CLASSICAL, QUANTUM AND CATEGORICAL (or representations, quantizations and categorifications)

Juan Camilo Arias IME-USP

Workshop on Representation Theory and Applications ICTP - SAIFR São Paulo - Brazil

April 29, 2022

Lie algebras, quantum groups and their representations (classical and quantum)

Consider the Lie algebra

$$\mathfrak{sl}_{2}(\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a + d = 0 \right\}$$
$$= span_{\mathbb{C}} \left\{ E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}$$
where $[H, E] = 2E, [H, F] = -2F$ y $[E, F] = H$.

Consider the Lie algebra

$$\mathfrak{sl}_{2}(\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a + d = 0 \right\}$$
$$= span_{\mathbb{C}} \left\{ E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}$$

where [H, E] = 2E, [H, F] = -2F y [E, F] = H.

Its universal enveloping algebra is

$$U(\mathfrak{sl}_2) = span_{\mathbb{C}}\left\{ E, H, F \right\}$$

where HE - EH = 2E, HF - FH = -2E y EF - FE = H.

The irreducible representations are of the form:

This representations is denoted L(n) and we say that n is its weight.

A quantum group for $\mathfrak{sl}_2(\mathbb{C})$

Let

v a variable.

• $\mathbb{C}(v)$ the field of rational functions with coefficients in \mathbb{C} . $U_v(\mathfrak{sl}_2)$ is the associative algebra with unity over $\mathbb{C}(v)$ generated by elements E, F, K, K^{-1} subject to the relations:

$$KK^{-1} = K^{-1}K = 1$$
$$EF - FE = \frac{K - K^{-1}}{v - v^{-1}}$$
$$KE = v^{2}EK$$
$$KF = v^{-2}FK$$

Representations of $U_{\nu}(\mathfrak{sl}_2)$

When v is generic or takes the value of a complex number which is not a root of unity, the representation theory of $U_v(\mathfrak{sl}_2)$ is completely analogous to the one of $\mathfrak{sl}_2(\mathbb{C})$ The quantum group $\mathbf{U}_q(\mathfrak{sl}_2)$

Consider $q \in \mathbb{C}$ such that $q^{\ell} = 1$. Let $\mathbf{U}_q(\mathfrak{sl}_2)$ be the (Lusztig version) quantum group that we get when we spacialize v to q.

The quantum group $\mathbf{U}_q(\mathfrak{sl}_2)$

Consider $q \in \mathbb{C}$ such that $q^{\ell} = 1$. Let $\mathbf{U}_q(\mathfrak{sl}_2)$ be the (Lusztig version) quantum group that we get when we spacialize v to q.

Here the representation theory becomes interesting. The category of finite dimensional modules over $U_q(\mathfrak{sl}_2)$ is not semisimple

 $\Delta(0), \Delta(1)$ and $\Delta(2)$ are irreducibles. $\Delta(3)$ and $\Delta(4)$ are not!

Application 1: Fusion (quantum and categorical)

Let us consider the category of finite dimensional representations for $\mathbf{U}_q(\mathfrak{sl}_2)$ when q is a root of unity.

Let us consider the category of finite dimensional representations for $\mathbf{U}_q(\mathfrak{sl}_2)$ when q is a root of unity.

This is a non-semisimple category, but if we consider the modules $\Delta(i)$ for $i = 0, 1, \ldots, \ell - 2$ we get a semisimple category. This category is called a fusion category and its Grothendieck ring a fusion ring.

Example: fusion for $U_q(\mathfrak{sl}_2)$, $q^5 = 1$

- Irreducible objects $\Delta(0)$, $\Delta(1)$, $\Delta(2)$, $\Delta(3)$
- ► Tensor products: $\Delta(0) \otimes \Delta(i) \cong \Delta(i)$ para i = 0, 1, 2, 3. $\Delta(1) \otimes \Delta(1) \cong \Delta(2) \otimes \Delta(2) \cong \Delta(0) \oplus \Delta(2)$, $\Delta(1) \otimes \Delta(2) \cong \Delta(1) \oplus \Delta(3)$, $\Delta(3) \otimes \Delta(2) \cong \Delta(1)$.

