Representations of the Lie superalgebra $W(\infty)$

Lucas Calixto

Joint with Crystal Hoyt

April 27, 2022

Workshop on Representation Theory and Applications

The Lie algebra $\mathfrak{gl}(\infty)$

 $I := \{1, 2, 3, \ldots\}$: index set

 $V,\,V_*$: countable-dim. v.s. with bases $\{\xi_i\}_{i\in I},\,\{\partial_i\}_{i\in I}$

 $\langle \cdot, \cdot \rangle : V \otimes V_* \to \mathbb{C}$ defined by $\langle \xi_i, \partial_j \rangle = \delta_{i,j}$ for all $i, j \in I$.

Definition

 $\mathfrak{gl}(\infty) := V \otimes V_*$ with bracket (extended linearly):

$$[\xi_i \otimes \partial_j, \xi_k \otimes \partial_\ell] = \langle \xi_k, \partial_j \rangle \xi_i \otimes \partial_\ell - \langle \xi_i, \partial_\ell \rangle \xi_k \otimes \partial_j.$$

 $\mathfrak{sl}(\infty):=\mathsf{Ker}\langle\cdot,\cdot\rangle$

 $\mathfrak{gl}(\infty)\cong$ infinite matrices $\left(a_{i,j}
ight)_{i,j\in I}$ with finitely many $a_{i,j}
eq 0$

$$\xi_i \otimes \partial_i^* \leftrightarrow E_{i,j}$$

 $\mathfrak{gl}(\infty)\cong \varinjlim \mathfrak{gl}(n)$ where $\mathfrak{gl}(n)\hookrightarrow \mathfrak{gl}(n+1)$ satisfies $E_{i,j}\to E_{i,j}$

$\mathfrak{gl}(\infty)$ -modules

 V, V_* : defining representations of $\mathfrak{gl}(\infty)$, $\mathfrak{sl}(\infty)$

We have Schur-Weyl duality:

Theorem (Penkov, Styrkas)

We have an isomorphism of $\mathfrak{gl}(\infty) \times (S_p \times S_q)$ -modules:

$$V^{\otimes
ho} \otimes V_*^{\otimes q} \cong igoplus_{|\lambda|=
ho, |\mu|=q} (\mathbb{S}_{\lambda}(V) \otimes \mathbb{S}_{\mu}(V_*)) \otimes (Y_{\lambda} \otimes Y_{\mu}),$$

where

- $|\lambda|$ is the size of the Young diagram λ ,
- \blacksquare \mathbb{S}_{λ} is the Schur functor corresponding to λ ,
- \blacksquare Y_{λ} and Y_{μ} are irreducible S_p and S_q -modules.

$$\widetilde{V}_{\lambda,\mu}:=\mathbb{S}_{\boldsymbol{\lambda}}(V)\otimes\mathbb{S}_{\boldsymbol{\mu}}(V_*)$$
 is an indecomposable module.

Simple $\mathfrak{gl}(\infty)$ -modules

The *socle filtration* of M is defined by $soc^0 M := soc M$ and

$$\operatorname{soc}^{i} M := p_{i}^{-1}(\operatorname{soc}(M/(\operatorname{soc}^{i-1} M))),$$

where $p_i: M \to M/(soc^{i-1} M)$ is the natural projection.

Theorem (Penkov, Styrkas)

The socle filtration of $\widetilde{V}^{\lambda,\mu}=(\mathbb{S}_{\boldsymbol{\lambda}}(V)\otimes\mathbb{S}_{\boldsymbol{\mu}}(V_*))$ has layers

$$\mathsf{soc}^k(\,\widetilde{V}_{\lambda,\mu})/\overline{\mathsf{soc}}^{k-1}(\,\widetilde{V}_{\lambda,\mu}) \cong \bigoplus_{\lambda',\mu',|\gamma|=k} N^\lambda_{\lambda',\gamma} N^\mu_{\mu',\gamma} \, V_{\lambda',\mu'}$$

where $N_{\lambda',\gamma}^{\lambda}$ are the Littlewood-Richardson coefficients.

The socle of $\widetilde{V}_{\lambda,\mu}$ is simple and denoted by $V_{\lambda,\mu}$.

