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Prime Objects in Abelian Monoidal Categories

Let C be a monoidal (tensor) category.

An object V ∈ C is said to be

prime if
V ∼= V1 ⊗ V2 ⇒ Vj

∼= I for some j,

where I is the unity object of C.

Example: Let g be a simple f.d. Lie algebra over C and C the
category of f.d. g-modules. Then every simple module is prime.

If dim(V ) is prime, then V is prime (not necessarily simple), e.g.,
C⊕ C.

Suppose C is abelian and “finite”, for instance, the objects are
finite-dimensional vector spaces. Then, every simple object is a tensor
product of simple prime objects.

Open Question: Classify the simple prime modules in the category of
finite-dimensional representations for a quantum affine algebra.
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Classical Loop Algebras

Let g̃ = g⊗ C[t, t−1] with bracket [x⊗ f, y ⊗ g] = [x, y]⊗ fg.

For each a ∈ C× ⇝ eva : g̃→ g, x⊗ f 7→ f(a)x.
If V is a g-module, it can be turned into a g̃-module via eva ⇝ V (a).

Theorem (Chari-Pressley 1986)

If V and W are f.d. simple g-modules, V (a)⊗W (b) is simple iff a ̸= b.
Moreover, every f.d. simple g̃-module is isomorphic to a (unique)
tensor product of evaluation modules.

Corollary

Let C be the category of f.d. g̃-modules. A simple object in C is prime
iff it is an evaluation module over a simple g-module.

Recall Uq(g̃) = Uq(ñ
−)Uq(h̃)Uq(ñ

+) and Uq(h̃) is abelian.
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−)Uq(h̃)Uq(ñ
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Drinfeld Polynomials and q-Factorization

The classification of the simple finite-dimensional Uq(g̃)-modules is
given in terms of highest ℓ-weights, also called Drinfeld polynomials.

Notation: ω = (ωi)i∈I , Vq(ω) – simple module.

If V is the simple Uq(s̃l2)-module of highest weight r ∈ Z≥0, the
Drinfeld polynomial of the evaluation module at a is

ωa,r := (1− aq1−ru) · · · (1− aqr−3u)(1− aqr−1u) =
r∏

l=1

(1− aqr+1−2lu).

Every polynomial has a unique factorization as a product of such
elements so that, for any two factors, say ωa,r and ωb,s, we have

a

b
̸= qm for all m = ±(r + s− 2p), 0 ≤ p < min{r, s}.

Theorem (Chari-Pressley 1990)

Let g = sl2 and let ωk, 1 ≤ k ≤ m, be the q-factors of ω.
Then, Vq(ω) ∼= Vq(ω1)⊗ · · · ⊗ Vq(ωm).
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Higher Rank q-factorization

Let C be the Cartan matrix of g

and D = diag(di : i ∈ I), di ∈ Z>0,
min{di : i ∈ I} = 1 s.t. DC is symmetric. Set qi = qdi .

Generators: x±i,r, hi,s, k
±1
i , i ∈ I, r, s ∈ Z, s ̸= 0.

For J ⊆ I ⇝ Uq(g̃)J – subalgebra generated by x±j,r, hj,s, k
±1
j , j ∈ J .

J connected ⇒ Uq(g̃)J ∼= UqdJ (g̃J), where dJ = min{dj : j ∈ J}.

Given i ∈ I, a ∈ C×, and r ∈ Z≥0, consider ωi,a,r defined by

(ωi,a,r)j(u) = 1, j ̸= i, and (ωi,a,r)i(u) =
r∏

l=1

(1− aqr+1−2l
i u).

The q-factors of ω are the factors of the qi-factorization of its entries.

The modules Vq(ωi,a,r) are called a Kirillov-Reshetikhin modules.

