∈ 0, {f †01} ∈ 1 for (3|1);

3) {f †11} ∈ 0, {f †10, f
†

01} ∈ 1 for (2|2);
4) {∅} ∈ 0, {f †11, f

†
10, f

†
01} ∈ 1 for (1|3);

5) {f †11, f
†

10, f
†

01} ∈ Z2
2 · LSA;

6) {f †11, f
†

10, f
†

01} ∈ Z2
2 · LA.
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The corresponding vanishing (anti)commutators defining the graded abelian
algebras aj , where j = 1, 2, . . . , 6, are

a1 : [f †11, f
†

10] = [f †10, f
†

01] = [f †01, f
†

11] = 0;

a2 : [f †11, f
†

10] = [f †10, f
†

01] = [f †01, f
†

11] = {f †01, f
†

01} = 0;

a3 : [f †11, f
†

10] = {f †10, f
†

01} = [f †01, f
†

11] = {f †10, f
†

10} = {f †01, f
†

01} = 0;

a4 : {f †11, f
†

10} = {f †10, f
†

01} = {f †01, f
†

11} = {f †11, f
†

11} = {f †10, f
†

10} = {f †01, f
†

01} = 0;

a5 : {f †11, f
†

10} = [f †10, f
†

01] = {f †01, f
†

11} = {f †10, f
†

10} = {f †01, f
†

01} = 0;

a6 : {f †11, f
†

10} = {f †10, f
†

01} = {f †01, f
†

11} = 0.

The 6 standard multi-particle quantizations, associated to the respective
gradings, are denoted as follows:

(4|0) : a1, (2|2) : a3, Z2
2-PF : a5,

(3|1) : a2, (1|3) : a4, Z2
2-PB : a6.

In the last column PF and PB stand for, respectively, parafermions and
parabosons.
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The 3 non-standard gradings

The non-standard cases are obtained by applying decompositions of the supermatrices
which do not coincide with the ordinary block-diagonal ones.
See: F. Delduc, F. Gieres, S. Gourmelen and S. Theisen, Non-standard matrix formats
of Lie superalgebras, Int. J. Mod. Phys. A 14, 4043 (1999); arXiv:math-ph/9901017.

In a Z2-grading, the standard decomposition of a vector vT = (B,B,F ,F ) with
2 bosons and 2 fermions can be replaced by vT = (B,F ,B,F ). The entries of the
fermionic supermatrices are respectively accommodated as

standard case:


0 0 ∗ ∗
0 0 ∗ ∗
∗ ∗ 0 0
∗ ∗ 0 0

 , non-standard case:


0 ∗ 0 ∗
∗ 0 ∗ 0
0 ∗ 0 ∗
∗ 0 ∗ 0

 .

For 3 bosons and 1 fermion we pass from vT = (B,B,B,F ) to vT = (B,F ,B,B):

standard case:


0 0 0 ∗
0 0 0 ∗
0 0 0 ∗
∗ ∗ ∗ 0

 , non-standard case:


0 ∗ 0 0
∗ 0 ∗ ∗
0 ∗ 0 0
0 ∗ 0 0

 .

The key issue to notice is that the raising operator f †11 becomes fermionic in the

non-standard decompositions above. This implies that the Pauli exclusion principle

applies to the 0-energy particles created by f †11.
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The three non-standard decompositions for the Hamiltonian Hosc are not
equivalent to the standard ones.
Nevertheless, in all three cases these decompositions can be recovered
from their corresponding standard ones after changing the Hamiltonian
Hosc = a†a · I4 + Λ, with Λ = diag(0, 0, 1, 1), into the permuted
Hamiltonian Hosc given by

Hosc = a†a · I4 + Λ, with Λ = diag(0, 1, 1, 0).

These three non-standard multi-particle quantizations are denoted as
(3|1)ns , (2|2)ns , Z2

2-PFns . Their corresponding graded algebras are

(3|1)ns : a2 for Hosc 7→ Hosc ,

(2|2)ns : a3 for Hosc 7→ Hosc ,

Z2
2-PFns : a5 for Hosc 7→ Hosc .

29 / 42



The 2-particle Hilbert spaces

The orthonormal vectors spanning the 2-particle Hilbert spaces have the form

|m; I 〉 =
1√
m!

(
i√
2

(∂x + ∂y − x − y)

)m

· (π−
1
2 e−

1
2

(x2+y2))·VI ,

where VI are 16-component constant orthonormal vectors which can be
expressed in the vj basis (vj has entry 1 in the j-th position and 0 otherwise).

The 2-particle Hilbert spaces induced by the 6 standard gradings are denoted
as H(2)

k ; the suffix k = 1, 2, . . . , 6 denotes the respective graded algebras.

