Representations of Map Superalgebras

Henrique de Oliveira Rocha

University of São Paulo, Brazil

April 2022

Joint work with Lucas Calixto and Vyacheslav Futorny

This work was partially funded by São Paulo Research Foundation (FAPESP), grant 2020/13811-0

(日) (四) (문) (문) (문)

< □ > < 凸

If \mathfrak{g} a finite-dimensional Lie algebra and A a commutative associative unital algebra, then define the Lie algebra $\mathcal{L} = \mathfrak{g} \otimes A$, where

 $[x \otimes a, y \otimes b] = [x, y] \otimes ab.$

If \mathfrak{g} a finite-dimensional Lie algebra and A a commutative associative unital algebra, then define the Lie algebra $\mathcal{L} = \mathfrak{g} \otimes A$, where

$$[x \otimes a, y \otimes b] = [x, y] \otimes ab.$$

Let $\mathfrak{g} = \mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}$ be a f.d. simple basic classical Lie superalgebra.

If \mathfrak{g} a finite-dimensional Lie algebra and A a commutative associative unital algebra, then define the Lie algebra $\mathcal{L} = \mathfrak{g} \otimes A$, where

$$[x \otimes a, y \otimes b] = [x, y] \otimes ab.$$

If \mathfrak{g} a finite-dimensional Lie algebra and A a commutative associative unital algebra, then define the Lie algebra $\mathcal{L} = \mathfrak{g} \otimes A$, where

 $[x \otimes a, y \otimes b] = [x, y] \otimes ab.$

Let $\mathfrak{g} = \mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}$ be a f.d. simple basic classical Lie superalgebra. We will consider the following superalgebras:

• $\mathcal{L} = \mathfrak{g} \otimes A$ (map superalgebra);

If \mathfrak{g} a finite-dimensional Lie algebra and A a commutative associative unital algebra, then define the Lie algebra $\mathcal{L} = \mathfrak{g} \otimes A$, where

 $[x \otimes a, y \otimes b] = [x, y] \otimes ab.$

- $\mathcal{L} = \mathfrak{g} \otimes A$ (map superalgebra);
- $\mathcal{A}(\mathfrak{g}) = (\mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]) \oplus \mathbb{C}c$ (Affine Lie superalgebra)

If \mathfrak{g} a finite-dimensional Lie algebra and A a commutative associative unital algebra, then define the Lie algebra $\mathcal{L} = \mathfrak{g} \otimes A$, where

 $[x \otimes a, y \otimes b] = [x, y] \otimes ab.$

- $\mathcal{L} = \mathfrak{g} \otimes A$ (map superalgebra);
- $\mathcal{A}(\mathfrak{g}) = (\mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]) \oplus \mathbb{C}c$ (Affine Lie superalgebra)
- $\widehat{\mathfrak{g}} = (\mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]) \oplus \mathbb{C}c \oplus \mathbb{C}d$ (Affine Kac-Moody superalgebra)

If \mathfrak{g} a finite-dimensional Lie algebra and A a commutative associative unital algebra, then define the Lie algebra $\mathcal{L} = \mathfrak{g} \otimes A$, where

 $[x \otimes a, y \otimes b] = [x, y] \otimes ab.$

- $\mathcal{L} = \mathfrak{g} \otimes A$ (map superalgebra);
- $\mathcal{A}(\mathfrak{g}) = (\mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]) \oplus \mathbb{C}c$ (Affine Lie superalgebra)
- $\widehat{\mathfrak{g}} = (\mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]) \oplus \mathbb{C}c \oplus \mathbb{C}d$ (Affine Kac-Moody superalgebra)

 ${\ensuremath{\, \bullet }}\xspace$ ${\ensuremath{\, k}}\xspace$ be an uncountable algebraically closed field of characteristic 0

æ

- ${\ensuremath{\, \bullet }}\xspace$ ${\ensuremath{\, k}}\xspace$ be an uncountable algebraically closed field of characteristic 0
- $\bullet \ \mathfrak{g}$ a finite-dimensional simple basic classical Lie superalgebra

- $\bullet~\Bbbk$ be an uncountable algebraically closed field of characteristic 0
- $\bullet \ \mathfrak{g}$ a finite-dimensional simple basic classical Lie superalgebra
- $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra of \mathfrak{g}