There exists a finite set Rr,s
i,j ⊆ Z>0 such that

Vq(ωi,a,r)⊗ Vq(ωj,b,s) is reducible ⇔ b = aqm with |m| ∈ Rr,s
i,j
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q-Factorization Graphs

Let G = (V,A) be a finite directed graph with no loops.
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We will consider a coloring of the vertices: c : V → I,
a weight map λ : V → Z>0, and an exponent map ϵ : A → Z>0.

The data (G, c, λ, ϵ) will be required to satisfy certain conditions.
In particular,

(∗) ϵ(v v′- ) ∈ R̃
λ(v),λ(v′)
c(v),c(v′)

\R
λ(v),λ(v′)
c(v) if c(v) = c(v′)

Given ω ∈ P+ ⇝ G(ω), V = multiset of q-factors, c(ωi,a,r) = i,

λ(ωi,a,r) = r, (ωi,a,r,ωj,b,s) ∈ A iff a = bqm with m ∈ R̃r,s
i,j and,

in that case, ϵ(ωi,a,r,ωj,b,s) = m.
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Ĵ

J
J] 6

i i
i

i

i

i1 i2

i3

i4

i5

r1

r2

r3

r4

r5

m1

m2

m3

m4m5

We will consider a coloring of the vertices: c : V → I,
a weight map λ : V → Z>0, and an exponent map ϵ : A → Z>0.

The data (G, c, λ, ϵ) will be required to satisfy certain conditions.

In particular,

(∗) ϵ(v v′- ) ∈ R̃
λ(v),λ(v′)
c(v),c(v′)

\R
λ(v),λ(v′)
c(v) if c(v) = c(v′)

Given ω ∈ P+ ⇝ G(ω), V = multiset of q-factors, c(ωi,a,r) = i,

λ(ωi,a,r) = r, (ωi,a,r,ωj,b,s) ∈ A iff a = bqm with m ∈ R̃r,s
i,j and,

in that case, ϵ(ωi,a,r,ωj,b,s) = m.

A. Moura Trees Are Real And TOG Are Prime



q-Factorization Graphs

Let G = (V,A) be a finite directed graph with no loops.

� 


�

J
Ĵ
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Ĵ

J
J] 6

i i
i

i

i

i1 i2

i3

i4

i5

r1

r2

r3

r4

r5

m1

m2

m3

m4m5

We will consider a coloring of the vertices: c : V → I,
a weight map λ : V → Z>0, and an exponent map ϵ : A → Z>0.

The data (G, c, λ, ϵ) will be required to satisfy certain conditions.
In particular,

(∗) ϵ(v v′- ) ∈ R̃
λ(v),λ(v′)
c(v),c(v′)

\R
λ(v),λ(v′)
c(v) if c(v) = c(v′)

Given ω ∈ P+ ⇝ G(ω), V = multiset of q-factors, c(ωi,a,r) = i

,

λ(ωi,a,r) = r, (ωi,a,r,ωj,b,s) ∈ A iff a = bqm with m ∈ R̃r,s
i,j and,

in that case, ϵ(ωi,a,r,ωj,b,s) = m.

A. Moura Trees Are Real And TOG Are Prime



q-Factorization Graphs

Let G = (V,A) be a finite directed graph with no loops.

� 


�

J
Ĵ

J
J] 6

i i
i

i

i

i1 i2

i3

i4

i5

r1

r2

r3

r4

r5

m1

m2

m3

m4m5

We will consider a coloring of the vertices: c : V → I,
a weight map λ : V → Z>0, and an exponent map ϵ : A → Z>0.

The data (G, c, λ, ϵ) will be required to satisfy certain conditions.
In particular,

(∗) ϵ(v v′- ) ∈ R̃
λ(v),λ(v′)
c(v),c(v′)

\R
λ(v),λ(v′)
c(v) if c(v) = c(v′)

Given ω ∈ P+ ⇝ G(ω), V = multiset of q-factors, c(ωi,a,r) = i,

λ(ωi,a,r) = r

, (ωi,a,r,ωj,b,s) ∈ A iff a = bqm with m ∈ R̃r,s
i,j and,

in that case, ϵ(ωi,a,r,ωj,b,s) = m.