Simple as highest weight modules

Let's fix

■ $\mathfrak{h}_{\mathfrak{gl}} \subset \mathfrak{gl}(\infty)$ Cartan subalgebra of diagonal matrices

$$\mathfrak{gl}(\infty)=\mathfrak{h}_{\mathfrak{gl}}\oplus\bigoplus_{i
eq j}\mathfrak{gl}(\infty)_{arepsilon_i-arepsilon_j}$$

 \blacksquare \prec : 1 \prec 3 \prec 5 \prec \cdots \prec 6 \prec 4 \prec 2 linear ordering on /

$$\Delta(\prec) := \{\varepsilon_i - \varepsilon_j \mid i \prec j\}$$

lacksquare $\mathfrak{b}(\prec)^0=\mathfrak{h}_{\mathfrak{gl}}\oplus\bigoplus_{lpha\in\Delta(\prec)}\mathfrak{gl}(\infty)_lpha$: Borel subalgebra of $\mathfrak{gl}(\infty)$

V, V_* are highest weight $\mathfrak{gl}(\infty)$ -modules w.r.t. $\mathfrak{b}(\prec)^0$ with highest weight ε_1 , $-\varepsilon_2$ (respectively).

 $V_{\lambda,\mu}$ is a highest weight $\mathfrak{gl}(\infty)$ -module w.r.t. $\mathfrak{b}(\prec)^0$ with h.w.

$$\sum_{i \in \mathbb{Z}_{>0}} \lambda_i \varepsilon_{2i-1} - \sum_{j \in \mathbb{Z}_{>0}} \mu_j \varepsilon_{2j}$$

The category $\mathbb{T}_{\mathfrak{gl}(\infty)}$

M is *integrable* if for all $x \in \mathfrak{gl}(\infty)$, $m \in M$,

$$\dim \operatorname{span}_{\mathbb{C}}\{x^i m \mid i \in I\} < \infty.$$

M satisfies the *large annihilator condition (l.a.c.)* if for each $m \in M$, $\exists n >> 0$,

$$\langle \xi_i \partial_j = E_{i,j} \mid j, i \geq n \rangle \subset Ann(m).$$

Definition

The category $\mathbb{T}_{\mathfrak{gl}(\infty)}$ is the full subcategory of $\mathfrak{gl}(\infty)$ -mod consisting of modules M which satisfy:

- 1 M has finite length;
- M is integrable;
- 3 M satisfies the l.a.c.

 $\mathbb{T}_{\mathfrak{sl}(\infty)}$ is defined similarly.

Some properties of $\mathbb{T}_{\mathfrak{sl}(\infty)}$

[Dan-Cohen, Penkov, Serganova]

- $\blacksquare \ \mathbb{T}_{\mathfrak{sl}(\infty)}$ is an abelian symmetric monoidal category;
- lacksquare $\mathbb{T}_{\mathfrak{sl}(\infty)}$ consists of tensor modules: subquotients of

$$igoplus_{i}^{ ext{finite}} V^{\otimes p_{i}} \otimes V_{*}^{\otimes q_{i}};$$

- $V^{\otimes p} \otimes V_*^{\otimes q}$ is injective in $\mathbb{T}_{\mathfrak{sl}(\infty)}$;
- each indecomposable injective object of $\mathbb{T}_{\mathfrak{sl}(\infty)}$ is isomorphic to some $\widetilde{V}_{\lambda,\mu} := \mathbb{S}_{\lambda}(V) \otimes \mathbb{S}_{\mu}(V_*)$;
- $M \in \mathbb{T}_{\mathfrak{sl}(\infty)}$ is an $\mathfrak{h}_{\mathfrak{sl}}$ -weight module with integral weights

Equivalence of $\mathbb{T}_{\mathfrak{gl}(\infty)}$ and $\mathbb{T}_{\mathfrak{sl}(\infty)}$

The restriction functor

$$\mathsf{R}_{\mathfrak{sl}}:\mathbb{T}_{\mathfrak{gl}(\infty)}\to\mathbb{T}_{\mathfrak{sl}(\infty)}$$

defined by restricting to $\mathfrak{sl}(\infty)$ is well-defined.

If $M \in \mathbb{T}_{\mathfrak{gl}(\infty)}$, then M is an $\mathfrak{h}_{\mathfrak{gl}}$ -weight module.

