Simple subquotients of relation modules

Luis Enrique Ramirez¹

Universidade Federal do ABC

Workshop on Representation Theory and Applications April 28th

¹Joint with V. Futorny, J. Zhang

• We fix $n \ge 2$.

• $\mathfrak{gl}(n)$ will denote the Lie algebra of $n \times n$ matrices over \mathbb{C} .

• For $a, b \in \mathbb{C}$ we will write $a \ge b$ if $a - b \in \mathbb{Z}_{>0}$.

is called a Gelfand-Tsetlin tableau. A Gelfand-Tsetlin tableau is called standard if the entries satisfied

$$l_{ki} - l_{k-1,i} \in \mathbb{Z}_{\geq 0}$$
 and $l_{k-1,i} - l_{k,i+1} \in \mathbb{Z}_{> 0}$.

Theorem (Gelfand-Tsetlin-1950)

If $L(\lambda)$ is a finite dimensional irreducible representation of $\mathfrak{gl}(n)$ of highest weight $\lambda = (\lambda_1, \ldots, \lambda_n)$. The vector space with basis consisting of all standard tableaux T(L)'s with top row $l_{nj} = \lambda_j + j - 1$ has a $\mathfrak{gl}(n)$ -module structure with action of the generators of $\mathfrak{gl}(n)$ given by the Gelfand-Tsetlin formulas. Moreover, this module is isomorphic to $L(\lambda)$.

$$E_{k,k+1}(T(L)) = -\sum_{i=1}^{k} \left(\frac{\prod_{j=1}^{k+1} (l_{ki} - l_{k+1,j})}{\prod_{j\neq i}^{k} (l_{ki} - l_{kj})} \right) T(L + \delta^{ki}),$$

$$E_{k+1,k}(T(L)) = \sum_{i=1}^{k} \left(\frac{\prod_{j=1}^{k-1} (l_{ki} - l_{k-1,j})}{\prod_{j\neq i}^{k} (l_{ki} - l_{kj})} \right) T(L - \delta^{ki}),$$

$$E_{kk}(T(L)) = \left(k - 1 + \sum_{i=1}^{k} l_{ki} - \sum_{i=1}^{k-1} l_{k-1,i} \right) T(L),$$

Where $T(L \pm \delta^{ki})$ is the tableau obtained by T(L) adding ± 1 to the (k, i)'s position of T(L) (if a new tableau is not standard then the result of the action is zero). The formulas above are called Gelfand-Tsetlin formulas for $\mathfrak{gl}(n)$.

Can we modify the concept of standard relations and obtain a well define set of tableaux where the Gelfand-Tsetlin formulas define a module structure?

I. Gelfand, M. Graev, "Finite-dimensional simple representations of the unitary and complete linear group and special functions associated with them." Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 29.6 (1965): 1329-1356.

- I. Gelfand, M. Graev, "Finite-dimensional simple representations of the unitary and complete linear group and special functions associated with them." Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 29.6 (1965): 1329-1356.

F. Lemire, J. Patera, "Formal analytic continuation of Gel'fand's finite dimensional repre- sentations of $\mathfrak{gl}(n,\mathbb{C})$, Journal of Mathematical Physics. 20 (1979), 820–829.

- I. Gelfand, M. Graev, "Finite-dimensional simple representations of the unitary and complete linear group and special functions associated with them." Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 29.6 (1965): 1329-1356.
- F. Lemire, J. Patera, "Formal analytic continuation of Gel'fand's finite dimensional repre- sentations of $\mathfrak{gl}(n,\mathbb{C})$, Journal of Mathematical Physics. 20 (1979), 820–829.
- V. Mazorchuk, Tableaux realization of generalized Verma modules, Canad. J. Math. 50 (1998) 816–828.
- IV. Mazorchuk, Quantum deformation and tableau realization of simple dense gl(n, C)- modules, Journal of Algebra and Its Applications, (2003), vol.1 01.

Set
$$\mathfrak{V} := \{(i,j) \mid 1 \le j \le i \le n\}.$$

 $\mathcal{R}^+ := \{((i,j); (i-1,t)) \mid 1 \le j \le i, \ 2 \le i \le n, \ 1 \le t \le i-1\}$
 $\mathcal{R}^- := \{((i,j); (i+1,s)) \mid 1 \le j \le i \le n-1, \ 1 \le s \le i+1\}$
 $\mathcal{R}^0 := \{((n,i); (n,j)) \mid 1 \le i \ne j \le n\}$

and let $\mathcal{R} := \mathcal{R}^- \cup \mathcal{R}^0 \cup \mathcal{R}^+ \subset \mathfrak{V} \times \mathfrak{V}$. From now any $\mathcal{C} \subseteq \mathcal{R}$ will be called a set of relations.