The finite dimensional Hilbert spaces H(2)
k ⊂ H

(2)
k are spanned by the VI

vectors by taking m = 0.
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(4|0) (3|1) (2|2) (1|3) Z2
2-PF Z2

2-PB
V1 = v1 X X X X X X

V2 = v6 X X X X X

V3 = v11 X X X

V4 = v16 X X

V5 = 1√
2
(v2 + v5) X X X X X X

V6 = 1√
2
(v3 + v9) X X X X X X

V7 = 1√
2
(v4 + v13) X X X X X X

V8 = 1√
2
(v7 + v10) X X X

V9 = 1√
2
(v7 − v10) X X X

V10 = 1√
2
(v8 + v14) X X X

V11 = 1√
2
(v8 − v14) X X X

V12 = 1√
2
(v12 + v15) X X X

V13 = 1√
2
(v12 − v15) X X X

Spanning vectors of the standard finite dimensional 2-particle Hilbert spaces of the
4× 4 matrix oscillator. The first four columns correspond to supermatrices: (4|0), i.e.
the bosonic case, (3|1), (2|2), i.e. the supersymmetric case, and (1|3). The last two
columns present the Z2 × Z2-Hilbert spaces for parafermions (Z2

2-PF) and parabosons
(Z2

2-PB). The “X” denotes the presence of the vector.

The absence, in certain cases, of the vectors V2,V3,V4. It is a consequence of the

Pauli exclusion principle for (para)fermions.
31 / 42



Degeneracy of the energy levels

The degeneracy of a energy level depends on the given quantization. The
results are summarized in the table below which presents the nine cases (1 to 6
corresponding to the standard decompositions, 7, 8 and 9 to the non-standard
ones). For any given quantization the degeneracy of its energy levels
n = 2, 3, 4, . . . is the same:

E = 0 E = 1 E = n ≥ 2

1∗- (4|0) 3 7 10

2 - (3|1) 3 7 9

3†- (2|2) 3 7 8

4 - (1|3) 2 6 7

5†- Z2
2-PF 3 7 8

6∗- Z2
2-PB 3 7 10

7 - (3|1)ns 2 6 9

8‡ - (2|2)ns 2 6 8

9‡ - Z2
2-PFns 2 6 8

The inequivalence of the quantizations 1 versus 6, 3 versus 5 and 8 versus 9
cannot be read from this table; it requires a subtler analysis of other
observables.
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Discriminating 2-particle observables:
how to discriminate Z2 × Z2-parabosons from bosons

The 2-particle observables discriminating parabosons from bosons should
satisfy the following requirements:

i) they should apply to both bosonic and parabosonic Hilbert spaces,

ii) they should be hermitian and

iii) they should belong to the 00-graded sector of the parabosonic theory in
order to have real (00-graded) eigenvalues.

The following set of 2-particle observables, constructed in terms of the
exchange operators X11,X10,X01, satisfy the above three criteria:

Xs = X10 ⊗ X10, Xt = X01 ⊗ X01, Xu = X11 ⊗ X11, X∗ = Xs + Xt + Xu.

Under the S3 permutations which interchange the parabosonic sectors

11, 10, 01, the operators Xs ,Xt are mapped into Xu, while X∗ is S3-invariant.

Without loss of generality we can therefore consider the two operators Xu,X∗.
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In order to make easier the comparison of the bosonic versus parabosonic
Hilbert spaces it is convenient to rename the respective vectors. They will be
expressed in terms of a sign ε (ε = +1 for bosons, ε = −1 for parabosons).

The ε sign encodes the property that the bosonic wave functions are totally
symmetric, while the parabosonic wave functions have mixed symmetry:

U00,A = v1,

U00,B = v6, U11 = 1√
2
(v2 + v5), W11,ε =

1√
2

(v12 + εv15) ,

U00,C = v11, U10 = 1√
2
(v3 + v9), W10,ε =

1√
2

(v8 + εv14) ,

U00,D = v16, U01 = 1√
2
(v4 + v13), W01,ε =

1√
2

(v7 + εv10) .

The suffix denotes the Z2 × Z2-grading of the vector in the parabosonic case.
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The difference between the two Hilbert spaces should be spotted by measuring
the subspaces spanned by W11,ε,W10,ε,W01,ε and should appear as
ε-dependent eigenvalues.

The eigenvectors of Xu with nonvanishing eigenvalues are U± and W11,ε:

XuU± = ±U± for U± = U00,C ± U00,D , XuW11,ε = εW11,ε .

The eigenvectors of X∗ with their respective nonvanishing eigenvalues are

X∗(U00,B − U00,C ) = −(U00,B − U00,C ), X∗W11,ε = εW11,ε ,

X∗(U00,C − U00,D) = −(U00,C − U00,D), X∗W10,ε = εW10,ε ,

X∗(U00,D − U00,B) = −(U00,D − U00,B), X∗W01,ε = εW01,ε .

The presence of the ε eigenvalues proves that, by performing Xu,X∗
measurements, one can determine whether a system under consideration is
composed by ordinary bosons or by Z2 × Z2-graded parabosons.

35 / 42



Comment

Besides the observables discriminating bosons versus Z2 ×Z2-parabosons,
an analogous construction produces:

observables discriminating the standard supersymmetric versus the
standard Z2 × Z2-parafermionic quantization (cases 3 versus 5) and

observables discriminating the nonstandard supersymmetric versus the

nonstandard Z2 × Z2-parafermionic quantization (cases 8 versus 9).

⇒ 9 inequivalent quantizations are obtained from gradings.
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Conclusions

Paraparticles recovered from Rittenberg-Wyler 2-bit physics
are theoretically observable.

Question: where can we expect to find them?

Different possibilities:

• Fundamental physics (relativistic QFTs, effects of quantum
gravity at Planck scale, dark matter, . . .),

• Laboratory physics as emergent structures (collective
modes) in condensed matter,

• Direct construction either via lego (metamaterials) or by
manipulating qubits.
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