 $\mu, \lambda \in \operatorname{Supp} M$ are equal if and only if $\mu|_{\mathfrak{h}_{\mathfrak{sl}}} = \lambda|_{\mathfrak{h}_{\mathfrak{sl}}}$.

Any object in $\mathbb{T}_{\mathfrak{sl}(\infty)}$ can be extended in a unique way to an object of $\mathbb{T}_{\mathfrak{gl}(\infty)}$

The categories $\mathbb{T}_{\mathfrak{gl}(\infty)}$ and $\mathbb{T}_{\mathfrak{sl}(\infty)}$ are equivalent.

The categories $\widetilde{\mathbb{T}}_{\mathfrak{gl}(\infty)}$ and $\widetilde{\mathbb{T}}_{\mathfrak{sl}(\infty)}$

 $\widetilde{\mathbb{T}}_{\mathfrak{gl}(\infty)}$: Grothendieck envelope of $\mathbb{T}_{\mathfrak{gl}(\infty)}$ = full subcat of $\mathfrak{gl}(\infty)$ -mod, objects are arbitrary sums of objects in $\mathbb{T}_{\mathfrak{gl}(\infty)}$.

 $\widetilde{\mathbb{T}}_{\mathfrak{sl}(\infty)}$: Grothendieck envelope of $\mathbb{T}_{\mathfrak{sl}(\infty)}.$

 $\widetilde{\mathbb{T}}_{\mathfrak{gl}(\infty)}$ and $\widetilde{\mathbb{T}}_{\mathfrak{sl}(\infty)}$ are equivalent.

We have a description of $\widetilde{\mathbb{T}}_{\mathfrak{gl}(\infty)}$

Proposition (C. Hoyt)

The category $\widetilde{\mathbb{T}}_{\mathfrak{gl}(\infty)}$ is the full subcategory of $\mathfrak{gl}(\infty)$ -mod consisting of modules M which satisfy:

- 1 M is an η_{αι}-weight module;
- M is integrable;
- 3 M satisfies the l.a.c.

The Lie superalgebra W(n)

Definition $(\Lambda(n))$

The Grassmann algebra $\Lambda(n)$ is the free commutative (unital) superalgebra with n odd generators ξ_1, \ldots, ξ_n .

Definition (W(n))

Let W(n) be the Lie superalgebra of super derivations of $\Lambda(n)$.

W(n) appears in Kac's list of simple f.d. Lie superalgebras.

Let ∂_i be the derivation defined by $\partial_i(\xi_j) = \delta_{ij}$. Then

$$W(n) = \operatorname{span}\{\xi_{i_1} \cdots \xi_{i_k} \partial_j \mid i, j \in \mathbb{Z}_n, \ k \ge 0, \ i_1 < \cdots < i_k\}$$

Setting deg $\xi_i = 1$, deg $\partial_i = -1$ yields a \mathbb{Z} -grading

$$W(n) = \bigoplus_{k=-1}^{n-1} W(n)^k$$
, where $W(n)^0 \cong \mathfrak{gl}(n)$.

The Lie superalgebra $W(\infty)$

Definition

Consider $W(n) \hookrightarrow W(n+1)$ where $p(\xi)\partial_j \to p(\xi)\partial_j$, and let $\mathfrak{g} := W(\infty) = \lim_{n \to \infty} W(n).$

- g is a locally finite Lie superalgebra.
- $\blacksquare \mathfrak{g}$ is locally simple \Rightarrow simple.
- $\blacksquare \mathfrak{g} =_{v.s.} \Lambda(V) \otimes V_*$, where $\Lambda(V) = \Lambda[\xi_i \mid i \in I]$.

$$\{\xi_{i_1} \cdots \xi_{i_k} \partial_i \mid i, j \in I, \ k \ge 0, \ i_1 < \cdots < i_k\}$$
 is a basis for $W(\infty)$.