The construction of the fusion category associated to a quantum group depends on some modules called tilting modules (modules such that it and its dual possess a filtration with quotients given by the modules $\Delta(i)$).

Irreducible modules are tilting.

- Irreducible modules are tilting.
- For each n ∈ N there exists a unique indecomposable tilting module T(n).

- Irreducible modules are tilting.
- For each n ∈ N there exists a unique indecomposable tilting module T(n).
- Every tilting module can be written as a direct sum of indecomposable tilting modules.

- Irreducible modules are tilting.
- For each n ∈ N there exists a unique indecomposable tilting module T(n).
- Every tilting module can be written as a direct sum of indecomposable tilting modules.
- The category of tilting modules is closed under tensor products.

From the above, we can write any tilting module as:

$$T \cong \bigoplus_{0 \le i \le \ell-2} T(i)^{n_i} \oplus \bigoplus_{j \ge \ell-1} T(i)^{n_j}$$

From the above, we can write any tilting module as:

$$T \cong \bigoplus_{0 \le i \le \ell-2} T(i)^{n_i} \oplus \bigoplus_{j \ge \ell-1} T(i)^{n_j}$$

• The T(i) are irreducibles and they form the semisimple part.

From the above, we can write any tilting module as:

$$T \cong \bigoplus_{0 \le i \le \ell-2} T(i)^{n_i} \oplus \bigoplus_{j \ge \ell-1} T(i)^{n_j}$$

• The T(i) are irreducibles and they form the semisimple part.

The T(j) are indecomposables and they form the non-semisimple part. This modules are called negligible tilting modules.

Using the tilting modules we can construct a new category that is semisimple!!

Fusion

Using the tilting modules we can construct a new category that is semisimple!!

 $\mathcal{F} = \textit{Tilting}/\mathcal{N}$

where ${\boldsymbol{\mathcal{N}}}$ denotes the category of negligible tilting modules.

Fusion

Using the tilting modules we can construct a new category that is semisimple!!

$$\mathcal{F} = \mathit{Tilting}/\mathcal{N}$$

where $\ensuremath{\mathcal{N}}$ denotes the category of negligible tilting modules.

 $\ensuremath{\mathcal{F}}$ is semisimple and closed under direct sums, tensor products and duals.

Question: Can we avoid the use of tilting modules?

Question: Can we avoid the use of tilting modules?

Partial solution: Let $D^b(\mathbf{U}_q(\mathfrak{sl}_2))$ the bounded derived category of finite dimensional representations of $\mathbf{U}_q(\mathfrak{sl}_2)$, let $\langle \mathcal{N} \rangle$ the triangulated subcategory of the derived category which contains the negligible tilting modules and is closed under direct summands and tensor products with arbitrary modules. Then:

Question: Can we avoid the use of tilting modules?

Partial solution: Let $D^b(\mathbf{U}_q(\mathfrak{sl}_2))$ the bounded derived category of finite dimensional representations of $\mathbf{U}_q(\mathfrak{sl}_2)$, let $\langle \mathcal{N} \rangle$ the triangulated subcategory of the derived category which contains the negligible tilting modules and is closed under direct summands and tensor products with arbitrary modules. Then:

Theorem, A.

- ▷ ⟨N⟩ is generated by modules of U_q(sl₂) belonging to the singular blocks (just depends on the representation theory of U_q(sl₂)).
- $D^b(\mathbf{U}_q(\mathfrak{sl}_2))/\langle \mathcal{N} \rangle$ categorifies the fusion ring.

Let $\ensuremath{\mathcal{C}}$ a category in which the notion of negligible object has sense.

Let ${\mathcal C}$ a category in which the notion of negligible object has sense. Derived fusion category:

 $D^b(\mathcal{C})/\langle\mathcal{N}_\mathcal{C}
angle$

Let ${\mathcal C}$ a category in which the notion of negligible object has sense. Derived fusion category:

 $D^b(\mathcal{C})/\langle \mathcal{N}_\mathcal{C}
angle$

Derived fusion ring:

 $K_0(D^b(\mathcal{C})/\langle\mathcal{N}_\mathcal{C}
angle)$

Let ${\mathcal C}$ a category in which the notion of negligible object has sense. Derived fusion category:

 $D^b(\mathcal{C})/\langle \mathcal{N}_{\mathcal{C}}
angle$

Derived fusion ring:

 $K_0(D^b(\mathcal{C})/\langle\mathcal{N}_\mathcal{C}
angle)$

Teorema, A.