- $\bullet~\Bbbk$ be an uncountable algebraically closed field of characteristic 0
- $\bullet \ \mathfrak{g}$ a finite-dimensional simple basic classical Lie superalgebra
- $\mathfrak{h}\subset\mathfrak{g}$ a Cartan subalgebra of \mathfrak{g}
- A a commutative associative unital finitely generated k-algebra

- $\bullet~\Bbbk$ be an uncountable algebraically closed field of characteristic 0
- g a finite-dimensional simple basic classical Lie superalgebra
- $\mathfrak{h}\subset\mathfrak{g}$ a Cartan subalgebra of \mathfrak{g}
- A a commutative associative unital finitely generated k-algebra
- $\mathcal{L} = \mathfrak{g} \otimes A$ the associated map superalgebra

- $\bullet~\Bbbk$ be an uncountable algebraically closed field of characteristic 0
- $oldsymbol{\mathfrak{g}}$ a finite-dimensional simple basic classical Lie superalgebra
- $\mathfrak{h}\subset\mathfrak{g}$ a Cartan subalgebra of \mathfrak{g}
- A a commutative associative unital finitely generated k-algebra
- $\mathcal{L} = \mathfrak{g} \otimes A$ the associated map superalgebra
- An \mathcal{L} -module V is called *Harish-Chandra module* if $V = \bigoplus_{\lambda \in \mathfrak{h}^*} V^{\lambda}$ where

$$V^\lambda = \{ v \in V \mid (h \otimes 1) v = \lambda(h) v \quad orall h \in \mathfrak{h} \}$$

is a finite-dimensional vector space for all $\lambda \in \mathfrak{h}^*$.

- $\bullet~\Bbbk$ be an uncountable algebraically closed field of characteristic 0
- $oldsymbol{\mathfrak{g}}$ a finite-dimensional simple basic classical Lie superalgebra
- $\mathfrak{h}\subset\mathfrak{g}$ a Cartan subalgebra of \mathfrak{g}
- A a commutative associative unital finitely generated k-algebra
- $\mathcal{L} = \mathfrak{g} \otimes A$ the associated map superalgebra
- An \mathcal{L} -module V is called Harish-Chandra module if $V = \bigoplus_{\lambda \in \mathfrak{h}^*} V^{\lambda}$ where

$$V^\lambda = \{ v \in V \mid (h \otimes 1) v = \lambda(h) v \quad orall h \in \mathfrak{h} \}$$

is a finite-dimensional vector space for all $\lambda \in \mathfrak{h}^*$.

• A Harish-Chandra *L*-module is called *bounded* if the dimension of all weight spaces are uniformly bounded.

- $\bullet~\Bbbk$ be an uncountable algebraically closed field of characteristic 0
- $oldsymbol{\mathfrak{g}}$ a finite-dimensional simple basic classical Lie superalgebra
- $\mathfrak{h}\subset\mathfrak{g}$ a Cartan subalgebra of \mathfrak{g}
- A a commutative associative unital finitely generated k-algebra
- $\mathcal{L} = \mathfrak{g} \otimes A$ the associated map superalgebra
- An \mathcal{L} -module V is called Harish-Chandra module if $V = \bigoplus_{\lambda \in \mathfrak{h}^*} V^{\lambda}$ where

$$V^\lambda = \{ v \in V \mid (h \otimes 1) v = \lambda(h) v \quad orall h \in \mathfrak{h} \}$$

is a finite-dimensional vector space for all $\lambda \in \mathfrak{h}^*$.

• A Harish-Chandra *L*-module is called *bounded* if the dimension of all weight spaces are uniformly bounded.

Our first goal was to classify all simple Harish-Chandra $\mathcal L\text{-modules}$ in terms of $\mathfrak g\text{-modules}$ and parabolic induced modules.

.∋...>

< 47 ▶

Our first goal was to classify all simple Harish-Chandra $\mathcal{L}\text{-modules}$ in terms of $\mathfrak{g}\text{-modules}$ and parabolic induced modules. Known:

• g is a Lie algebra: Britten et al. (2015); Lau (2018);

Our first goal was to classify all simple Harish-Chandra $\mathcal{L}\text{-modules}$ in terms of $\mathfrak{g}\text{-modules}$ and parabolic induced modules. Known:

- \mathfrak{g} is a Lie algebra: Britten et al. (2015); Lau (2018);
- V is finite-dimensional: Savage (2014).