\mathbb{Z} -grading of $W(\infty)$

Setting deg $\xi_i = 1$, deg $\partial_i = -1$ yields a \mathbb{Z} -grading of \mathfrak{g}

$$\mathfrak{g}=\bigoplus_{k\geq -1}\mathfrak{g}^k.$$

We identify $\mathfrak{g}^0 = \mathfrak{gl}(\infty)$ via $\xi_i \partial_j \leftrightarrow E_{i,j}$. Then

$$\mathfrak{h} = \operatorname{span}\{\xi_i \partial_i \mid i \in I\}$$

is a Cartan subalgebra for $\mathfrak g$ and $\mathfrak h=\mathfrak h_{\mathfrak g\mathfrak l}.$

As \mathfrak{g}^0 -modules, we have $\mathfrak{g}^k \cong \Lambda^{k+1}(V) \otimes V_*$.

l.a.c. for $W(\infty)$ modules

For each $n \in \mathbb{Z}_{>0}$, let $\mathfrak{t}_n := \langle \partial_j, \ \xi_{i_1} \cdots \xi_{i_k} \partial_j \ | \ j, i_t \geq n \rangle$.

Definition

Let $\mathfrak{s} \subset \mathfrak{g}$ be a subalgebra. We say that a \mathfrak{g} -module M satisfies the *large annihilator condition* (*l.a.c*) *for* \mathfrak{s} if: for each $m \in M$,

$$(\mathfrak{t}_n \cap \mathfrak{s}) \subset \mathsf{Ann}_{\mathfrak{g}}(m) \qquad n >> 0.$$

For a \mathfrak{g} -module M, let $M^{\mathfrak{t}_n} = \{ m \in M \mid \mathfrak{t}_n \cdot m = 0 \}$.

Remark

M satisfies the l.a.c. for \mathfrak{g} if and only if $M = \bigcup_{i>0} M^{\mathfrak{t}_n}$.

The categories \mathbb{T}_W , \mathbb{T}_W^{\geq} , \mathbb{T}_W^{\leq}

Set

$$\mathfrak{g}^{\geq} := \bigoplus_{k>0} \mathfrak{g}^k, \qquad \mathfrak{g}^{\leq} := \mathfrak{g}^{-1} \oplus \mathfrak{g}^0.$$

Definition

Let $\widetilde{\mathbb{T}}_W$ (respectively, $\widetilde{\mathbb{T}}_W^{\geq}$, $\widetilde{\mathbb{T}}_W^{\leq}$) be the full subcategory of \mathfrak{g} -mod consisting of modules M which satisfy:

- 1 *M* has a \mathbb{Z} -grading $M = \bigoplus_{k \in \mathbb{Z}} M^k$;
- M is an η-weight module;
- **3** M is integrable over \mathfrak{g}^0 ;
- 4 *M* satisfies the l.a.c. for \mathfrak{g} . (respectively, for \mathfrak{g}^{\geq} , \mathfrak{g}^{\leq})

Let \mathbb{T}_W be the full subcategory of $\widetilde{\mathbb{T}}_W$ consisting of finite-length \mathfrak{g} -modules. Similarly, define \mathbb{T}_W^{\geq} , \mathbb{T}_W^{\leq} .

Properties of \mathbb{T}_W and \mathbb{T}_W^{\leq}

- lacksquare \mathbb{T}_W and $\widetilde{\mathbb{T}}_W$ are abelian symmetric monoidal categories.
- lacksquare \mathbb{T}_W is a subcategory of \mathbb{T}_W^{\geq} and \mathbb{T}_W^{\leq} .
- \mathbb{T}_W is precisely the full subcategory of \mathfrak{g} -mod whose objects are in both \mathbb{T}_W^{\geq} and \mathbb{T}_W^{\leq} .

Lemma

If
$$M \in \widetilde{\mathbb{T}}_W$$
, $\widetilde{\mathbb{T}}_W^{\geq}$, $\widetilde{\mathbb{T}}_W^{\leq}$, then $M|_{\mathfrak{g}^0} \in \widetilde{\mathbb{T}}_{\mathfrak{gl}(\infty)}$.

Induced modules

Definition

Let X be a module over $\mathfrak{g}^0 = \mathfrak{gl}(\infty)$, and extend trivially to \mathfrak{g}^{\geq} (resp., \mathfrak{g}^{\leq}) action. Define the induced \mathfrak{g} -modules

$$K^+(X) := \operatorname{Ind}_{\mathfrak{g}^{\geq}}^{\mathfrak{g}}(X) = \operatorname{f U}(\mathfrak{g}) \otimes_{\operatorname{f U}(\mathfrak{g}^{\geq})} X \quad {\sf small}$$
 $K^-(X) := \operatorname{Ind}_{\mathfrak{g}^{\leq}}^{\mathfrak{g}}(X) = \operatorname{f U}(\mathfrak{g}) \otimes_{\operatorname{f U}(\mathfrak{g}^{\leq})} X \quad {\sf big}$

If X is simple, $L^{\pm}(X)$ denotes the unique simple quotient.

