Faces of polyhedra associated with Relation modules¹

Germán Benitez

Universidade Federal do Amazonas, UFAM Manaus – Brazil

Workshop on Representation Theory and Applications ICTP-SAIFR, São Paulo, Brazil April 28, 2022

¹Joint work with Luis Enrique Ramirez (UFABC)

Any subset $\mathcal{C} \subseteq \mathcal{R}^- \cup \mathcal{R}^0 \cup \mathcal{R}^+ \subset \mathfrak{V} \times \mathfrak{V}$ will be called a *set of relations*.

By $G(\mathcal{C})$ we denote the directed graph with set of vertices \mathfrak{V} , and arrow from vertex (i, j) to (r, s) if and only if $((i, j); (r, s)) \in \mathcal{C}$.

Set

$$\mathfrak{V} := \left\{ (i,j) \in \mathbb{Z} \times \mathbb{Z} \mid 1 \le j \le i \le n \right\}.$$

For n = 5

$$\mathcal{R}^+ := \{ ((i,j); (i-1,t)) \mid 2 \le j \le i \le n, \ 1 \le t \le i-1 \}$$

For n = 4

$$\mathcal{R}^{-} := \{ ((i,j); (i+1,s)) \mid 1 \le j \le i \le n-1, \ 1 \le s \le i+1 \}$$

For n = 4

$$\mathcal{R}^{0} := \{ ((n,i); (n,j)) \mid 1 \le i \ne j \le n \}$$

For any $1 \le k \le n$, we consider $C_k^+ := \{((i+1,j); (i,j)) \mid k \le j \le i \le n-1\}$.

(1,1)

Examples

For $1 \le k \le n$, we consider $C_k^- := \{((i,j); (i+1,j+1)) \mid k \le j \le i \le n-1\}.$

(1, 1)

Examples

For any $1 \le k \le n$, we consider $C_k := C_k^+ \cup C_k^-$

(1,1)

For $M \in \mathbb{C}^{\frac{n(n+1)}{2}}$ denote by T(M) the image of M via the natural isomorphism between $\mathbb{C}^{\frac{n(n+1)}{2}}$ and $\mathbb{C}^n \times \cdots \times \mathbb{C}^1$ and its entries by m_{ij} . Hence, we can picture T(M) as a triangular tableau height n, such tableaux will be called *Gelfand–Tsetlin tableaux*.

For any $\mathbb{A} \subseteq \mathbb{C}^{n(n+1)/2}$, we denote by $T(\mathbb{A})$ the set of all Gelfand–Tsetlin tableaux T(L), with $L \in \mathbb{A}$.

Let C be a set of relations and T(L) any Gelfand-Tsetlin tableau, we say that:

• T(L) satisfies C, if

$$l_{ij} - l_{rs} \in \mathbb{Z}_{\geq 0}$$
, for any arrow $(i, j) \longrightarrow (r, s)$ in $G(\mathcal{C})$.

T(*L*) is a *C*-realization, if *T*(*L*) satisfies *C* and for any 1 ≤ k ≤ n − 1 we have, *l_{ki}* − *l_{kj}* ∈ ℤ if only if (k, i) and (k, j) are in the same connected component of *G*(*C*).

Consider $\ensuremath{\mathcal{D}}$ to be the set of relations with associated graph

 $\mathbb{Z}_0^{n(n+1)/2}$ will denote the set of vectors M in $\mathbb{T}(\mathbb{Z}_0^{n(n+1)/2})$ such that $m^{(n)} = \mathbf{0}$.

Suppose that T(L) satisfies C. We will denote by:

- $\mathcal{B}_{\mathcal{C}}(T(L))$ the set of all Gelfand-Tsetlin tableaux in $\mathbf{T}\left(L + \mathbb{Z}_{0}^{n(n+1)/2}\right)$ satisfying \mathcal{C} .
- $V_{\mathcal{C}}(T(L))$ the vector space with basis $\mathcal{B}_{\mathcal{C}}(T(L))$.