A. Moura Trees Are Real And TOG Are Prime



q-Factorization Graphs

Let G = (V,A) be a finite directed graph with no loops.

� 


�

J
Ĵ
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The role of q-Factorization

Vq(ω)⊗ Vq(π) is simple if and only if Vq(ω)⊗ Vq(π) ∼= Vq(π)⊗ Vq(ω).

Proposition (Chari-Pressley (1997))

If Vq(ω)⊗ Vq(π) is simple, the multiset of q-factors of ωπ is the union
of those of ω and π. (dissociated q-factorizations)
In particular, the KR modules are prime.

“Method”: Given ω, let S be its multiset of q-factors.
For each partition S = S1 ∪ S2 ⇝ ωS1 ,ωS2

Figure out if Vq(ω
S1)⊗ Vq(ω

S2) is simple or not.

Vq(ω) is prime⇔ Vq(ω
S1)⊗Vq(ω

S2) is reducible ∀ nontrivial partitions.

Vq(ωi,a,rωj,b,s) is prime ⇔ b = aqm with |m| ∈ R̃r,s
i,j .

If Vq(π) is prime, G(π) is connected.
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Primality of Totally Ordered q-Factorization Graphs

Since q-Factorization contain no oriented cycles, A induces a partial
order on V by the transitive extension of

ha ≺ ta for a ∈ A (ha ←− ta).

Recall a tree is a graph with no cycles. If a tree is totally ordered, it
has a unique branch (it is a line)

- -i1 i2 i3
r1 r2 r3m1 m2 · · ·

Theorem (M.-Silva)

Every totally ordered q-factorization graph afforded by a tree is prime.

Theorem (M.-Silva)

If g is of type A, every totally ordered q-factorization graph is prime.

Corollary

For type A, all prime snake modules are prime (Mukhin-Young 2012)
and the same holds for the skew modules (Hopkins-Molev 2006) whose
q-factorization graphs are connected.
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Primality of Three-Vertex Trees

Given a connected subdiagram J such that [i, j] ⊆ J , let Rr,s
i,j,Jbe the

set corresponding to the tensor product of Uq(g̃)J -modules

Vq((ωi,a,r)J)⊗ Vq((ωj,b,s)J).

Theorem (M.-Silva)

Suppose g is of type A and G = G(ω) is of the form
r1
i1

r
i

r2
i2

m1 m2 or
r1
i1

r
i

r2
i2

m1 m2

Let Ij ⊆ I, j = 1, 2, be the minimal connected subdiagram containing
[i, ij ] such that mj ∈ R

r,rj
i,ij ,Ij

and let j′ be such that {j, j′} = {1, 2}.
Then, G is not prime if and only if there exists j ∈ {1, 2} such that

ij′ ∈ Ij , mj′ ∈ R
r,rj′
i,ij′ ,Ij

, |mj −mj′ − ȟIj | ∈ R
rj ,rj′

w
Ij
0 (ij),ij′ ,Ij

,

and
mj −mj′ + 1 /∈ R

rj−1,rj′
ij ,ij′ ,Ij

if rj > 1.
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rj ,rj′

w
Ij
0 (ij),ij′ ,Ij

,

and
mj −mj′ + 1 /∈ R

rj−1,rj′
ij ,ij′ ,Ij

if rj > 1.

A. Moura Trees Are Real And TOG Are Prime



Primality of Three-Vertex Trees

Given a connected subdiagram J such that [i, j] ⊆ J , let Rr,s
i,j,Jbe the

set corresponding to the tensor product of Uq(g̃)J -modules

Vq((ωi,a,r)J)⊗ Vq((ωj,b,s)J).

