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Lie algebras, quantum groups and their representations (classical
and quantum)



Consider the Lie algebra

sl2(C) =
{(

a b
c d

)
| a + d = 0

}

= spanC

{
E =

(
0 1
0 0

)
,H =

(
1 0
0 −1

)
,F =

(
0 0
1 0

)}

where [H,E ] = 2E , [H,F ] = −2F y [E ,F ] = H.

Its universal enveloping algebra is

U(sl2) = spanC

{
E ,H,F

}
where HE − EH = 2E , HF − FH = −2E y EF − FE = H.
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The irreducible representations are of the form:

Y n

−n

�� 1 // XY n−1

−n+2

�� 2 //
n

oo X2Y n−2

−n+4

�� 3 //
n−1
oo . . .

n−2 //
n−2
oo Xn−2Y 2

n−4

�� n−1 //
3

oo Xn−1Y 1

n−2

�� n //
2

oo Xn

n

��

1
oo

This representations is denoted L(n) and we say that n is its
weight.



A quantum group for sl2(C)

Let
I v a variable.
I C(v) the field of rational functions with coefficients in C.

Uv (sl2) is the associative algebra with unity over C(v) generated
by elements E ,F ,K ,K−1 subject to the relations:

KK−1 = K−1K = 1

EF − FE = K − K−1

v − v−1

KE = v2EK

KF = v−2FK



Representations of Uv (sl2)

When v is generic or takes the value of a complex number which is
not a root of unity, the representation theory of Uv (sl2) is
completely analogous to the one of sl2(C)



The quantum group Uq(sl2)

Consider q ∈ C such that q` = 1. Let Uq(sl2) be the (Lusztig
version) quantum group that we get when we spacialize v to q.

Here the representation theory becomes interesting. The category
of finite dimensional modules over Uq(sl2) is not semisimple
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Examples of representations when q3 = 1

∆(0) : •
��

∆(1) : • //��
•oo
��

∆(2) : • //��
• //oo
��

•oo
��

∆(3) : • 66//��
• //

0
oo

��
•

0 //oo
��

•oo
��

∆(4) : • //��
•oo //��

•
0

oo
�� 0 // • //oo

��
•oo
��

aa

∆(0),∆(1) and ∆(2) are irreducibles. ∆(3) and ∆(4) are not!
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Application 1: Fusion (quantum and categorical)



Let us consider the category of finite dimensional representations
for Uq(sl2) when q is a root of unity.

This is a non-semisimple category, but if we consider the modules
∆(i) for i = 0, 1, . . . , `− 2 we get a semisimple category. This
category is called a fusion category and its Grothendieck ring a
fusion ring.
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Example: fusion for Uq(sl2), q5 = 1

I Irreducible objects ∆(0), ∆(1), ∆(2), ∆(3)
I Tensor products: ∆(0)⊗∆(i) ∼= ∆(i) para i = 0, 1, 2, 3.

∆(1)⊗∆(1) ∼= ∆(2)⊗∆(2) ∼= ∆(0)⊕∆(2),
∆(1)⊗∆(2) ∼= ∆(1)⊕∆(3), ∆(3)⊗∆(2) ∼= ∆(1).



Construction of the fusion category: Tilting modules

The construction of the fusion category associated to a quantum
group depends on some modules called tilting modules (modules
such that it and its dual possess a filtration with quotients given by
the modules ∆(i)).

I Irreducible modules are tilting.
I For each n ∈ N there exists a unique indecomposable tilting

module T (n).
I Every tilting module can be written as a direct sum of

indecomposable tilting modules.
I The category of tilting modules is closed under tensor

products.
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Construction of the fusion category: Tilting modules

From the above, we can write any tilting module as:

T ∼=
⊕

0≤i≤`−2
T (i)ni ⊕

⊕
j≥`−1

T (i)nj

I The T (i) are irreducibles and they form the semisimple part.
I The T (j) are indecomposables and they form the

non-semisimple part. This modules are called negligible tilting
modules.
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Fusion

Using the tilting modules we can construct a new category that is
semisimple!!

F = Tilting/N

where N denotes the category of negligible tilting modules.

F is semisimple and closed under direct sums, tensor products and
duals.
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Question: Can we avoid the use of tilting modules?

Partial solution: Let Db(Uq(sl2)) the bounded derived category of
finite dimensional representations of Uq(sl2), let 〈N〉 the
triangulated subcategory of the derived category which contains
the negligible tilting modules and is closed under direct summands
and tensor products with arbitrary modules. Then:

Theorem, A.
I 〈N〉 is generated by modules of Uq(sl2) belonging to the

singular blocks (just depends on the representation theory of
Uq(sl2)).

I Db(Uq(sl2))/〈N〉 categorifies the fusion ring.
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One more generalization

Let C a category in which the notion of negligible object has sense.