Relation modules

A set of relations C is called *admissible* if for any C-realization T(L), $V_C(T(L))$ is a \mathfrak{gl}_n -module, with the following action on any $T(M) \in \mathcal{B}_C(T(L))$,

$$E_{k,k+1}(T(M)) = -\sum_{i=1}^{k} \left(\frac{\prod_{j=1}^{k+1} (m_{ki} - m_{k+1,j} + j - i)}{\prod_{j\neq i}^{k} (m_{ki} - m_{kj} + j - i)} \right) T(M + \delta^{ki}), \quad (1)$$

$$E_{k+1,k}(T(M)) = \sum_{i=1}^{k} \left(\frac{\prod_{j=1}^{k-1} (m_{ki} - m_{k-1,j} + j - i)}{\prod_{j\neq i}^{k} (m_{ki} - m_{kj} + j - i)} \right) T(M - \delta^{ki}), \quad (2)$$

$$E_{kk}(T(M)) = \left(\sum_{i=1}^{k} m_{ki} - \sum_{i=1}^{k-1} m_{k-1,i} \right) T(M), \quad (3)$$

where δ^{ki} stands for the vector in $T_n(\mathbb{Z})$ such that $(\delta^{ki})_{rs} = \delta_{kr}\delta_{is}$.

If C is admissible, we will call $V_C(T(L))$ a *relations module*.

Futorny-Ramirez-Zhang, 2019

Suppose that C is a noncritical set of relations whose associated graph G = G(C) satisfies the following conditions:

- (i) *G* is reduced;
- (ii) *G* does not contain loops, and $(k, i) \succeq (k, j)$ implies $i \le j$;
- (iii) If *G* contains an arrow connecting (k, i) and (k + 1, t), then (k + 1, s) and (k, j) with i < j, s < t are not connected in *G*.

C is an admissible set of relations if and only if, for any connected component $G(\mathcal{E})$ of $G(\mathcal{C})$ and any adjoining pair ((k,i); (k,j)) in $G(\mathcal{E})$, there exist p, q such that $\mathcal{E}_1 \subseteq \mathcal{E}$ or, there exist s < t such that $\mathcal{E}_2 \subseteq \mathcal{E}$, where the graphs associated to \mathcal{E}_1 and \mathcal{E}_2 are as follows

$$G(\mathcal{E}_{1}) = (k,i) (k+1,p) (k+1,k) (k+1,k)$$

Remark

The sets of relations C_k , C_k^+ *and* C_k^- *are admissible set of relations for any* $1 \le k \le n$.

Theorem (Gelfand–Tsetlin, 1950)

If $\lambda := (\lambda_1, ..., \lambda_n)$ is an integral dominant \mathfrak{gl}_n -weight and $T(\Lambda)$ is the Gelfand–Tsetlin tableau of height n with entries $\lambda_{ki} := \lambda_i$, then $V_{\mathcal{C}_1}(T(\Lambda))$ is isomorphic to the simple finite dimensional module $L(\lambda)$. Moreover,

- (i) $\mathcal{B}_{\mathcal{C}_1}(T(\Lambda))$ is a basis of $V_{\mathcal{C}_1}(T(\Lambda))$.
- (ii) For any $\mu = (\mu_1, \dots, \mu_n) \in \mathfrak{h}^*$, the weight space $L(\lambda)_{\mu}$ has a basis

$$\{T(X) \in \mathcal{B}_{\mathcal{C}_1}(T(\Lambda)) \mid w_k(X) = \mu_k, \text{ for all } k = 1, \dots, n\}.$$

Polyhedra

Definition

A subset *P* of a \mathbb{R} -vector space *V* is called a *polyhedron* if it is the intersection of finitely many closed halfspaces. The *dimension* of *P* is given by dim (aff(*P*)). A *polytope* is a bounded polyhedron.

Associated with a set of relations C we will define polyhedra in $\mathbb{R}^{n(n+1)/2}$.

Definition

Let C be any set of relations, $X \in \mathbb{R}^{n(n+1)/2}$ is called a *C*-pattern, if

 $x_{ij} \ge x_{rs}$ for any arrow $(i,j) \longrightarrow (r,s)$ in $G(\mathcal{C})$.

The *kth weight linear map* $w_k : \mathbb{C}^{n(n+1)/2} \longrightarrow \mathbb{C}$ is defined by

$$w_k(X) := \begin{cases} \sum_{i=1}^k x_{ki} - \sum_{i=1}^{k-1} x_{k-1,i}, & \text{if } 2 \le k \le n; \\ x_{11}, & \text{if } k = 1. \end{cases}$$

Definition

Fix $\lambda, \mu \in \mathbb{R}^n$ and C a set of relations. We consider the following polyhedra in $\mathbb{R}^{n(n+1)/2}$ associated with C

$$P_{\mathcal{C}} := \left\{ X \in \mathbb{R}^{n(n+1)/2} \mid X \text{ is a } \mathcal{C}\text{-pattern} \right\},$$

$$P_{\mathcal{C}}(\lambda) := \left\{ X \in P_{\mathcal{C}} \mid x_{nj} = \lambda_j \text{ for all } 1 \le j \le n \right\},$$

$$P_{\mathcal{C}}(\lambda, \mu) := \left\{ X \in P_{\mathcal{C}}(\lambda) \mid w_i(X) = \mu_i \text{ for all } 1 \le i \le n \right\}.$$

- $P_{\mathcal{C}}$ is always unbounded.
- $P_{\mathcal{C}}(\lambda)$ is a polytope if and only if the maximal and minimal points of $G(\mathcal{C})$ belong to $\{(n, 1), \dots, (n, n)\}$.