Our first goal was to classify all simple Harish-Chandra $\mathcal{L}\text{-modules}$ in terms of $\mathfrak{g}\text{-modules}$ and parabolic induced modules. Known:

- g is a Lie algebra: Britten et al. (2015); Lau (2018);
- V is finite-dimensional: Savage (2014).

Theorem

A simple Harish-Chandra \mathcal{L} -module is either a cuspidal bounded module, or parabolic induced from a simple cuspidal bounded module over a certain subalgebra of \mathcal{L} .

Our first goal was to classify all simple Harish-Chandra $\mathcal{L}\text{-modules}$ in terms of $\mathfrak{g}\text{-modules}$ and parabolic induced modules. Known:

- g is a Lie algebra: Britten et al. (2015); Lau (2018);
- V is finite-dimensional: Savage (2014).

Theorem

A simple Harish-Chandra \mathcal{L} -module is either a cuspidal bounded module, or parabolic induced from a simple cuspidal bounded module over a certain subalgebra of \mathcal{L} .

 ${\cal L}$ admits cuspidal modules if and only if ${\mathfrak g}$ admits cuspidal modules, in which case ${\mathfrak g}_{\overline 0}$ is semisimple.

4/10

Our first goal was to classify all simple Harish-Chandra $\mathcal{L}\text{-modules}$ in terms of $\mathfrak{g}\text{-modules}$ and parabolic induced modules. Known:

- \mathfrak{g} is a Lie algebra: Britten et al. (2015); Lau (2018);
- V is finite-dimensional: Savage (2014).

Theorem

A simple Harish-Chandra \mathcal{L} -module is either a cuspidal bounded module, or parabolic induced from a simple cuspidal bounded module over a certain subalgebra of \mathcal{L} .

 ${\cal L}$ admits cuspidal modules if and only if ${\mathfrak g}$ admits cuspidal modules, in which case ${\mathfrak g}_{\overline 0}$ is semisimple.

Theorem

If $\mathfrak{g}_{\overline{0}}$ is semisimple, then any simple cuspidal bounded L-module is an evaluation module.

Rocha (USP)

• Loop superalgebra: $L(\mathfrak{g}) = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$

3 N 3

- Loop superalgebra: $L(\mathfrak{g}) = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$
- Affine Lie superalgebra: A(𝔅) = L(𝔅) ⊕ ℂc, where the Lie superbracket is defined by

$$[x \otimes t^m + \alpha c, y \otimes t^n + \beta c] = [x, y] \otimes t^{m+n} + n(x, y)\delta_{m, -n}c,$$

with (\cdot, \cdot) being an invariant supersymmetric nondegenerate even bilinear form on $\mathfrak{g}.$

- Loop superalgebra: $L(\mathfrak{g}) = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$
- Affine Lie superalgebra: A(𝔅) = L(𝔅) ⊕ ℂc, where the Lie superbracket is defined by

$$[x \otimes t^m + \alpha c, y \otimes t^n + \beta c] = [x, y] \otimes t^{m+n} + n(x, y)\delta_{m, -n}c,$$

with (\cdot, \cdot) being an invariant supersymmetric nondegenerate even bilinear form on \mathfrak{g} .

 We can consider Harish-Chandra modules over A(g) by assuming that the weight spaces with respect h ⊗ C ⊕ Cc have finite dimension.

- Loop superalgebra: $L(\mathfrak{g}) = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$
- Affine Lie superalgebra: A(𝔅) = L(𝔅) ⊕ ℂc, where the Lie superbracket is defined by

$$[x \otimes t^m + \alpha c, y \otimes t^n + \beta c] = [x, y] \otimes t^{m+n} + n(x, y)\delta_{m, -n}c,$$

with (\cdot, \cdot) being an invariant supersymmetric nondegenerate even bilinear form on \mathfrak{g} .

- We can consider Harish-Chandra modules over A(g) by assuming that the weight spaces with respect h ⊗ C ⊕ Cc have finite dimension.
- Any simple $L(\mathfrak{g})$ -module is a simple $\mathcal{A}(\mathfrak{g})$ -module.

- Loop superalgebra: $L(\mathfrak{g}) = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$
- Affine Lie superalgebra: A(𝔅) = L(𝔅) ⊕ ℂc, where the Lie superbracket is defined by

$$[x \otimes t^m + \alpha c, y \otimes t^n + \beta c] = [x, y] \otimes t^{m+n} + n(x, y)\delta_{m, -n}c,$$

with (\cdot, \cdot) being an invariant supersymmetric nondegenerate even bilinear form on \mathfrak{g} .

