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Universidad Nacional de Colombia
TERENUFIA-UNAL research group

Workshop on Representation Theory and Applications
ICTP-SAIFR, São Paulo, Brazil

April 25, 2022



Ukrainian People

Figure: Dedicated to the Ukrainian people



Road Map

Motivation

The Main Goal

Brauer Configuration Algebras
Example of Brauer Configuration Algebra
Message of a Brauer Configuration
Integer Specialization of a Brauer Configuration

Homological Ideals
Nakayama Algebras
On the Number of Homological Ideals Associated with Some
Nakayama Algebras

References



Motivation



Motivation

I P. Fahr and C.M. Ringel: ”A Partition Formula for Fibonacci
Numbers ”, 2008.
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Figure: The 3-Kronecker quiver and an illustration of its
corresponding universal covering.

I New sequence in the OEIS A132262.

I P. Fahr and C.M. Ringel:Categorification of the Fibonacci
Numbers Using Representations of Quivers, 2012.



What is a categorification of a sequence?

According to Ringel and Fahr a categorification of a set of numbers
means to consider instead of these numbers suitable objects in a
category (here representations of quivers), so that the numbers in
question occur as invariants of the objects.

Equality of numbers may be visualized by isomorphisms of objects,
functional relations by functorial ties.
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Figure: The even-index Fibonacci partition triangle.

For example for t = 3 and t = 4, we compute f8 and f10 as follows;

21 = f8 = 0 + 3(3 · 20) + 0 + 1(3 · 22),

55 = f10 = 1 · 7 + 0 + 4(3 · 21) + 0 + 1(3 · 23).
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Aims and Scope of this Talk

In this talk, homological ideals associated with some Nakayama al-
gebras are characterized and enumerated via integer specializations
of some suitable Brauer configuration algebras. Besides, it is shown
how the number of such homological ideals can be connected with
the categorification process of Fibonacci numbers defined by Ringel
and Fahr.



Brauer Configuration Algebras



Brauer Configuration

These algebras were introduced by Green and Schroll as a way to
deal with the research of algebras of wild representation type in 2017.

A Brauer configuration Γ is a quadruple of the form Γ = (Γ0, Γ1, µ,O)
where:

1. Γ0 is a finite set whose elements are called vertices,

2. Γ1 is a finite collection of multisets called polygons. In this
case, if V ∈ Γ1 then the elements of V are vertices possibly
with repetitions, occ(α,V ) denotes the frequency of the
vertex α in the polygon V and the valency of α denoted
val(α) is defined in such a way that:

val(α) =
∑
V∈Γ1

occ(α,V ). (1)



1. µ is an integer valued function such that µ : Γ0 → N where N
denotes the set of positive integers, it is called the multiplicity
function,

2. O denotes an orientation defined on Γ1 which is a choice, for
each vertex α ∈ Γ0, of a cyclic ordering of the polygons in
which α occurs as a vertex, including repetitions, we denote Sα
such collection of polygons.

The set (Sα,≤) is called the successor sequence at the vertex
α.



1. Every vertex in Γ0 is a vertex in at least one polygon in Γ1,

2. Every polygon has at least two vertices,

3. Every polygon in Γ1 has at least one vertex α such that
µ(α)val(α) > 1.

A vertex α ∈ Γ0 is said to be truncated if val(α)µ(α) = 1, that is,
α is truncated if it occurs exactly once in exactly one V ∈ Γ1 and
µ(α) = 1. A vertex is non-truncated if it is not truncated.



The Quiver of a Brauer Configuration Algebra

The quiver QΓ = ((QΓ)0, (QΓ)1) of a Brauer configuration algebra is
defined in such a way that the vertex set (QΓ)0 = {v1, v2, . . . , vm} of
QΓ is in correspondence with the set of polygons {V1,V2, . . . ,Vm}
in Γ1, noting that there is one vertex in (QΓ)0 for every polygon in
Γ1.

Arrows in QΓ are defined by the successor sequences. That is, there
is an arrow vi

si−→ vi+1 ∈ (QΓ)1 provided that Vi ≤ Vi+1 in (Sα,≤
) ∪ {Vt ≤ V1} for some non-truncated vertex α ∈ Γ0. In other
words, for each non-truncated vertex α ∈ Γ0 and each successor V ′

of V at α, there is an arrow from v to v ′ in QΓ where v and v ′

are the vertices in QΓ associated with the polygons V and V ′ in Γ1,
respectively.



The Ideal of Relations and Definition of a Brauer
Configuration Algebra

Fix a polygon V ∈ Γ1 and suppose that occ(α,V ) = t ≥ 1 then
there are t indices i1, . . . , it such that V = Vij . Then the special
α-cycles at v are the cycles Ci1 ,Ci2 , . . . ,Cit where v is the vertex in
the quiver of QΓ associated with the polygon V . If α occurs only
once in V and µ(α) = 1 then there is only one special α-cycle at v .