Associated with any $C \subseteq \mathcal{R}$ we can construct a directed graph G(C) with set of vertices \mathfrak{V} and an arrow going from (i, j) to (r, s) if and only if $((i, j); (r, s)) \in C$.

Associated with any $C \subseteq \mathcal{R}$ we can construct a directed graph $G(\mathcal{C})$ with set of vertices \mathfrak{V} and an arrow going from (i, j) to (r, s) if and only if $((i, j); (r, s)) \in \mathcal{C}$.

For convenience we will picture the vertex set as disposed in a triangular arrangement with n rows and k-th row given by $\{(k, 1), \ldots, (k, k)\}$.

Set
$$\mathcal{R}^+ = \{((i,j); (i-1,t)) \mid 1 \le j \le i, \ 2 \le i \le n, \ 1 \le t \le i-1\}$$

Set
$$\mathcal{R}^- = \{((i,j); (i+1,s)) \mid 1 \le j \le i \le n-1, \ 1 \le s \le i+1\}$$

Definition

We will say that T(L) satisfies \mathcal{C} if:

• $l_{ij} - l_{rs} \in \mathbb{Z}_{\geq 0}$ for any $((i, j); (r, s)) \in \mathcal{C}^+ \cup \mathcal{C}^0$.

• $l_{ij} - l_{rs} \in \mathbb{Z}_{>0}$ for any $((i, j); (r, s)) \in \mathcal{C}^-$.

• By $\mathcal{B}_{\mathcal{C}}(T(L))$ we denote the set of all tableaux of the form T(L+z), $z \in \{z \in \mathbb{Z}^{\frac{n(n+1)}{2}} \mid z_{ni} = 0, i = 1, \dots, n\}$ satisfying \mathcal{C} . • By $\mathcal{B}_{\mathcal{C}}(T(L))$ we denote the set of all tableaux of the form T(L+z), $z \in \{z \in \mathbb{Z}^{\frac{n(n+1)}{2}} \mid z_{ni} = 0, i = 1, ..., n\}$ satisfying \mathcal{C} .

• By $V_{\mathcal{C}}(T(L))$ we denote the complex vector space spanned by $\mathcal{B}_{\mathcal{C}}(T(L))$.

satisfies, where $G(\mathcal{C})$ is given by any of the following graphs

Definition

We will say that T(L) is a *C*-realization if:

• $l_{ij} - l_{rs} \in \mathbb{Z}_{\geq 0}$ for any $((i, j); (r, s)) \in \mathcal{C}^+ \cup \mathcal{C}^0$.

•
$$l_{ij} - l_{rs} \in \mathbb{Z}_{>0}$$
 for any $((i, j); (r, s)) \in \mathcal{C}^-$.

• For any $1 \le k \le n-1$ we have, $l_{ki} - l_{kj} \in \mathbb{Z}$ if and only if (k, i) and (k, j) in the same connected component of $G(\mathcal{C})$.

Is a C-realization, where $G(\mathcal{C})$ is given by any of the following graphs

Definition $\mathcal{C} \subseteq \mathcal{R}$ is call admissible if:

- There exist a C-realization T(L).
- For any C-realization T(L), the vector space $V_{\mathcal{C}}(T(L))$ has a structure of a \mathfrak{gl}_n -module, endowed with the action of the generators of \mathfrak{gl}_n given by the Gelfand-Tsetlin formulas.

Example

How to construct admissible sets of relations?

Definition

Let \mathcal{C} be any set of relations and $(i, j) \in \mathfrak{V}$ be a maximal or a minimal pair with respect to $G(\mathcal{C})$. Denote by \mathcal{C}_{ij} the set of relations obtained from \mathcal{C} by removing all relations that involve (i, j).

Definition

Let \mathcal{C} be any set of relations and $(i, j) \in \mathfrak{V}$ be a maximal or a minimal pair with respect to $G(\mathcal{C})$. Denote by \mathcal{C}_{ij} the set of relations obtained from \mathcal{C} by removing all relations that involve (i, j).

We say that $\widetilde{\mathcal{C}} \subsetneq \mathcal{C}$ is obtained from \mathcal{C} by the RR-method if it is obtained by a sequence removing of relations of the form $\mathcal{C}' \to \mathcal{C}'_{ij}$ for different indexes.

Theorem (Futorny, R., Zhang)

Let C_1 be any admissible set of relations. If C_2 is obtained from C_1 by the RR-method then C_2 is admissible.