Using this category we get known results for the fusion category of the small quantum group of \mathfrak{sl}_2 .

The symmetric group and the Hecke algebra (classical and quantum)

s_i² = 1
 s_{i+1}s_is_{i+1} = s_is_{i+1}s_i
 s_is_i = s_is_i, |i − j| > 1

The Hecke algebra $\mathcal{H}_{\nu}(n)$, associated to the symmetric group S_n , is the associative algebra with unit over $\mathbb{Z}[\nu, \nu^{-1}]$ generated by the simbols $\{\delta_i | i = 1, ..., n-1\}$ and subject to the relations

$$\delta_i^2 = (\mathbf{v}^{-1} - \mathbf{v})\delta_i + 1$$

$$\delta_i \delta_{i+1} \delta_i = \delta_{i+1} \delta_i \delta_{i+1}$$

$$\delta_i \delta_j = \delta_j \delta_i \text{ for } |i - j| > 1$$

The Hecke algebra $\mathcal{H}_{\nu}(n)$, associated to the symmetric group S_n , is the associative algebra with unit over $\mathbb{Z}[\nu, \nu^{-1}]$ generated by the simbols $\{\delta_i | i = 1, ..., n-1\}$ and subject to the relations

The Hecke algebra $\mathcal{H}_{\nu}(n)$, associated to the symmetric group S_n , is the associative algebra with unit over $\mathbb{Z}[\nu, \nu^{-1}]$ generated by the simbols $\{\delta_i | i = 1, ..., n-1\}$ and subject to the relations

$$\delta_i^2 = (v^{-1} - v)\delta_i + 1$$

$$\delta_i \delta_{i+1} \delta_i = \delta_{i+1} \delta_i \delta_{i+1}$$

$$\delta_i \delta_j = \delta_j \delta_i \text{ for } |i - j| > 1$$

When v = 1 in $\mathcal{H}_v(n)$ we recover $\mathbb{C}[S_n]$

 $\mathcal{H}_{v}(n)$ has another base called the Kazhdan-Lusztig basis, denoted $\{b_{i}|i=1,\ldots,n\}$. This basis is of great importance in representation theory.

Soergel bimodules (categorical)

Soergel bimodules

Let $R = \mathbb{C}[x_1, \ldots, x_{n-1}]$ such that deg $(x_i) = 2$. For each generator of the symmetric group s_i , $i \in \{1, 2, \ldots, n-1\}$ we define

$$B_i := R \otimes_{R^{s_i}} R(1)$$

Soergel bimodules

Let $R = \mathbb{C}[x_1, \ldots, x_{n-1}]$ such that deg $(x_i) = 2$. For each generator of the symmetric group s_i , $i \in \{1, 2, \ldots, n-1\}$ we define

$$B_i := R \otimes_{R^{s_i}} R(1)$$

A Bott-Samelson bimodule associated to an expression $\underline{s} = (s_{i_1}, \dots, s_{i_r})$ is defined by

$$BS(\underline{s}) = B_{i_1}B_{i_2}\cdots B_{i_r}$$

Soergel bimodules

Let $R = \mathbb{C}[x_1, \ldots, x_{n-1}]$ such that deg $(x_i) = 2$. For each generator of the symmetric group s_i , $i \in \{1, 2, \ldots, n-1\}$ we define

$$B_i := R \otimes_{R^{s_i}} R(1)$$

A Bott-Samelson bimodule associated to an expression $\underline{s} = (s_{i_1}, \dots, s_{i_r})$ is defined by

$$BS(\underline{s}) = B_{i_1}B_{i_2}\cdots B_{i_r}$$

A Soergel bimodule is a direct summand or a finite sum of graded shifts of Bott-Samelson bimodules. We denote the category of Soergel bimodules by SBim

The Soergel categorification theorem

What is the relation of the above? The answer is given by:

The Soergel categorification theorem

What is the relation of the above? The answer is given by:

Theorem (Soergel, Elias-Williamson)

 $\mathcal{H}_{\nu}(n)$ is isomorphic to $K_{0}^{\oplus}(\mathbb{S}Bim)$ as $\mathbb{Z}[\nu, \nu^{-1}]$ -algebras. The isomorphisms is given by $b_{i} \mapsto B_{i}$.