Theorem (M.-Silva)

Suppose g is of type A and G = G(ω) is of the form
r1
i1

r
i

r2
i2

m1 m2 or
r1
i1

r
i

r2
i2

m1 m2

Let Ij ⊆ I, j = 1, 2, be the minimal connected subdiagram containing
[i, ij ]

such that mj ∈ R
r,rj
i,ij ,Ij

and let j′ be such that {j, j′} = {1, 2}.
Then, G is not prime if and only if there exists j ∈ {1, 2} such that

ij′ ∈ Ij , mj′ ∈ R
r,rj′
i,ij′ ,Ij

, |mj −mj′ − ȟIj | ∈ R
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Trees are Real

Corollary

If g is of type A,
r
i

s
j

r
i

m m is not prime. In other words, the

module Vq(ωi,a,r)⊗ Vq(ωi,a,rωj,aqm,s) is simple.

A simple module whose tensor square is simple is said to be real
(Hernandez-Leclerc in connection to cluster algebras).

Theorem (M.-Silva)

If g is of type A and G(ω) is a tree, then Vq(ω) is real.

We proved several criteria for two-fold tensor products to be
highest-ℓ-weight. The techniques for proving these are not new. The
graphs provide an efficient manner to control the underlying
combinatorics and to express the results. For checking the criteria are
satisfied, we used the explicit description of Rr,s

i,j .
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Some Fundamental Fatcs Used in the Proofs

Proposition

A Uq(g̃)-module V is simple iff V and V ∗ are highest-ℓ-weight.
In particular, Vq(π)⊗ Vq(ϖ) is simple iff both Vq(π)⊗ Vq(ϖ) and
Vq(ϖ)⊗ Vq(π) are highest-ℓ-weight.

Theorem (Hernandez 2019, M.-Silva)

Let S1, · · · , Sm be simple Uq(g̃)-modules. Then, S1 ⊗ · · · ⊗ Sm is
highest-ℓ-weight iff Si ⊗ Sj is highest-ℓ-weight for all 1 ≤ i < j ≤ m.

Corollary

Vq(π)⊗ Vq(π̃) is highest-ℓ-weight if there exist π =
∏m

k=1 π
(k),

π̃ =
∏m̃

k=1 π̃
(k), s.t. the following tensor products are highest-ℓ-weight:

Vq(π
(k))⊗ Vq(π

(l)), Vq(π̃
(k))⊗ Vq(π̃

(l)), for k < l,

and Vq(π
(k))⊗ Vq(π̃

(l)) for all k, l.

A. Moura Trees Are Real And TOG Are Prime



Some Fundamental Fatcs Used in the Proofs

Proposition

A Uq(g̃)-module V is simple iff V and V ∗ are highest-ℓ-weight.

In particular, Vq(π)⊗ Vq(ϖ) is simple iff both Vq(π)⊗ Vq(ϖ) and
Vq(ϖ)⊗ Vq(π) are highest-ℓ-weight.

Theorem (Hernandez 2019, M.-Silva)

Let S1, · · · , Sm be simple Uq(g̃)-modules. Then, S1 ⊗ · · · ⊗ Sm is
highest-ℓ-weight iff Si ⊗ Sj is highest-ℓ-weight for all 1 ≤ i < j ≤ m.

Corollary

Vq(π)⊗ Vq(π̃) is highest-ℓ-weight if there exist π =
∏m

k=1 π
(k),

π̃ =
∏m̃

k=1 π̃
(k), s.t. the following tensor products are highest-ℓ-weight:

Vq(π
(k))⊗ Vq(π

(l)), Vq(π̃
(k))⊗ Vq(π̃

(l)), for k < l,

and Vq(π
(k))⊗ Vq(π̃

(l)) for all k, l.

A. Moura Trees Are Real And TOG Are Prime



Some Fundamental Fatcs Used in the Proofs

Proposition

A Uq(g̃)-module V is simple iff V and V ∗ are highest-ℓ-weight.
In particular, Vq(π)⊗ Vq(ϖ) is simple

iff both Vq(π)⊗ Vq(ϖ) and
Vq(ϖ)⊗ Vq(π) are highest-ℓ-weight.