Let
$$g_n = W(n)$$
. Then $g_n^0 = gl(n)$.

For a \mathfrak{g}_n^0 -module X_n , the \mathfrak{g}_n -modules $K_n^{\pm}(X_n)$ and $L_n^{\pm}(X_n)$ are defined analogously.

Properties of $K^{\pm}(-)$

 $K^{\pm}(-)$ is an exact functor.

Proposition

For each n, let $f_n: X_n \hookrightarrow X_{n+1}$ be an embedding of \mathfrak{g}_n^0 -modules, and consider the natural embedding $f_n: K^{\pm}(X_n) \hookrightarrow K^{\pm}(X_{n+1})$ of \mathfrak{g}_n -modules, where $f_n(uv) = uf_n(v)$ for every $u \in \mathbf{U}(\mathfrak{g}_n)$ and $v \in X_n$.

Then we have an isomorphism of g-modules

$$K^{\pm}(\varinjlim_{n}X_{n})\cong \varinjlim_{n}K_{n}^{\pm}(X_{n}),$$

where the limits are taken over the family $\{f_n\}$.

More properties of $K^{\pm}(-)$

For $X\in\mathbb{T}_{\mathfrak{gl}(\infty)}$ with weight decomposition $X=\bigoplus_{\mu\in\mathfrak{h}^*}X_{\mu}$, we define a \mathbb{Z} -grading $X=\bigoplus_{k\in\mathbb{Z}}X^k$ by

$$X^k := \bigoplus_{\mu \in \mathfrak{h}^*, \; \sum \mu_i = k} X_{\mu}.$$

If *X* simple, then $X = X^k$ for some $k \in \mathbb{Z}$, and we write |X| := k.

Proposition (C. Hoyt)

Let $X\in \mathbb{T}_{\mathfrak{gl}(\infty)}$ such that |X|=k. The module $K^\pm(X)$ admits a a \mathbb{Z} -grading

$$K^+(X) = \bigoplus_{j < 0} T^j_+, \qquad K^-(X) = \bigoplus_{j > 0} T^j_-$$

such that each T^j_{\pm} considered as a \mathfrak{g}^0 -module is in $\mathbb{T}_{\mathfrak{gl}(\infty)}$ and each simple subquotient Y of T^j_{\pm} satisfies |Y| = k + j.

Results for $K^{\pm}(-)$

Theorem (C. Hoyt)

If $X \in \mathbb{T}_{\mathfrak{gl}(\infty)}$, then

- lacksquare $K^+(X)$ lies in $\widetilde{\mathbb{T}}_W^{\geq}$,
- $K^-(X)$ lies in $\widetilde{\mathbb{T}}_W^{\leq}$.

The induced \mathfrak{g} -module $K^+(X)$ is not in \mathbb{T}_W^{\leq} or \mathbb{T}_W , since it does not satisfy the l.a.c. for \mathfrak{g}^{\leq} . Similarly for $K^-(X)$.

When are these modules simple?

Proposition

If $X \in \mathbb{T}_{\mathfrak{al}(\infty)}$, then $K^-(X)$ is not simple.

Borel subalgebras

Let \mathfrak{b}^0 be a Borel subalgebra of $\mathfrak{g}^0=\mathfrak{gl}(\infty)$, and

$$\mathfrak{g}^{>} := \bigoplus_{k>0} \mathfrak{g}^{k}, \qquad \qquad \mathfrak{g}^{<} := \mathfrak{g}^{-1}.$$

Define Borel subalgebras for g by

$$\mathfrak{b}^{\mathsf{max}} := \mathfrak{b}^0 \oplus \mathfrak{g}^>, \qquad \quad \mathfrak{b}^{\mathsf{min}} := \mathfrak{b}^0 \oplus \mathfrak{g}^<.$$

 $V_{\mathfrak{b}^0}(\gamma)$: simple \mathfrak{b}^0 -highest weight \mathfrak{g}^0 -module with h.w. $\gamma \in \mathfrak{h}^*$.

 $L_{\mathfrak{b}}(\gamma)$: simple \mathfrak{b} -highest weight \mathfrak{g} -module with h.w. γ (here, $\mathfrak{b}=\mathfrak{b}^{\max},\mathfrak{b}^{\min}$).