- We can consider Harish-Chandra modules over A(g) by assuming that the weight spaces with respect h ⊗ C ⊕ Cc have finite dimension.
- Any simple $L(\mathfrak{g})$ -module is a simple $\mathcal{A}(\mathfrak{g})$ -module. Conversely,

Theorem

If V is a simple Harish-Chandra module over $\mathcal{A}(\mathfrak{g})$, then V is a simple $L(\mathfrak{g})$ -module.

 The affine Kac-Moody Lie superalgebra ĝ = A(g) ⊕ Cd associated to a basic classical Lie superalgebra g is a one-dimensional extension of A(g) by an element d with [d, x ⊗ t^k] = kx ⊗ t^k.

- The affine Kac-Moody Lie superalgebra ĝ = A(g) ⊕ Cd associated to a basic classical Lie superalgebra g is a one-dimensional extension of A(g) by an element d with [d, x ⊗ t^k] = kx ⊗ t^k.
- If V is a weight $L(\mathfrak{g})$ -module, then $L(V) = V \otimes \mathbb{C}[t, t^{-1}]$ is a weight $\widehat{\mathfrak{g}}$ -module, where

$$(x \otimes t^r)(v \otimes t^s) = (x \otimes t^r)v \otimes t^{r+s}, \quad cL(V) = 0, \quad d(v \otimes t^r) = rv \otimes t^r.$$

- The affine Kac-Moody Lie superalgebra ĝ = A(g) ⊕ Cd associated to a basic classical Lie superalgebra g is a one-dimensional extension of A(g) by an element d with [d, x ⊗ t^k] = kx ⊗ t^k.
- If V is a weight $L(\mathfrak{g})$ -module, then $L(V) = V \otimes \mathbb{C}[t, t^{-1}]$ is a weight $\widehat{\mathfrak{g}}$ -module, where

$$(x \otimes t^r)(v \otimes t^s) = (x \otimes t^r)v \otimes t^{r+s}, \quad cL(V) = 0, \quad d(v \otimes t^r) = rv \otimes t^r.$$

 V is a (bounded) Harish-Chandra L(g)-module if and only if L(V) is a (bounded) Harish-Chandra g-module.

6/10

- The affine Kac-Moody Lie superalgebra ĝ = A(g) ⊕ Cd associated to a basic classical Lie superalgebra g is a one-dimensional extension of A(g) by an element d with [d, x ⊗ t^k] = kx ⊗ t^k.
- If V is a weight $L(\mathfrak{g})$ -module, then $L(V) = V \otimes \mathbb{C}[t, t^{-1}]$ is a weight $\widehat{\mathfrak{g}}$ -module, where

$$(x \otimes t^r)(v \otimes t^s) = (x \otimes t^r)v \otimes t^{r+s}, \quad cL(V) = 0, \quad d(v \otimes t^r) = rv \otimes t^r.$$

 V is a (bounded) Harish-Chandra L(g)-module if and only if L(V) is a (bounded) Harish-Chandra g-module. Hence we get a functor

 $\left\{ \begin{array}{c} (\mathsf{Bounded}) \; \mathsf{Harish-Chandra} \\ \mathcal{L}(\mathfrak{g})\text{-modules} \end{array} \right\} \xrightarrow{\mathcal{L}} \left\{ \begin{array}{c} (\mathsf{Bounded}) \; \mathsf{Harish-Chandra} \\ \widehat{\mathfrak{g}}\text{-modules} \end{array} \right\}$

Theorem

Let $\lambda \in \mathfrak{h}^*$, $F(\lambda)$ be the corresponding simple highest weight \mathfrak{g} -module, V_0 be a simple weight \mathfrak{g} -module and $a, b \in \mathbb{C}^{\times}$ with $a \neq b$. Then $V_0 \otimes F(\lambda)$ is a $L(\mathfrak{g})$ -module, where $(x \otimes t^r)v \otimes w = a^r(xv) \otimes w + (-1)^{|x||w|}b^rv \otimes (xw)$. If there is $\lambda_0 \in \text{Supp } V_0$ for which the map

 $\chi(h\otimes t^n)=(a^n\lambda_0(h)+b^n\lambda(h))\,t^n,\quad \chi(d)=0.$

satisfies im $\chi = \mathbb{C}[t^r, t^{-r}]$, then we have an isomorphism of $\widehat{\mathfrak{g}}$ -modules

$$L(V_0 \otimes F(\lambda)) \cong \bigoplus_{i=0}^{r-1} L^i (V_0 \otimes F(\lambda))$$

where each $L^{i}(V_{0} \otimes F(\lambda))$ is a simple $\hat{\mathfrak{g}}$ -module.

