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There is a natural way to construct infinite-dimensional Lie algebras from
finite-dimensional Lie algebras:

If g a finite-dimensional Lie algebra and A a commutative associative
unital algebra, then define the Lie algebra L = g⊗ A, where

[x ⊗ a, y ⊗ b] = [x , y ]⊗ ab.

Let g = g0 ⊕ g1 be a f.d. simple basic classical Lie superalgebra. We will
consider the following superalgebras:

L = g⊗ A (map superalgebra);

A(g) = (g⊗ C[t, t−1])⊕ Cc (Affine Lie superalgebra)

ĝ = (g⊗ C[t, t−1])⊕ Cc ⊕ Cd (Affine Kac-Moody superalgebra)
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Let

k be an uncountable algebraically closed field of characteristic 0

g a finite-dimensional simple basic classical Lie superalgebra

h ⊂ g a Cartan subalgebra of g

A a commutative associative unital finitely generated k-algebra
L = g⊗ A the associated map superalgebra

An L-module V is called Harish-Chandra module if V =
⊕

λ∈h∗ V
λ

where
V λ = {v ∈ V | (h ⊗ 1)v = λ(h)v ∀h ∈ h}

is a finite-dimensional vector space for all λ ∈ h∗.

A Harish-Chandra L-module is called bounded if the dimension of all
weight spaces are uniformly bounded.
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Map Superalgebras

Our first goal was to classify all simple Harish-Chandra L-modules in
terms of g-modules and parabolic induced modules.

Known:

g is a Lie algebra: Britten et al. (2015); Lau (2018);

V is finite-dimensional: Savage (2014).

Theorem

A simple Harish-Chandra L-module is either a cuspidal bounded module,
or parabolic induced from a simple cuspidal bounded module over a certain
subalgebra of L.

L admits cuspidal modules if and only if g admits cuspidal modules, in
which case g0 is semisimple.

Theorem

If g0 is semisimple, then any simple cuspidal bounded L-module is an
evaluation module.
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Affine Lie Superalgebras

Loop superalgebra: L(g) = g⊗ C[t, t−1]

Affine Lie superalgebra: A(g) = L(g)⊕ Cc, where the Lie
superbracket is defined by

[x ⊗ tm + αc , y ⊗ tn + βc] = [x , y ]⊗ tm+n + n(x , y)δm,−nc ,

with (·, ·) being an invariant supersymmetric nondegenerate even
bilinear form on g.

We can consider Harish-Chandra modules over A(g) by assuming that
the weight spaces with respect h⊗ C⊕ Cc have finite dimension.

Any simple L(g)-module is a simple A(g)-module. Conversely,

Theorem

If V is a simple Harish-Chandra module over A(g), then V is a simple
L(g)-module.
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Affine Kac-Moody Lie Superalgebras

The affine Kac-Moody Lie superalgebra ĝ = A(g)⊕ Cd associated to
a basic classical Lie superalgebra g is a one-dimensional extension of
A(g) by an element d with [d , x ⊗ tk ] = kx ⊗ tk .

If V is a weight L(g)-module, then L(V ) = V ⊗ C[t, t−1] is a weight
ĝ-module, where

(x⊗tr )(v⊗ts) = (x⊗tr )v⊗tr+s , cL(V ) = 0, d(v⊗tr ) = rv⊗tr .

V is a (bounded) Harish-Chandra L(g)-module if and only if L(V ) is
a (bounded) Harish-Chandra ĝ-module. Hence we get a functor{
(Bounded) Harish-Chandra

L(g)-modules

}
L−→

{
(Bounded) Harish-Chandra

ĝ-modules

}
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Theorem

Let λ ∈ h∗, F (λ) be the corresponding simple highest weight g-module, V0

be a simple weight g-module and a, b ∈ C× with a ̸= b. Then V0⊗F (λ) is
a L(g)-module, where (x ⊗ tr )v ⊗w = ar (xv)⊗w + (−1)|x ||w |brv ⊗ (xw).
If there is λ0 ∈ SuppV0 for which the map

χ(h ⊗ tn) = (anλ0(h) + bnλ(h)) tn, χ(d) = 0.

satisfies imχ = C[tr , t−r ], then we have an isomorphism of ĝ-modules

L(V0 ⊗ F (λ)) ∼=
r−1⊕
i=0

Li (V0 ⊗ F (λ))

where each Li (V0 ⊗ F (λ)) is a simple ĝ-module.

Remark

In the case of Lie algebras, these are exactly the simple modules that
appear in the unpublished work of Dimitrov and Grantcharov (2009).
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If g is of type I , then g = g−1⊕g0⊕g1.

For a simple weight ĝ0-module
S define the Kac module associated to S to be the induced ĝ-module

K (S) := U(ĝ)⊗U(ĝ0⊕ĝ1) S ,

where we are assuming that ĝ1S = 0.

K (S) admits an unique simple quotient.

This defines the Kac induction functor:

{
ĝ0-modules

} K−→
{
ĝ-modules

}
Theorem

Let g be a basic classical Lie superalgebras of type I. Then the Kac
induction functor gives a bijection between the sets of isomorphism classes
of simple bounded Harish-Chandra ĝ-modules and simple bounded
Harish-Chandra ĝ0-modules.
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K (S) := U(ĝ)⊗U(ĝ0⊕ĝ1) S ,
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Thank you!
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