Let k be a field and Γ a Brauer configuration. The Brauer configu-
ration algebra associated with Γ is defined to be the bounded path
algebra ΛΓ = kQΓ/IΓ, where QΓ is the quiver associated with Γ and
IΓ is the ideal in kQΓ generated by the following set of relations ρΓ

of type I, II and III.

1. Relations of type I. For each polygon
V = {α1, . . . , αm} ∈ Γ1 and each pair of non-truncated
vertices αi and αj in V , the set of relations ρΓ contains all
relations of the form Cµ(αi ) − C ′µ(αj ) where C is a special
αi -cycle and C ′ is a special αj -cycle.

2. Relations of type II. Relations of type II are all paths of the
form Cµ(α)a where C is a special α-cycle and a is the first
arrow in C .

3. Relations of type III. These relations are quadratic
monomial relations of the form ab in kQΓ where ab is not a
subpath of any special cycle unless a = b and a is a loop
associated with a vertex of valency 1 and µ(α) > 1.



Example

As an example, for n ≥ 4 fixed, we consider a Brauer configuration
Γn = (Γ0, Γ1, µ,O) such that:

1. Γ0 = {n − k − 1 ∈ N | 2 ≤ k ≤ n − 1} ∪ {n − 2},
2. Γ1 = {Uk = {n − 2, n − k − 1} | 2 ≤ k ≤ n − 1}.
3. The orientation O is defined in such a way that

I Vertex n − 2 has associated the successor sequence
U2 < U3 < · · · < Un−1, in this case, val(n − 2) = n − 2,

I If 2 ≤ k ≤ n − 1 then at vertex n − k − 1, it holds that the
corresponding successor sequence consists only of Uk , and for
each k , val(n − k − 1) = 1.

4. µ(n − 2) = 1,

5. µ(n − k − 1) = n − 2, 2 ≤ k ≤ n − 1.



Example
The following figure shows the quiver QΓn associated with this
configuration.
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Figure: The quiver QΓn defined by the Brauer configuration Γn.



Example

The ideal IΓn of the corresponding Brauer configuration algebra ΛΓn

is generated by the following relations, for which it is assumed the
following notation for the special cycles:

CUk
n−2 =

{
an−2

1 an−2
2 · · · an−2

k−1, if k = 2,

an−2
k−1a

n−2
k · · · an−2

k−2, otherwise,

CUk
n−k−1 = an−k−1

1 .

(2)

1. ahi a
s
r , if h 6= s, for all possible values of i and r unless for the

loops associated with the vertices n − k − 1,

2. CUk
n−2 −

(
CUk
n−k−1

)n−2
, for all possible values of k,

3. CUk
n−2a with a being the first arrow of CUk

n−2 for all k ,

4.
(
CUk
n−k−1

)n−2
a′ with a′ being the first arrow of CUk

n−k−1 for all

k .



Message of a Brauer Configuration

The concept of the message of a Brauer configuration is helpful to
categorify some integer sequences in the sense of Ringel and Fahr.

Let Γ = {Γ0, Γ1, µ,O} be a Brauer configuration and let U ∈ Γ1 be
a polygon such that U = {αf1

1 , α
f2
2 , . . . , α

fn
n }, where fi = occ(αi ,U).

The term

w(U) = αf1
1 α

f2
2 . . . α

fn
n (3)

is said to be the word associated with U. The sum

M(Γ) =
∑
U∈Γ1

w(U) (4)

is said to be the message of the Brauer configuration Γ.



Integer specialization

An integer specialization of a Brauer configuration Γ is a Brauer
configuration Γe = (Γe

0, Γ
e
1, µ

e ,Oe) endowed with a preserving ori-
entation map e : Γ0 → N, such that

Γe
0 = Img e ⊂ N,

Γe
1 = e(Γ1), if H ∈ Γ1 then e(H) = {e(αi ) | αi ∈ H} ∈ e(Γ1),

µe(e(α)) = µ(α), for any α ∈ Γ0.

(5)

Besides e(U) � e(V ) in Γe
1 provided that U � V in Γ1.

We let w e(U) = (e(α1))f1(e(α2))f2 . . . (e(αn))fn denote the special-
ization under e of a word w(U). In such a case, M(Γe) =

∑
U∈Γe

1

w e(U)

is the specialized message of the Brauer configuration Γ with the
usual integer sum and product (in general with the sum and prod-
uct associated with Img e).