Theorem (Hernandez 2019, M.-Silva)

Let S1, · · · , Sm be simple Uq(g̃)-modules. Then, S1 ⊗ · · · ⊗ Sm is
highest-ℓ-weight iff Si ⊗ Sj is highest-ℓ-weight for all 1 ≤ i < j ≤ m.

Corollary

Vq(π)⊗ Vq(π̃) is highest-ℓ-weight if there exist π =
∏m

k=1 π
(k),

π̃ =
∏m̃

k=1 π̃
(k), s.t. the following tensor products are highest-ℓ-weight:

Vq(π
(k))⊗ Vq(π

(l)), Vq(π̃
(k))⊗ Vq(π̃

(l)), for k < l,

and Vq(π
(k))⊗ Vq(π̃

(l)) for all k, l.

A. Moura Trees Are Real And TOG Are Prime



Some Fundamental Fatcs Used in the Proofs

Proposition

A Uq(g̃)-module V is simple iff V and V ∗ are highest-ℓ-weight.
In particular, Vq(π)⊗ Vq(ϖ) is simple iff both Vq(π)⊗ Vq(ϖ) and
Vq(ϖ)⊗ Vq(π) are highest-ℓ-weight.

Theorem (Hernandez 2019, M.-Silva)

Let S1, · · · , Sm be simple Uq(g̃)-modules. Then, S1 ⊗ · · · ⊗ Sm is
highest-ℓ-weight iff Si ⊗ Sj is highest-ℓ-weight for all 1 ≤ i < j ≤ m.

Corollary

Vq(π)⊗ Vq(π̃) is highest-ℓ-weight if there exist π =
∏m

k=1 π
(k),

π̃ =
∏m̃

k=1 π̃
(k), s.t. the following tensor products are highest-ℓ-weight:

Vq(π
(k))⊗ Vq(π

(l)), Vq(π̃
(k))⊗ Vq(π̃

(l)), for k < l,

and Vq(π
(k))⊗ Vq(π̃

(l)) for all k, l.

A. Moura Trees Are Real And TOG Are Prime



Some Fundamental Fatcs Used in the Proofs

Proposition

A Uq(g̃)-module V is simple iff V and V ∗ are highest-ℓ-weight.
In particular, Vq(π)⊗ Vq(ϖ) is simple iff both Vq(π)⊗ Vq(ϖ) and
Vq(ϖ)⊗ Vq(π) are highest-ℓ-weight.

Theorem (Hernandez 2019, M.-Silva)

Let S1, · · · , Sm be simple Uq(g̃)-modules.

Then, S1 ⊗ · · · ⊗ Sm is
highest-ℓ-weight iff Si ⊗ Sj is highest-ℓ-weight for all 1 ≤ i < j ≤ m.

Corollary

Vq(π)⊗ Vq(π̃) is highest-ℓ-weight if there exist π =
∏m

k=1 π
(k),

π̃ =
∏m̃

k=1 π̃
(k), s.t. the following tensor products are highest-ℓ-weight:

Vq(π
(k))⊗ Vq(π

(l)), Vq(π̃
(k))⊗ Vq(π̃

(l)), for k < l,

and Vq(π
(k))⊗ Vq(π̃

(l)) for all k, l.

A. Moura Trees Are Real And TOG Are Prime



Some Fundamental Fatcs Used in the Proofs

Proposition

A Uq(g̃)-module V is simple iff V and V ∗ are highest-ℓ-weight.
In particular, Vq(π)⊗ Vq(ϖ) is simple iff both Vq(π)⊗ Vq(ϖ) and
Vq(ϖ)⊗ Vq(π) are highest-ℓ-weight.

Theorem (Hernandez 2019, M.-Silva)

Let S1, · · · , Sm be simple Uq(g̃)-modules. Then, S1 ⊗ · · · ⊗ Sm is
highest-ℓ-weight

iff Si ⊗ Sj is highest-ℓ-weight for all 1 ≤ i < j ≤ m.