Given a Gelfand-Tsetlin tableau T(L), elements in $L + \mathbb{Z}_0^{n(n+1)/2}$ are called *L*-integral points.

Theorem (B., Ramirez, 2022)

Let C be any admissible set of relations, T(L) a C-realization, and $V = V_{\mathcal{C}}(T(L))$ the corresponding relation \mathfrak{gl}_n -module. Set $\lambda = (l_{n1}, \ldots, l_{nn})$, and $\mu = (w_1(L), w_2(L), \ldots, w_n(L)) \in \mathfrak{h}^*$.

- (i) The polyhedra P_C and P_C(λ) have the same number of L-integral points, and this number is equal to dim(V).
- (ii) The number of L-integral points in $P_{\mathcal{C}}(\lambda, \mu)$ is equal to dim (V_{μ}) .

Polyhedra associated with sets of relations

Corollary

Let T(L) be a C_1 -realization, $\lambda = (l_{n1}, \ldots, l_{nn})$, and μ a weight of $V_{C_1}(T(L))$.

 $V_{\mathcal{C}_1}(T(L))$ is isomorphic to the simple finite-dimensional module $L(\lambda)$.

- The number of L-integral points in P_{C1} and P_{C1}(λ) is finite and equal to dim(L(λ)).
- The number of L-integral points in $P_{C_1}(\lambda, \mu)$ is finite and equal to $\dim(L(\lambda)_{\mu})$.

Corollary

Let T(L) be a C_1^+ -realization, $\lambda = (l_{n1}, \ldots, l_{nn})$, and μ a weight of $V_{C_1^+}(T(L))$.

The module $V_{C_{t}^{+}}(T(L))$ *is isomorphic to the generic Verma module* $M(\lambda)$ *and*

- $P_{C_1^+}$ and $P_{C_1^+}(\lambda)$ contains infinitely many L-integral points.
- The number of L-integral points in $P_{C_1^+}(\lambda, \mu)$ is dim $M(\lambda)_{\mu} < \infty$.

Polyhedra associated with sets of relations

Corollary

Let T(L) be a C_2 -realization, $\lambda = (l_{n1}, \ldots, l_{nn})$, and μ a weight of $V_{C_2}(T(L))$.

If $\tilde{\lambda} := (l_{n2}, ..., l_{nn})$ is a dominant \mathfrak{gl}_{n-1} -weight, then $V_{C_2}(T(L))$ is isomorphic to the **cuspidal module** $L(\tilde{\lambda})$, which is an infinite-dimensional module with finite weight spaces of dimension dim $(L(\tilde{\lambda}))$

- P_{C_2} and $P_{C_2}(\lambda)$ contains infinitely many L-integral points.
- If μ is a weight of $V_{C_2}(T(L))$, the number of L-integral points in $P_{C_2}(\lambda, \mu)$ is equal to dim $(L(\tilde{\lambda}))$.

(1, 1)

A hyperplane *H* is called a *support hyperplane* of the polyhedron *P*, if $H \cap P \neq \emptyset$, and *P* is contained in one of the two closed halfspaces bounded by *H*, and such intersection $F = H \cap P$ is a *face* of *P*.

Faces of dimension 0 are called *vertices*, and an *edge* is a face of dimension 1. In general, a face *F* of dimension *k* is called a *k*-face.

For any point *x* in a polyhedron *P*, there exists a unique face *F* such that $x \in int(F)$. This face is the unique minimal element in the set of faces of *P* containing *x* and will be called *minimal face* for *x*.

Let C be a set of relations, and $X \in \mathbb{R}^{n(n+1)/2}$ be a C-pattern.

Definition

Set $\sim \subseteq \mathfrak{V} \times \mathfrak{V}$ given by $(i, j) \sim (r, s)$ if and only if there exists a path in $G(\mathcal{C})$ connecting (i, j) and (r, s) with the entries of X associated with the vertices in the walk being equal.

The partition of \mathfrak{V} induced by the relation will be called tiling, and is denoted by $\mathcal{M}_{\mathcal{C}}(X)$. The equivalence classes will be called tiles.

