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Conventions

We fix n ≥ 2.

gl(n) will denote the Lie algebra of n× n matrices over C.

For a, b ∈ C we will write a ≥ b if a− b ∈ Z≥0.
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Simple Finite dimensional modules for gl(n)

Definition

ln1 ln2 · · · ln,n−1 lnn

ln−1,1 · · · ln−1n−1

· · · · · · · · ·

l21 l22

l11

is called a Gelfand-Tsetlin tableau. A Gelfand-Tsetlin tableau is called
standard if the entries satisfied

lki − lk−1,i ∈ Z≥0 and lk−1,i − lk,i+1 ∈ Z>0.
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Gelfand-Tsetlin Theorem

Theorem (Gelfand-Tsetlin-1950)

If L(λ) is a finite dimensional irreducible representation of gl(n) of highest
weight λ = (λ1, . . . , λn). The vector space with basis consisting of all
standard tableaux T (L)’s with top row lnj = λj + j − 1 has a gl(n)-module
structure with action of the generators of gl(n) given by the Gelfand-Tsetlin
formulas. Moreover, this module is isomorphic to L(λ).
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Gelfand-Tsetlin formulas

Ek,k+1(T (L)) = −
k∑
i=1

(∏k+1
j=1 (lki − lk+1,j)∏k
j 6=i(lki − lkj)

)
T (L+ δki),

Ek+1,k(T (L)) =
k∑
i=1

(∏k−1
j=1 (lki − lk−1,j)∏k
j 6=i(lki − lkj)

)
T (L− δki),

Ekk(T (L)) =

(
k − 1 +

k∑
i=1

lki −
k−1∑
i=1

lk−1,i

)
T (L),

Where T (L± δki) is the tableau obtained by T (L) adding ±1 to the (k, i)’s
position of T (L) (if a new tableau is not standard then the result of the
action is zero). The formulas above are called Gelfand-Tsetlin formulas for
gl(n).
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Can we modify the concept of standard relations and obtain a well
define set of tableaux where the Gelfand-Tsetlin formulas define a
module structure?
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Relation Gelfand-Tsetlin modules

Set V := {(i, j) | 1 ≤ j ≤ i ≤ n}.

R+ := {((i, j); (i− 1, t)) | 1 ≤ j ≤ i, 2 ≤ i ≤ n, 1 ≤ t ≤ i− 1}

R− := {((i, j); (i+ 1, s)) | 1 ≤ j ≤ i ≤ n− 1, 1 ≤ s ≤ i+ 1}

R0 := {((n, i); (n, j)) | 1 ≤ i 6= j ≤ n}

and let R := R− ∪R0 ∪R+ ⊂ V×V. From now any C ⊆ R will be called a
set of relations.
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Associated with any C ⊆ R we can construct a directed graph G(C) with
set of vertices V and an arrow going from (i, j) to (r, s) if and only if
((i, j); (r, s)) ∈ C.

For convenience we will picture the vertex set as disposed in a triangular
arrangement with n rows and k-th row given by {(k, 1), . . . , (k, k)}.
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Set R+ = {((i, j); (i− 1, t)) | 1 ≤ j ≤ i, 2 ≤ i ≤ n, 1 ≤ t ≤ i− 1}
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Set R− = {((i, j); (i+ 1, s)) | 1 ≤ j ≤ i ≤ n− 1, 1 ≤ s ≤ i+ 1}
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Definition

We will say that T (L) satisfies C if:

lij − lrs ∈ Z≥0 for any ((i, j); (r, s)) ∈ C+ ∪ C0.

lij − lrs ∈ Z>0 for any ((i, j); (r, s)) ∈ C−.
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The vector space

By BC(T (L)) we denote the set of all tableaux of the form T (L+ z),

z ∈ {z ∈ Z
n(n+1)

2 | zni = 0, i = 1, . . . , n} satisfying C.

By VC(T (L)) we denote the complex vector space spanned by
BC(T (L)).
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Example
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satisfies, where G(C) is given by any of the following graphs

(3,1) (3,2)

��

(3,3) (3,1) (3,2) (3,3)

(2,1) (2,2)

AA

(2,1) (2,2)

(1,1) (1,1)

L.E. Ramirez Relation modules and its subquotients



Definition

We will say that T (L) is a C-realization if:

lij − lrs ∈ Z≥0 for any ((i, j); (r, s)) ∈ C+ ∪ C0.

lij − lrs ∈ Z>0 for any ((i, j); (r, s)) ∈ C−.

For any 1 ≤ k ≤ n− 1 we have, lki − lkj ∈ Z if and only if (k, i) and
(k, j) in the same connected component of G(C).
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Example
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Is a C-realization, where G(C) is given by any of the following graphs
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Definition C ⊆ R is call admissible if:

There exist a C-realization T (L).