Corollary

Vq(π)⊗ Vq(π̃) is highest-ℓ-weight if there exist π =
∏m

k=1 π
(k),

π̃ =
∏m̃

k=1 π̃
(k), s.t. the following tensor products are highest-ℓ-weight:

Vq(π
(k))⊗ Vq(π

(l)), Vq(π̃
(k))⊗ Vq(π̃

(l)), for k < l,

and Vq(π
(k))⊗ Vq(π̃

(l)) for all k, l.

A. Moura Trees Are Real And TOG Are Prime



Some Fundamental Fatcs Used in the Proofs

Proposition

A Uq(g̃)-module V is simple iff V and V ∗ are highest-ℓ-weight.
In particular, Vq(π)⊗ Vq(ϖ) is simple iff both Vq(π)⊗ Vq(ϖ) and
Vq(ϖ)⊗ Vq(π) are highest-ℓ-weight.

Theorem (Hernandez 2019, M.-Silva)

Let S1, · · · , Sm be simple Uq(g̃)-modules. Then, S1 ⊗ · · · ⊗ Sm is
highest-ℓ-weight iff Si ⊗ Sj is highest-ℓ-weight for all 1 ≤ i < j ≤ m.

Corollary

Vq(π)⊗ Vq(π̃) is highest-ℓ-weight if there exist π =
∏m

k=1 π
(k),

π̃ =
∏m̃

k=1 π̃
(k), s.t. the following tensor products are highest-ℓ-weight:

Vq(π
(k))⊗ Vq(π

(l)), Vq(π̃
(k))⊗ Vq(π̃

(l)), for k < l,

and Vq(π
(k))⊗ Vq(π̃

(l)) for all k, l.

A. Moura Trees Are Real And TOG Are Prime



Some Fundamental Fatcs Used in the Proofs

Proposition

A Uq(g̃)-module V is simple iff V and V ∗ are highest-ℓ-weight.
In particular, Vq(π)⊗ Vq(ϖ) is simple iff both Vq(π)⊗ Vq(ϖ) and
Vq(ϖ)⊗ Vq(π) are highest-ℓ-weight.

Theorem (Hernandez 2019, M.-Silva)

Let S1, · · · , Sm be simple Uq(g̃)-modules. Then, S1 ⊗ · · · ⊗ Sm is
highest-ℓ-weight iff Si ⊗ Sj is highest-ℓ-weight for all 1 ≤ i < j ≤ m.

Corollary

Vq(π)⊗ Vq(π̃) is highest-ℓ-weight if

there exist π =
∏m

k=1 π
(k),

π̃ =
∏m̃

k=1 π̃
(k), s.t. the following tensor products are highest-ℓ-weight:

Vq(π
(k))⊗ Vq(π

(l)), Vq(π̃
(k))⊗ Vq(π̃

(l)), for k < l,

and Vq(π
(k))⊗ Vq(π̃

(l)) for all k, l.

A. Moura Trees Are Real And TOG Are Prime



Some Fundamental Fatcs Used in the Proofs

Proposition

A Uq(g̃)-module V is simple iff V and V ∗ are highest-ℓ-weight.
In particular, Vq(π)⊗ Vq(ϖ) is simple iff both Vq(π)⊗ Vq(ϖ) and
Vq(ϖ)⊗ Vq(π) are highest-ℓ-weight.

Theorem (Hernandez 2019, M.-Silva)

Let S1, · · · , Sm be simple Uq(g̃)-modules. Then, S1 ⊗ · · · ⊗ Sm is
highest-ℓ-weight iff Si ⊗ Sj is highest-ℓ-weight for all 1 ≤ i < j ≤ m.

Corollary

Vq(π)⊗ Vq(π̃) is highest-ℓ-weight if there exist π =
∏m

k=1 π
(k),

π̃ =
∏m̃

k=1 π̃
(k)

, s.t. the following tensor products are highest-ℓ-weight:

Vq(π
(k))⊗ Vq(π

(l)), Vq(π̃
(k))⊗ Vq(π̃

(l)), for k < l,

and Vq(π
(k))⊗ Vq(π̃

(l)) for all k, l.