2-Kac-Moody algebra and 2-representations (categorical)

2-Kac-Moody algebra

The 2-Kac-Moody algebra, $\mathfrak{A}(\mathfrak{sl}_2)$ is the additive 2-category defined by generators and relations as follows:

2-Kac-Moody algebra

The 2-Kac-Moody algebra, $\mathfrak{A}(\mathfrak{sl}_2)$ is the additive 2-category defined by generators and relations as follows:

- Objects: $n \in \mathbb{Z}$
- Generating 1-morphisms: E_n: n → n + 2 and F_n: n → n − 2 for each n ∈ Z.
- Generating 2-morphisms: $x : E \to E$, $\tau : E^2 \to E^2$, $\varepsilon : EF \to 1$ and $\eta : 1 \to FE$

The 2-morphisms are subject to the relations:

•
$$x1_E \circ \tau - \tau \circ 1_E x = 1_{E^2}; \ \tau \circ x1_E - 1_e x \circ \tau = 1_{E^2}$$

$$\blacktriangleright \ \varepsilon 1_{\mathsf{E}} \circ 1_{\mathsf{E}} \eta = 1_{\mathsf{E}}; \ 1_{\mathsf{F}} \varepsilon \circ \eta 1_{\mathsf{F}} = 1_{\mathsf{F}}$$

Moreover, the following are isomorphisms

$$(n \ge 0)EF \to FE \oplus 1^{\oplus n}; \qquad (n < 0)EF \oplus 1^{\oplus -n} \to FE$$

If we consider graduations in the above category, in such a way that the morphisms x, τ , ε y η have degree 2, -2, 1 - n and n + 1 respectively, it is possible to prove that:

Teorema (Rouquier, Khovanov - Lauda) $K_0(\mathfrak{A}(\mathfrak{sl}_2))$ is isomorphic to $U_v(\mathfrak{sl}_2)$ as $\mathbb{Z}[v, v^{-1}]$ -algebras.

2-representations

A 2-representation of $\mathfrak{A}(\mathfrak{sl}_2)$ in K-linear categories consists of:

2-representations

- A 2-representation of $\mathfrak{A}(\mathfrak{sl}_2)$ in K-linear categories consists of:
 - For each $n \in \mathbb{Z}$ a *K*-linear category \mathcal{V}_n .
 - For each n∈ Z a K-linear functor F : V_n → V_{n-2} which admits a right adjoint E : V_n → V_{n+2}.
 - Morphisms x ∈ End(F) and τ ∈ End(F²) which satisfy the same relations as in 𝔅(𝔅l₂).
 - ► Isomorphisms $(n \ge 0)EF \rightarrow FE \oplus 1^{\oplus n};$ $(n < 0)EF \oplus 1^{\oplus -n} \rightarrow FE$

 $\mathcal{L}(0)$:

K - mod

 $\mathcal{L}(0): \qquad \qquad K - mod$ $\mathcal{L}(1): \qquad \qquad \qquad K - mod \xrightarrow[F=1]{} K - mod$

$$K - mod \xrightarrow[F=Res]{E=Ind} \frac{K[y]}{y^2} - mod \xrightarrow[F=Ind]{E=Res} K - mod$$

 $\mathcal{L}(0)$: K - mod $\mathcal{L}(1)$: $K - mod \xrightarrow{E=1}_{F=1} K - mod$ $\mathcal{L}(2)$: $K - mod \xrightarrow{E=lnd}_{F=Res} \frac{K[y]}{y^2} - mod \xrightarrow{E=Res}_{F=lnd} K - mod$

 $\mathcal{L}(n)$ categorify the irreducible representations of \mathfrak{sl}_2 .