 $\mathfrak{b}(<)^0,\mathfrak{b}(\prec)^0$: Borel subalgebras of \mathfrak{g}^0 corresponding to the orders < and \prec on $\emph{I}.$ Set

$$\mathfrak{b}(\prec)^0_n := \mathfrak{b}(\prec)^0 \cap \mathfrak{gl}(n), \text{ and } \mathfrak{b}(<)^0_n := \mathfrak{b}(<)^0 \cap \mathfrak{gl}(n).$$

Modules for W(n)

Bernstein and Leites described irreducible f.d. W(n)-modules and realized these representations as tensor fields modules.

Serganova studied the category of \mathbb{Z} -graded W(n)-modules and described the structure of induced modules. She proved:

- $K_n^+(V_{\mathfrak{b}(<)_n^0}(\nu))$ is simple if and only if the weight ν is typical.
- $K_n^+(V_{\mathfrak{b}(<)_n^0}(\nu))$ has length 2 when ν is atypical.
- atypical weights are of the form

$$a\varepsilon_i + \varepsilon_{i+1} + \cdots + \varepsilon_n$$
, for some $a \in \mathbb{C}$

Simplicity condtions for $K^+(V_{\lambda,\mu})$

Recall the simple module $V_{\lambda,\mu} \in \mathbb{T}_{\mathfrak{gl}(\infty)}$ corresponding to λ,μ

Theorem (C. Hoyt)

 $K^+(V_{\lambda,\mu})$ is simple if and only if $(\lambda,\mu) \neq (\emptyset,(\mu_1))$, that is, if and only if $V_{\lambda,\mu} \not\cong S^k(V_*)$ for some $k \in \mathbb{Z}_{\geq 0}$.

Moreover, we have a \mathfrak{g} -module homomorphism $K^+(S^{k+1}(V_*)) \to K^+(S^k(V_*))$ by $1 \otimes \partial_2^{k+1} \mapsto \partial_2 \otimes \partial_2^k$.

 \Rightarrow simple modules in \mathbb{T}_W cannot be constructed via small induced modules

The functor Ψ

For $\mathfrak{k} \subset \mathfrak{g}$, let $M^{\mathfrak{k}} = \{ m \in M \mid \mathfrak{k} \cdot m = 0 \}$.

We define the functor $\Psi: \mathbb{T}_W^{\leq} \to \widetilde{\mathbb{T}}_{\mathfrak{gl}(\infty)}$ by $\Psi(M) := M^{\mathfrak{g}^{\leq}}$.

Proposition (C. Hoyt)

If $M \in \mathbb{T}_W^{\leq}$, then $\Psi(M) \neq 0$. If $M \in \mathbb{T}_W^{\leq}$ is simple, then

- **11** $\Psi(M)$ is a simple \mathfrak{g}^0 -module,
- $\Psi(M)$ is in $\mathbb{T}_{\mathfrak{al}(\infty)}$, and
- $M\cong L^-(\Psi(M)).$
- lacksquare $\Lambda(V)_+ := \Lambda(V)/\mathbb{C} \cong L^-(V)$, since $(\Lambda(V)_+)^{\mathfrak{g}^<} = V$.
- lacksquare $\mathfrak{g}\cong L^-(V_*)$, since $\mathfrak{g}^{\mathfrak{g}^<}=\mathfrak{g}^{-1}\cong_{\mathfrak{g}^0}V_*.$

A direct computation shows that $\Lambda(V)_+$ and \mathfrak{g} are in \mathbb{T}_W .

Simple modules in \mathbb{T}_W^{\leq}

Set
$$L_{\lambda,\mu}^- := L^-(V_{\lambda,\mu})$$
.

Note: $L_{\lambda,\mu}^-$ is a highest weight \mathfrak{g} -module w.r.t. $\mathfrak{b}(\prec)^{\min}$ with the same h.w. as $V_{\lambda,\mu}$.

Theorem (C. Hoyt)

- $L_{\lambda,\mu}^-$ is in \mathbb{T}_W^{\leq} for any partitions λ and μ
- If $M \in \mathbb{T}_W^{\leq}$ is simple, then $M \cong L_{\lambda,\mu}^-$ for some λ and μ .