Example

For the Brauer configuration Γn in the Example we define the spe-
cialization e(α) = 2α, α ∈ Γ0 with the concatenation in each word
given by the difference of the specializations of the vertices belonging
to a determined polygon, in such a case for n fixed, we have:

w(Uk) = (n − 2)(n − k − 1), for 2 ≤ k ≤ n − 1,

w e(Uk) = 2n−2 − 2n−k−1, for 2 ≤ k ≤ n − 1,

M(Γe
n) =

∑
Uk∈Γ1

w e(Uk) =
n−1∑
k=1

2n−2 − 2n−k−1.

(6)



Homological Ideals



An epimorphism of algebras φ : A → B is called homological epi-
morphism if it induces a full and faithful functor

Db(φ∗) : Db(B)→ Db(A).

Let I be a two sided ideal of A. Since the quotient map π : A →
A/I is an epimorphism then the induced functor π∗ : mod(A/I ) →
mod(A) is full and faithful.

A two sided ideal I of A is homological if the quotient map π : A→
A/I is an homological epimorphism.



The following results characterize homological ideals:

Proposition

Let I be an ideal of A, then

1. I is an homological ideal of A if and only if TorAn (I ,A/I ) = 0
for all n ≥ 0. In this case, I is idempotent.

2. If I is idempotent and A-projective, then I is homological.

3. If I is idempotent then I is homological if and only if
ExtnA(I ,A/I ) = 0 for all n ≥ 0.



We denote the trace of an A-module M in an A-module N as

trM(N) :=
∑

f ∈HomA(M,N)

Im(f ) ⊂ N.

Remark
We recall that according to Auslander et al., if P is an A-projective
module then trP(A) is an idempotent ideal of A and one obtains all
the idempotent ideals of A this way.

Remark
Note that, since the homological ideals are idempotent ideals and
the idempotent ideals are traces of projective modules over A then
there is always a finite number of homological ideals.



Following the assumption that A is a bounded quiver algebra of the
form kQ/I and the number of vertices of Q are finite for every subset
{a1, ..., am} ⊂ Q0, we will assume the following notation for every
idempotent ideal generated by the trace of P(a1)⊕ · · · ⊕ P(am) in
A:

Ia1,...,am = tr(
P(a1)⊕···⊕P(am)

)(A).
(7)



Nakayama Algebras

Let Q be either a linearly oriented quiver with underlying graph An or
a cycle Ãn with cyclic orientation. That is, Q is one of the following
quivers
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Figure: Quiver Ãn with cyclic orientation and Dynkin diagram An linearly
oriented.

A quotient A of kQ by an admissible ideal I is called a Nakayama
algebra.



In this work, for n ≥ 3 fixed, we consider the algebras AR(i,j,k)
=

kQ/I where Q is a Dynkin diagram of type An linearly oriented and
I is an admissible ideal generated by one relation R(i ,j ,k) of length k
starting at a vertex i and ending at a vertex j of the given quiver,
1 ≤ i < j ≤ n.

The following picture shows the general structure of quivers Q which
we are focused in this paper.

An = 1→ · · · → i → i+1→ · · · → i+k = j → j+1→ · · · → n−1→ n.



Lemma
Every idempotent ideal Ir of an algebra AR(i,j,k)

with j ≤ r or r ≤ i
is homological.

Lemma
Every idempotent ideal It of an algebra AR(i,j,k)

, with
i + 1 ≤ t ≤ j − 1 is not homological.



Lemma
Every idempotent ideal Ir of an algebra AR(i,j,k)

with j ≤ r or r ≤ i
is homological.

Lemma
Every idempotent ideal It of an algebra AR(i,j,k)

, with
i + 1 ≤ t ≤ j − 1 is not homological.



Lemma
If each idempotent ideal Iαw of an algebra AR(i,j,k)

is not
homological then every idempotent ideal of the form Iα1,...,αl

is not
homological for 2 ≤ l ≤ k − 1.

Lemma
For l fixed, if each idempotent ideal Iαw of an algebra AR(i,j,k)

with
1 ≤ w ≤ l is homological then every idempotent ideal of the form
Iα1,...,αl

is also homological.

Lemma
Every ideal Ii ,t or It,j of an algebra AR(i,j,k)

is homological.



Lemma
If each idempotent ideal Iαw of an algebra AR(i,j,k)

is not
homological then every idempotent ideal of the form Iα1,...,αl

is not
homological for 2 ≤ l ≤ k − 1.

Lemma
For l fixed, if each idempotent ideal Iαw of an algebra AR(i,j,k)

with
1 ≤ w ≤ l is homological then every idempotent ideal of the form
Iα1,...,αl

is also homological.

Lemma
Every ideal Ii ,t or It,j of an algebra AR(i,j,k)

is homological.



Lemma
If each idempotent ideal Iαw of an algebra AR(i,j,k)

is not
homological then every idempotent ideal of the form Iα1,...,αl

is not
homological for 2 ≤ l ≤ k − 1.