A. Moura Trees Are Real And TOG Are Prime



Some Fundamental Fatcs Used in the Proofs

Proposition

A Uq(g̃)-module V is simple iff V and V ∗ are highest-ℓ-weight.
In particular, Vq(π)⊗ Vq(ϖ) is simple iff both Vq(π)⊗ Vq(ϖ) and
Vq(ϖ)⊗ Vq(π) are highest-ℓ-weight.

Theorem (Hernandez 2019, M.-Silva)

Let S1, · · · , Sm be simple Uq(g̃)-modules. Then, S1 ⊗ · · · ⊗ Sm is
highest-ℓ-weight iff Si ⊗ Sj is highest-ℓ-weight for all 1 ≤ i < j ≤ m.

Corollary

Vq(π)⊗ Vq(π̃) is highest-ℓ-weight if there exist π =
∏m

k=1 π
(k),

π̃ =
∏m̃

k=1 π̃
(k), s.t. the following tensor products are highest-ℓ-weight:

Vq(π
(k))⊗ Vq(π

(l)), Vq(π̃
(k))⊗ Vq(π̃

(l)), for k < l,

and Vq(π
(k))⊗ Vq(π̃

(l)) for all k, l.

A. Moura Trees Are Real And TOG Are Prime



Some Fundamental Fatcs Used in the Proofs

Proposition

A Uq(g̃)-module V is simple iff V and V ∗ are highest-ℓ-weight.
In particular, Vq(π)⊗ Vq(ϖ) is simple iff both Vq(π)⊗ Vq(ϖ) and
Vq(ϖ)⊗ Vq(π) are highest-ℓ-weight.

Theorem (Hernandez 2019, M.-Silva)

Let S1, · · · , Sm be simple Uq(g̃)-modules. Then, S1 ⊗ · · · ⊗ Sm is
highest-ℓ-weight iff Si ⊗ Sj is highest-ℓ-weight for all 1 ≤ i < j ≤ m.

Corollary

Vq(π)⊗ Vq(π̃) is highest-ℓ-weight if there exist π =
∏m

k=1 π
(k),

π̃ =
∏m̃

k=1 π̃
(k), s.t. the following tensor products are highest-ℓ-weight:

Vq(π
(k))⊗ Vq(π

(l)), Vq(π̃
(k))⊗ Vq(π̃

(l)), for k < l,

and Vq(π
(k))⊗ Vq(π̃

(l)) for all k, l.

A. Moura Trees Are Real And TOG Are Prime



Preserving Highest-ℓ-Weight Property After Division

Proposition

Vq(λ)⊗ Vq(ν) is highest-ℓ-weight

provided there exists µ ∈ P+ such
that one of the following conditions holds:

(i) Vq(λµ)⊗ Vq(ν) and Vq(λ)⊗ Vq(µ) are both highest-ℓ-weight;

(ii) Vq(λ)⊗ Vq(µν) and Vq(µ)⊗ Vq(ν) are both highest-ℓ-weight.

Corollary

Let π′,π′′ ∈ P+ with dissociate q-factorizations, π = π′π′′,
G = G(π), G′ = G(π′), G′′ = G(π′′), and suppose ω′,ω′′ ∈ P+ satisfy

ω′ is a source in G′, ω′′ is a sink in G′′, and (ω′′,ω′) ∈ AG.

Then, Vq(π
′)⊗ Vq(π

′′) is not highest-ℓ-weight.
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Examples

Proposition

If Vq(π) is prime and ω ∈ ∂G(π), then Vq(πω
−1) is prime.

In particular, if G(π) is a tree, every connected subgraph is prime.

Type An, n ≥ 3, the following is counterexample for the converse:
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Type An, n ≥ 2, the following is prime, but has non-prime connected
subgraphs
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