A tile \mathcal{M} is called *top-free* if $\mathcal{M} \cap \{(n,1), (n,2), \dots, (n,n)\} = \emptyset$.

A tile \mathcal{M} is called *top/bottom-free* if $\mathcal{M} \cap \{(1,1), (n,1), (n,2), \dots, (n,n)\} = \emptyset$.

Definition

Given a *C*-pattern *X*, with tiling $\mathcal{M}_{\mathcal{C}}(X)$ and set of top-free tales $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_s$, we define a *tiling matrix* to be the matrix

$$A_{\mathcal{M}_{\mathcal{C}}(X)} := (a_{ik}) \in \mathbb{M}_{n-1 \times s}(\mathbb{Z}_{\geq 0}) \text{ where } a_{ik} = |\{j \mid (i,j) \in \mathcal{M}_k\}|.$$

For C-patterns without top-free tiles we consider A_M to be the identity matrix of order n - 1.

Remark

The matrix $A_{\mathcal{M}_{\mathcal{C}}(X)}$ depends of the chosen order of the top-free tales, but the dimension of the kernel of $A_{\mathcal{M}}$ does not depend.

We will enumerate the tales from left to right and from bottom to top.

Let us consider the tilings T_1 , T_2 and T_3 from latter Example. The corresponding tiling matrizes are:

$$A_{\mathcal{T}_1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \quad A_{\mathcal{T}_2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}, A_{\mathcal{T}_3} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Proposition [B., Ramirez, 2022]

Let C be a set of relations, X a C-pattern, $\lambda = (x_{n1}, \ldots, x_{nn})$, and $\mu = (w_1(X), w_2(X), \ldots, w_n(X))$.

- (i) If $\mathcal{M}_{\mathcal{C}}(X)$ does not have top-free tiles, then *X* is a vertex of $P_{\mathcal{C}}(\lambda)$.
- (ii) If *M*_C(*X*) does not have top/bottom-free tiles, then *X* is a vertex of *P*_C(λ, μ).

Theorem [B., Ramirez, 2022]

Let C be a set of relations, X a C-pattern, and $\mathcal{M}_C(X)$ its associated tiling. Set $\lambda = (x_{n1}, \ldots, x_{nn})$, and $\mu = (w_1(X), w_2(X), \ldots, w_n(X))$. Then,

- (i) The dimension of the minimal face of P_C containing X is equal to the number of tales in M_C(X).
- (ii) The dimension of the minimal face of $P_{\mathcal{C}}(\lambda)$ containing *X* is equal to the number of top-free tales in $\mathcal{M}_{\mathcal{C}}(X)$.
- (iii) The dimension of the minimal face of $P_{\mathcal{C}}(\lambda, \mu)$ containing *X* is equal to the dimension of the kernel of $A_{\mathcal{M}_{\mathcal{C}}(X)}$.

Therefore, the dimension of minimal faces containing the tableaux from previous Examples are given by

	λ	μ	$P_{\mathcal{C}}$	$P_{\mathcal{C}}(\lambda)$	$P_{\mathcal{C}}(\lambda,\mu)$
Tiling 1	$(\sqrt{2}, 2, 3, 4)$	$(0,0,\sqrt{2}+\sqrt{3},9-\sqrt{3})$	7	3	1
Tiling 2	(8, 5, 5, 4)	(-2, 4, 9, 11)	8	4	1
Tiling 3	(8, 5, 5, 4)	(-2,4,9,11)	9	5	2

References

- G. Benitez and L. E. Ramirez, Faces of polyhedra associated with relation modules, arXiv:2107.06315.
- V. Futorny, L. E. Ramirez and J. Zhang, Combinatorial construction of Gelfand-Tsetlin modules for gl_n, Adv. Math. **343** (2019), 681–711. MR3884684
- I. M. Gel'fand and M. L. Cetlin, Finite-dimensional representations of the group of unimodular matrices, Doklady Akad. Nauk SSSR (N.S.) 71 (1950), 825–828. MR0035774
- I. M. Gel'fand and A. V. Zelevinskiĭ, Multiplicities and regular bases for gl_n, in *Group-theoretic methods in physics*, Vol. 2 (Russian) (Jūrmala, 1985), 22–31, "Nauka", Moscow. MR0946885
- J. A. De Loera and T. B. McAllister, Vertices of Gelfand-Tsetlin polytopes, Discrete Comput. Geom. **32** (2004), no. 4, 459–470. MR209674

Thank you for your attention.