Corollary

Every simple module of \mathbb{T}_W^{\leq} (and hence of \mathbb{T}_W) is a highest weight module w.r.t. $\mathfrak{b}(\prec)^{\min}$.

Simple modules in \mathbb{T}_W

Proposition (C. Hoyt)

For any pair of partitions λ and μ , there exist $m, n \in \mathbb{Z}_{>0}$ such that the \mathfrak{g} -module $L_{\lambda,\mu}^-$ is a subquotient of $L^-(V)^{\otimes m} \otimes L^-(V_*)^{\otimes n}$. In particular, $L_{\lambda,\mu}^-$ lies in \mathbb{T}_W .

 $L^-(V) \cong \Lambda(V)_+$ and $L^-(V_*) \cong \mathfrak{g}$ play a similar role for the category \mathbb{T}_W as that of V, V_* for the category $\mathbb{T}_{\mathfrak{gl}(\infty)}$.

Corollary

The simple objects of \mathbb{T}_W and \mathbb{T}_W^{\leq} coincide.

This does not hold if we replace \mathbb{T}_W^{\leq} with \mathbb{T}_W^{\geq} : $K^+(V_{\lambda,\mu})$ is simple when $(\lambda,\mu)\neq(\emptyset,(\mu_1))$, but $K^+(V_{\lambda,\mu})$ is never in $\mathbb{T}_{\mathfrak{g}}$.

Tensor fields modules

 $X: \mathfrak{g}^0$ -module

 \mathfrak{g} -module of tensor fields w.r.t X is

$$\mathcal{T}(X) := \Lambda(\infty) \otimes X$$

where, for $f \in \Lambda(\infty)$ and $v \in X$, the action is

$$\underline{\xi}^{\underline{e}}\partial_{j}\cdot(fv)=\underline{\xi}^{\underline{e}}\partial_{j}(f)v+(-1)^{p(\underline{\xi}^{\underline{e}}\partial_{j})p(f)}\sum_{i\in I}\partial_{i}(\underline{\xi}^{\underline{e}})fE_{i,j}v,$$

Note:
$$X \in \widetilde{\mathbb{T}}_{\mathfrak{gl}(\infty)} \Rightarrow \mathcal{T}(X) \in \widetilde{\mathbb{T}}_W$$

Coinduced modules

Consider X as a \mathfrak{g}^{\geq} -module

Define

$$\mathsf{Coind}^{\mathfrak{g}}_{\mathfrak{g}\geq}(X) := \mathsf{Hom}_{\mathfrak{g}\geq}(\mathbf{U}(\mathfrak{g}), X).$$

For $t = \sum f_i v_i \in \mathcal{T}(X)$, we set

$$t(0):=\sum f_i(0)v_i\in X.$$

We have a natural embedding of g-modules:

$$\varphi: \mathcal{T}(X) \hookrightarrow \mathsf{Coind}^{\mathfrak{g}}_{\mathfrak{q}^{\geq}}(X),$$

where for $t \in \mathcal{T}(X)$ and $u \in \mathbf{U}(\mathfrak{g})$,

$$\varphi(t)(u) := (-1)^{p(t)p(u)}(u \cdot t)(0).$$

Simple modules as tensor fields

In the finite-dimensional case, we have a nice situation:

$$\mathcal{T}(X_n)\cong \mathsf{Coind}_{\mathfrak{g}_n^{\geq}}^{\mathfrak{g}_n}(X_n)\cong K_n^+(X_n^*)^*$$

Proposition (C. Hoyt)

If $(\lambda, \mu) \neq ((\lambda_1), \emptyset)$, then $\mathcal{T}(V_{\lambda, \mu})$ is a locally simple \mathfrak{g} -module, and hence simple.

Corollary

If
$$(\lambda, \mu) \neq ((\lambda_1), \emptyset)$$
, then $\mathcal{T}(V_{\lambda, \mu})$ is in \mathbb{T}_W .

Theorem (C. Hoyt)

For any (λ, μ) we have that $L_{\lambda, \mu}^-$ is isomorphic to a submodule of $\mathcal{T}(V_{\lambda, \mu})$. Moreover, if $(\lambda, \mu) \neq ((\lambda_1), \emptyset)$, then $L_{\lambda, \mu}^- \cong \mathcal{T}(V_{\lambda, \mu})$.