Theorem

Let $\lambda \in \mathfrak{h}^*$, $F(\lambda)$ be the corresponding simple highest weight \mathfrak{g} -module, V_0 be a simple weight \mathfrak{g} -module and $a, b \in \mathbb{C}^{\times}$ with $a \neq b$. Then $V_0 \otimes F(\lambda)$ is a $L(\mathfrak{g})$ -module, where $(x \otimes t^r)v \otimes w = a^r(xv) \otimes w + (-1)^{|x||w|}b^rv \otimes (xw)$. If there is $\lambda_0 \in \text{Supp } V_0$ for which the map

 $\chi(h\otimes t^n)=(a^n\lambda_0(h)+b^n\lambda(h))\,t^n,\quad \chi(d)=0.$

satisfies im $\chi = \mathbb{C}[t^r, t^{-r}]$, then we have an isomorphism of $\widehat{\mathfrak{g}}$ -modules

$$L(V_0 \otimes F(\lambda)) \cong \bigoplus_{i=0}^{r-1} L^i (V_0 \otimes F(\lambda))$$

where each $L^{i}(V_{0} \otimes F(\lambda))$ is a simple $\hat{\mathfrak{g}}$ -module.

Remark

In the case of Lie algebras, these are exactly the simple modules that appear in the unpublished work of Dimitrov and Grantcharov (2009).

Rocha (USP)

• If \mathfrak{g} is of type I, then $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$.

3

$$K(S) := U(\widehat{\mathfrak{g}}) \otimes_{U(\widehat{\mathfrak{g}}_0 \oplus \widehat{\mathfrak{g}}_1)} S,$$

where we are assuming that $\hat{\mathfrak{g}}_1 S = 0$.

$$K(S) := U(\widehat{\mathfrak{g}}) \otimes_{U(\widehat{\mathfrak{g}}_0 \oplus \widehat{\mathfrak{g}}_1)} S,$$

where we are assuming that $\widehat{\mathfrak{g}}_1 S = 0$.

• K(S) admits an unique simple quotient.

$$K(S) := U(\widehat{\mathfrak{g}}) \otimes_{U(\widehat{\mathfrak{g}}_0 \oplus \widehat{\mathfrak{g}}_1)} S,$$

where we are assuming that $\widehat{\mathfrak{g}}_1 S = 0$.

- K(S) admits an unique simple quotient.
- This defines the *Kac induction functor*:

$$\{\widehat{\mathfrak{g}}_0 ext{-modules}\} \xrightarrow{K} \{\widehat{\mathfrak{g}} ext{-modules}\}$$

8/10

$$K(S) := U(\widehat{\mathfrak{g}}) \otimes_{U(\widehat{\mathfrak{g}}_0 \oplus \widehat{\mathfrak{g}}_1)} S,$$

where we are assuming that $\widehat{\mathfrak{g}}_1 S = 0$.

- K(S) admits an unique simple quotient.
- This defines the *Kac induction functor*:

$$\{\widehat{\mathfrak{g}}_0 ext{-modules}\} \xrightarrow{\mathsf{K}} \{\widehat{\mathfrak{g}} ext{-modules}\}$$

Theorem

Let \mathfrak{g} be a basic classical Lie superalgebras of type I. Then the Kac induction functor gives a bijection between the sets of isomorphism classes of simple bounded Harish-Chandra $\hat{\mathfrak{g}}$ -modules and simple bounded Harish-Chandra $\hat{\mathfrak{g}}_0$ -modules.

- Britten, D., Lau, M., and Lemire, F. (2015). Weight modules for current algebras. *J. Algebra*, 440:245–263.
- Dimitrov, I. and Grantcharov, D. (2009). Classification of simple weight modules over affine lie algebras.
- Lau, M. (2018). Classification of Harish-Chandra modules for current algebras. *Proc. Amer. Math. Soc.*, 146(3):1015–1029.
- Savage, A. (2014). Equivariant map superalgebras. *Math. Z.*, 277(1-2):373–399.

Thank you!

< ∃⇒

Image: A matched black

æ