Derived fusion category:

Db(C)/〈NC〉

Derived fusion ring:
K0(Db(C)/〈NC〉)

Teorema, A.
Using this category we get known results for the fusion category of
the small quantum group of sl2.
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The symmetric group and the Hecke algebra (classical and
quantum)



Recall that the symmetric group Sn can be presented by generators
{s1, . . . , sn−1} subject to the relations

I s2
i = 1

I si+1sisi+1 = sisi+1si
I sisj = sjsi , |i − j | > 1

The Hecke algebra Hv (n), associated to the symmetric group Sn,
is the associative algebra with unit over Z[v , v−1] generated by the
simbols {δi |i = 1, . . . , n − 1} and subject to the relations

I δ2
i = (v−1 − v)δi + 1

I δiδi+1δi = δi+1δiδi+1
I δiδj = δjδi for |i − j | > 1

When v = 1 in Hv (n) we recover C[Sn]

Hv (n) has another base called the Kazhdan-Lusztig basis, denoted
{bi |i = 1, . . . , n}. This basis is of great importance in
representation theory.
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Soergel bimodules (categorical)



Soergel bimodules

Let R = C[x1, . . . , xn−1] such that deg(xi ) = 2. For each generator
of the symmetric group si , i ∈ {1, 2, . . . , n − 1} we define

Bi := R ⊗Rsi R(1)

A Bott-Samelson bimodule associated to an expression
s = (si1 , . . . , sir ) is defined by

BS(s) = Bi1Bi2 · · ·Bir

A Soergel bimodule is a direct summand or a finite sum of graded
shifts of Bott-Samelson bimodules. We denote the category of
Soergel bimodules by SBim
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The Soergel categorification theorem

What is the relation of the above? The answer is given by:

Theorem (Soergel, Elias-Williamson)
Hv (n) is isomorphic to K⊕0 (SBim) as Z[v , v−1]-algebras. The
isomorphisms is given by bi 7→ Bi .
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2-Kac-Moody algebra and 2-representations (categorical)



2-Kac-Moody algebra
The 2-Kac-Moody algebra, A(sl2) is the additive 2-category
defined by generators and relations as follows:

I Objects: n ∈ Z
I Generating 1-morphisms: En : n→ n + 2 and Fn : n→ n − 2

for each n ∈ Z.
I Generating 2-morphisms: x : E → E , τ : E 2 → E 2,
ε : EF → 1 and η : 1→ FE

The 2-morphisms are subject to the relations:
I τ2 = 0; τ1E ◦ 1Eτ ◦ τ1E = 1Eτ ◦ τ1E ◦ 1Eτ

I x1E ◦ τ − τ ◦ 1E x = 1E2 ; τ ◦ x1E − 1ex ◦ τ = 1E2

I ε1E ◦ 1Eη = 1E ; 1F ε ◦ η1F = 1F

Moreover, the following are isomorphisms

(n ≥ 0)EF → FE ⊕ 1⊕n; (n < 0)EF ⊕ 1⊕−n → FE
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If we consider graduations in the above category, in such a way
that the morphisms x , τ , ε y η have degree 2,−2, 1− n and n + 1
respectively, it is possible to prove that:

Teorema (Rouquier, Khovanov - Lauda)
K0(A(sl2)) is isomorphic to Uv (sl2) as Z[v , v−1]-algebras.



2-representations

A 2-representation of A(sl2) in K -linear categories consists of:

I For each n ∈ Z a K -linear category Vn.
I For each n ∈ Z a K -linear functor F : Vn → Vn−2 which

admits a right adjoint E : Vn → Vn+2.
I Morphisms x ∈ End(F ) and τ ∈ End(F 2) which satisfy the

same relations as in A(sl2).
I Isomorphisms

(n ≥ 0)EF → FE ⊕ 1⊕n; (n < 0)EF ⊕ 1⊕−n → FE
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Examples:

L(0):
K −mod

L(1):

K −mod
E=1 // K −mod
F=1
oo

L(2):

K −mod
E=Ind// K [y ]

y2 −mod
F=Res
oo

E=Res // K −mod
F=Ind
oo

L(n) categorify the irreducible representations of sl2.
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Application 2: Schur-Weyl duality (classical, quantum and
categorical)



Schur-Weyl duality

Classical: Let V be the standard representation of GLn. Sn acts on
V⊗n. The double centralizing form of the Schur-Weyl duality
claims that:

C[Sn] ∼= EndGLn (V⊗n)

Quantum: Let Vv the standard representation of Uv (sln). Hv (n)
acts on V⊗n

v . The quantum version of the double centralizing form
of the Schur-Weyl duality claims that:

Hv (n) ∼= EndUv (sln)(V⊗n
v )

Categorical: Let... in progress...
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