Some categories

 $\mathfrak{g} \ \mathsf{mod} \ (\mathsf{resp.} \ \mathfrak{g}^0 \ \mathsf{mod}) : \mathsf{category} \ \mathsf{of} \ \mathsf{all} \ \mathfrak{g}\text{-modules} \ (\mathsf{resp.} \ \mathfrak{g}^0 \ \mathsf{mod})$

 $\mathsf{Int}_{\mathfrak{g}^0}$: full subcategory of $\mathfrak{g}^0 \bmod \mathsf{consisting}$ of integrable $\mathfrak{g}^0\text{-modules}$

 $\mathsf{Int}_{\mathfrak{g},\mathfrak{g}^0}$: full subcategory of \mathfrak{g} mod consisting of $\mathfrak{g}^0\text{-integrable}$ modules

 $\mathsf{Int}^{\mathsf{wt}}_{\mathfrak{g},\mathfrak{g}^0}$: full subcategory of $\mathsf{Int}_{\mathfrak{g},\mathfrak{g}^0}$ consisting of $\mathfrak{h}\text{-weight modules}$

Some functors

Define the functors:

$$\Gamma_{\mathfrak{g},\mathfrak{g}^0}:\mathfrak{g}\:\mathsf{mod}\to\mathsf{Int}_{\mathfrak{g},\mathfrak{g}^0},$$
 where

$$\Gamma_{\mathfrak{g},\mathfrak{g}^0}(M) = \{ m \in M \mid \operatorname{dim}\operatorname{span}\{g^i m \mid i \geq 0\} < \infty, \ \forall g \in \mathfrak{g}^0 \}$$

 $\Gamma_{\mathfrak{h}}: \mathsf{Int}_{\mathfrak{g},\mathfrak{g}^0} \to \mathsf{Int}^{\mathsf{wt}}_{\mathfrak{g},\mathfrak{g}^0},$ where

$$\Gamma_{\mathfrak{h}}(M) := \bigoplus_{\mu \in \mathfrak{h}^*} M_{\mu}$$

 $\Theta: \mathsf{Int}^{\mathsf{wt}}_{\mathfrak{g},\mathfrak{g}^0} \to \mathbb{T}_W$, where

$$\Theta(M) = \bigcup_{n>0} M^{\mathfrak{t}_n}$$

Let
$$\Gamma = \Phi \circ \Gamma_{\mathfrak{h}} \circ \Gamma_{\mathfrak{q},\mathfrak{q}^0} : \mathfrak{g} \operatorname{\mathsf{mod}} \to \mathbb{T}_W$$

Injective $W(\infty)$ -modules

Proposition (C. Hoyt)

If $I \in \mathfrak{g} \mod$ is injective, then $\Gamma(I)$ is injective in \mathbb{T}_W . Moreover, the category \mathbb{T}_W has enough injectives.

Proposition (C. Hoyt)

If $I \in Int_{\mathfrak{g}^0}$ is injective, then $\Gamma(\mathsf{Coind}_{\mathfrak{g}^0}^{\mathfrak{g}}(I))$ is injective in \mathbb{T}_W

For
$$V_{\lambda,\mu} \xrightarrow{\stackrel{\mathsf{Penkov}}{\mathsf{Serganova}}} ((V_{\lambda,\mu})_*)^*$$
 is the injective hull of $V_{\lambda,\mu}$ in $\mathsf{Int}_{\mathfrak{g}^0}$.

Combining this with our classification, we obtain

Theorem (C. Hoyt)

Each simple module $L_{\lambda,\mu}^-$ of \mathbb{T}_W is isomorphic to a submodule of the injective module $\Gamma\left(\operatorname{Coind}_{\mathfrak{g}^0}^{\mathfrak{g}}(((V_{\lambda,\mu})_*)^*)\right)\in\mathbb{T}_W.$

Some questions

- Description of $M|_{\mathfrak{g}^0}$ for $M \in \mathbb{T}_W$.
- Block decomposition of \mathbb{T}_W .
- Is \mathbb{T}_W is Koszul? This is the case for $\mathfrak{gl}(\infty|\infty)$, and $\mathfrak{osp}(\infty|\infty)$ (Serganova).
- Is \mathbb{T}_W equivalent to $\mathbb{T}_{\mathfrak{gl}(\infty)}$?

Thank you