(1,1)

Description of admissible sets of relations

For every adjoining pair (k, i) and (k, j), $1 \le k \le n - 1$, there exist p, q such that $C_1 \subseteq C$ or, there exist s < t such that $C_2 \subseteq C$, where the graphs associated to C_1 and C_2 are as follows

Theorem (Futorny, R., Zhang)

A reduced set of relations C without cycles and crosses is admissible if and only if G(C) is a union of disconnected sets satisfying \Diamond -condition.

Generic modules

(5,1)		(5,2)		(5,3)		(5,4)		(5,5)
	(4.1)		(4.2)		(4.2)		(4,4)	
	(4,1)		(4,2)		(4,3)		(4,4)	
		(3,1)		(3,2)		(3,3)		
			(2,1)		(2,2)			

(1,1)

Y. Drozd, S. Ovsienko, V. Futorny, Harish-Chandra subalgebras and Gelfand-Zetlin modules, Math. Phys. Sci. 424 (1994) 72-89.

Generic Verma modules

V. Mazorchuk, Tableaux realization of generalized Verma modules, Canad. J. Math. 50 (1998) 816–828.

Cuspidal modules

(1,1)

V. Mazorchuk, Quantum deformation and tableaux realization of simple dense $\mathfrak{gl}(n,\mathbb{C})$ -modules, J. Algebra Appl. 1 (01) (2003).

Structure of relation modules

Let for $m \leq n$, \mathfrak{gl}_m be the Lie subalgebra of $\mathfrak{gl}(n)$ spanned by $\{E_{ij} \mid i, j = 1, \dots, m\}$.

$$\mathfrak{gl}_1 \subset \mathfrak{gl}_2 \subset \ldots \subset \mathfrak{gl}_n$$

which induces a chain of the corresponding Universal enveloping algebras

$$U_1 \subset U_2 \subset \ldots \subset U_n.$$

Let us denote by Z_m the center of U_m .

Definition

The standard Gelfand-Tsetlin subalgebra Γ of U is the subalgebra generated by $\bigcup_{i=1}^{n} Z_i$.

Definition

A Gelfand-Tsetlin module is a U-module M such that

$$M = \bigoplus_{\chi \in \Gamma^*} M(\chi),$$

with $M(\chi)$ the set of all vectors of generalized Γ -eigenvalue χ .

 $M(\chi) = \{ v \in M : \forall g \in \Gamma , \exists k \in \mathbb{N} \text{ such that } (g - \chi(g))^k v = 0 \}.$

Theorem (Futorny, R., Zhang)

For any admissible C the module $V_{\mathcal{C}}(T(L))$ is a Gelfand-Tsetlin module with diagonalizable action of the generators of the Gelfand-Tsetlin subalgebra Γ .

Simple subquotients!

Associated with any Gelfand-Tsetlin tableau T(L) we have a directed graph G(T(L)) with set of vertices \mathfrak{V} and an arrow going from (i, j) to (r, s) if

•
$$i = r + 1$$
, and $l_{i,j} - l_{r,s} \in \mathbb{Z}_{\geq 0}$, or

•
$$i = r - 1$$
, and $l_{i,j} - l_{r,s} \in \mathbb{Z}_{>0}$.

Let us fix an admissible set of relations C, a C-realization T(L) and the relation module $V := V_{\mathcal{C}}(T(L))$.

For any $T(U) \in \mathcal{B}_{\mathcal{C}}(T(L))$ we define

$$\Omega^+(T(U)) := \{ (r, s, t) \mid u_{rs} - u_{r-1, t} \in \mathbb{Z}_{\geq 0} \}$$

Theorem

For any basis element $T(R) \in \mathcal{B}_{\mathcal{C}}(T(L))$, a basis for the $U(\mathfrak{gl}(n))$ -module generated by T(R) is given by:

 $\{T(S) \in \mathcal{B}_{\mathcal{C}}(T(L)) \mid \Omega^+(T(R)) \subseteq \Omega^+(T(S))\}$

Theorem

For any basis element $T(R) \in \mathcal{B}_{\mathcal{C}}(T(L))$, a basis for the simple subquotient of $V_{\mathcal{C}}(T(L))$ containing T(R) is given by:

 $\{T(S) \in \mathcal{B}_{\mathcal{C}}(T(L)) \mid \Omega^+(T(R)) = \Omega^+(T(S))\}$

V. Futorny, D. Grantcharov, and L. E. Ramirez, Simple Generic Gelfand-Tsetlin modules of $\mathfrak{gl}(n)$. SIGMA, **18**, (2015).

V. Futorny, L. E. Ramirez, and J. Zhang, Combinatorial construction of Gelfand-Tsetlin modules for \mathfrak{gl}_n , Adv. Math. **343** (2019), 681–711.

Thanks for your attention!