For any C-realization T (L), the vector space VC(T (L)) has a structure
of a gln-module, endowed with the action of the generators of gln given
by the Gelfand-Tsetlin formulas.
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Finite dimensional modules

Example

S+ := {(i+ 1, j); (i, j)) | 1 ≤ j ≤ i ≤ n− 1}

S− := {((i, j); (i+ 1, j + 1)) | 1 ≤ j ≤ i ≤ n− 1}.
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How to construct admissible sets of relations?

L.E. Ramirez Relation modules and its subquotients



Relations removal method

Definition

Let C be any set of relations and (i, j) ∈ V be a maximal or a minimal pair
with respect to G(C). Denote by Cij the set of relations obtained from C by
removing all relations that involve (i, j).

We say that C̃ ( C is obtained from C by the RR-method if it is obtained by
a sequence removing of relations of the form C′ → C′ij for different indexes.
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Theorem (Futorny, R., Zhang)

Let C1 be any admissible set of relations. If C2 is obtained from C1 by the
RR-method then C2 is admissible.
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Description of admissible sets of relations
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♦-condition.

For every adjoining pair (k, i) and (k, j), 1 ≤ k ≤ n− 1, there exist p, q such
that C1 ⊆ C or, there exist s < t such that C2 ⊆ C, where the graphs
associated to C1 and C2 are as follows

(k+1,p)

!!
G(C1)= (k,i)

  

>>

(k,j);

(k−1,q)

==

(k+1,s) (k+1,t)

  
G(C2)= (k,i)

>>

(k,j)
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Theorem (Futorny, R., Zhang)

A reduced set of relations C without cycles and crosses is admissible if and
only if G(C) is a union of disconnected sets satisfying ♦-condition.
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Generic modules
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Y. Drozd, S. Ovsienko, V. Futorny, Harish-Chandra subalgebras and
Gelfand-Zetlin modules, Math. Phys. Sci. 424 (1994) 72-89.
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Generic Verma modules
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V. Mazorchuk, Tableaux realization of generalized Verma modules,
Canad. J. Math. 50 (1998) 816–828.
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Cuspidal modules
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V. Mazorchuk, Quantum deformation and tableaux realization of
simple dense gl(n,C)-modules, J. Algebra Appl. 1 (01) (2003).
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Structure of relation modules
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Gelfand-Tsetlin subalgebra

Let for m 6 n, glm be the Lie subalgebra of gl(n) spanned by
{Eij | i, j = 1, . . . ,m}.

gl1 ⊂ gl2 ⊂ . . . ⊂ gln

which induces a chain of the corresponding Universal enveloping algebras

U1 ⊂ U2 ⊂ . . . ⊂ Un.

Let us denote by Zm the center of Um.

Definition

The standard Gelfand-Tsetlin subalgebra Γ of U is the subalgebra
generated by

⋃n
i=1 Zi.
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Gelfand-Tsetlin modules

Definition

A Gelfand-Tsetlin module is a U -module M such that

M =
⊕
χ∈Γ∗

M(χ),

with M(χ) the set of all vectors of generalized Γ-eigenvalue χ.

M(χ) = {v ∈M : ∀g ∈ Γ , ∃k ∈ N such that (g − χ(g))kv = 0}.
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Theorem (Futorny, R., Zhang)

For any admissible C the module VC(T (L)) is a Gelfand-Tsetlin module with
diagonalizable action of the generators of the Gelfand-Tsetlin subalgebra Γ.
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Simple subquotients!
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Associated with any Gelfand-Tsetlin tableau T (L) we have a directed graph
G(T (L)) with set of vertices V and an arrow going from (i, j) to (r, s) if

i = r + 1, and li,j − lr,s ∈ Z≥0, or

i = r − 1, and li,j − lr,s ∈ Z>0.

Example
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Let us fix an admissible set of relations C, a C-realization T (L) and the
relation module V := VC(T (L)).

For any T (U) ∈ BC(T (L)) we define

Ω+(T (U)) := {(r, s, t) | urs − ur−1,t ∈ Z≥0}
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Theorem

For any basis element T (R) ∈ BC(T (L)), a basis for the U(gl(n))-module
generated by T (R) is given by:

{T (S) ∈ BC(T (L)) | Ω+(T (R)) ⊆ Ω+(T (S))}
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Theorem

For any basis element T (R) ∈ BC(T (L)), a basis for the simple subquotient
of VC(T (L)) containing T (R) is given by:

{T (S) ∈ BC(T (L)) | Ω+(T (R)) = Ω+(T (S))}
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Thanks for your attention!

L.E. Ramirez Relation modules and its subquotients