Application 2: Schur-Weyl duality (classical, quantum and categorical)

Classical: Let V be the standard representation of GL_n . S_n acts on $V^{\otimes n}$. The double centralizing form of the Schur-Weyl duality claims that:

$$\mathbb{C}[S_n] \cong \operatorname{End}_{GL_n}(V^{\otimes n})$$

Classical: Let V be the standard representation of GL_n . S_n acts on $V^{\otimes n}$. The double centralizing form of the Schur-Weyl duality claims that:

$$\mathbb{C}[S_n] \cong \operatorname{End}_{GL_n}(V^{\otimes n})$$

Quantum: Let V_v the standard representation of $U_v(\mathfrak{sl}_n)$. $\mathcal{H}_v(n)$ acts on $V_v^{\otimes n}$. The quantum version of the double centralizing form of the Schur-Weyl duality claims that:

$$\mathcal{H}_{v}(n) \cong \operatorname{End}_{U_{v}(\mathfrak{sl}_{n})}(V_{v}^{\otimes n})$$

Classical: Let V be the standard representation of GL_n . S_n acts on $V^{\otimes n}$. The double centralizing form of the Schur-Weyl duality claims that:

$$\mathbb{C}[S_n] \cong \operatorname{End}_{GL_n}(V^{\otimes n})$$

Quantum: Let V_v the standard representation of $U_v(\mathfrak{sl}_n)$. $\mathcal{H}_v(n)$ acts on $V_v^{\otimes n}$. The quantum version of the double centralizing form of the Schur-Weyl duality claims that:

$$\mathcal{H}_{v}(n) \cong \operatorname{End}_{U_{v}(\mathfrak{sl}_{n})}(V_{v}^{\otimes n})$$

Categorical:

Classical: Let V be the standard representation of GL_n . S_n acts on $V^{\otimes n}$. The double centralizing form of the Schur-Weyl duality claims that:

$$\mathbb{C}[S_n] \cong \operatorname{End}_{GL_n}(V^{\otimes n})$$

Quantum: Let V_v the standard representation of $U_v(\mathfrak{sl}_n)$. $\mathcal{H}_v(n)$ acts on $V_v^{\otimes n}$. The quantum version of the double centralizing form of the Schur-Weyl duality claims that:

$$\mathcal{H}_{v}(n) \cong \operatorname{End}_{U_{v}(\mathfrak{sl}_{n})}(V_{v}^{\otimes n})$$

Categorical: Let...

Classical: Let V be the standard representation of GL_n . S_n acts on $V^{\otimes n}$. The double centralizing form of the Schur-Weyl duality claims that:

$$\mathbb{C}[S_n] \cong \operatorname{End}_{GL_n}(V^{\otimes n})$$

Quantum: Let V_v the standard representation of $U_v(\mathfrak{sl}_n)$. $\mathcal{H}_v(n)$ acts on $V_v^{\otimes n}$. The quantum version of the double centralizing form of the Schur-Weyl duality claims that:

$$\mathcal{H}_{v}(n) \cong \operatorname{End}_{U_{v}(\mathfrak{sl}_{n})}(V_{v}^{\otimes n})$$

Categorical: Let... in progress...

Mixing the above objects

Mixing the above objects

$$\mathbb{C}[S_n] \longrightarrow \mathcal{H}_{v}(n) \longrightarrow \mathbb{S}Bim$$

Mixing the above objects

$$\mathbb{C}[S_n] \longrightarrow \mathcal{H}_v(n) \longrightarrow \mathbb{S}Bim$$

$$U(\mathfrak{sl}_2) \longrightarrow U_v(\mathfrak{sl}_2) \longrightarrow \mathfrak{A}(\mathfrak{sl}_2)$$

Mixing the above objects

$$\mathbb{C}[S_n] \longrightarrow \mathcal{H}_{v}(n) \longrightarrow \mathbb{S}Bim$$

$$U(\mathfrak{sl}_2) \longrightarrow U_v(\mathfrak{sl}_2) \longrightarrow \mathfrak{A}(\mathfrak{sl}_2)$$

Then, we conjecture:

$$\mathbb{S}Bim \cong \operatorname{End}_{\mathfrak{A}(\mathfrak{sl}_n)}(\mathcal{V}^{\otimes n})$$

this is a work in progress with N. Libedinsky.

Thank you!