Lemma
For l fixed, if each idempotent ideal Iαw of an algebra AR(i,j,k)

with
1 ≤ w ≤ l is homological then every idempotent ideal of the form
Iα1,...,αl

is also homological.

Lemma
Every ideal Ii ,t or It,j of an algebra AR(i,j,k)

is homological.



Remark
If the non homological ideal It has the form It1,...,tn the previous
Lemma also holds.

Lemma
For 1 ≤ h ≤ i − 1, 1 ≤ l ≤ k − 1 and 1 ≤ m ≤ n − j fixed. Every
idempotent ideal of the form Iz1,...,zh,t1,...,tl ,y1,...,ym of an algebra
AR(i,j,k)

, where za ∈ [1, i − 1], tb ∈ [i + 1, j − 1], yc ∈ [j + 1, n] is
not homological.

Lemma
For 1 ≤ h ≤ i − 1, 1 ≤ l ≤ k − 1 and 1 ≤ m ≤ n − j fixed.
The idempotent ideals Iz1,...,zh,t1,...,tl and It1,...,tl ,y1,...,ym of an algebra
AR(i,j,k)

where za ∈ [1, i − 1], tb ∈ [i + 1, j − 1], yc ∈ [j + 1, n] are
not homological.



Remark
If the non homological ideal It has the form It1,...,tn the previous
Lemma also holds.

Lemma
For 1 ≤ h ≤ i − 1, 1 ≤ l ≤ k − 1 and 1 ≤ m ≤ n − j fixed. Every
idempotent ideal of the form Iz1,...,zh,t1,...,tl ,y1,...,ym of an algebra
AR(i,j,k)

, where za ∈ [1, i − 1], tb ∈ [i + 1, j − 1], yc ∈ [j + 1, n] is
not homological.

Lemma
For 1 ≤ h ≤ i − 1, 1 ≤ l ≤ k − 1 and 1 ≤ m ≤ n − j fixed.
The idempotent ideals Iz1,...,zh,t1,...,tl and It1,...,tl ,y1,...,ym of an algebra
AR(i,j,k)

where za ∈ [1, i − 1], tb ∈ [i + 1, j − 1], yc ∈ [j + 1, n] are
not homological.



Remark
If the non homological ideal It has the form It1,...,tn the previous
Lemma also holds.

Lemma
For 1 ≤ h ≤ i − 1, 1 ≤ l ≤ k − 1 and 1 ≤ m ≤ n − j fixed. Every
idempotent ideal of the form Iz1,...,zh,t1,...,tl ,y1,...,ym of an algebra
AR(i,j,k)

, where za ∈ [1, i − 1], tb ∈ [i + 1, j − 1], yc ∈ [j + 1, n] is
not homological.

Lemma
For 1 ≤ h ≤ i − 1, 1 ≤ l ≤ k − 1 and 1 ≤ m ≤ n − j fixed.
The idempotent ideals Iz1,...,zh,t1,...,tl and It1,...,tl ,y1,...,ym of an algebra
AR(i,j,k)

where za ∈ [1, i − 1], tb ∈ [i + 1, j − 1], yc ∈ [j + 1, n] are
not homological.



The following results allow us to compute the number of
homological and non homological ideals in a bounded algebra
AR(i,j,k)

by using the integer specialization e of the Brauer
configuration Γn introduced in the Example.

Theorem
For n ≥ 4 fixed and 2 ≤ k ≤ n − 1 the number |NHIkn | of non
homological ideals of an algebra AR(i,j,k)

is given by the identity

|NHIkn | = w e(Uk).



Corollary

For n ≥ 4 fixed and 2 ≤ k ≤ n − 1 the number of homological
ideals |HIkn | of an algebra AR(i,j,k)

is given by the identity |HIkn | =

2n − w e(Uk) = 3 · 2n−2 + 2n−k−1.



The formula obtained in the last Theorem induces the following
triangle:

Non homological triangle NHIT

n/k 2 3 4 5 6 7 8 · · ·
3 1 - - - - - - -

4 2 3 - - - - - -

5 4 6 7 - - - - -

6 8 12 14 15 - - - -

7 16 24 28 30 31 - - -
...

...
...

...
...

...
...

...
...



Entries |NHIkn | of triangle NHIT can be calculated inductively as
follows: we start by defining |NHI2

n| = 2n−3 for all n ≥ 3. Now, we
assume that |NHIkn | = 0 with k ≤ 1 and for the sake of clarity we
denote the specialization under e of a word w(Uk) of the polygon
Uk in the Brauer configuration Γn as w e(Un

k ). Then, for k ≥ 3:

w e(Uk) = w e(Un
k ) = (w e(Un

k−1) + w e(Un−1
k−1))− w e(Un−1

k−2).

or equivalently,

|NHIkn | = (|NHIk−1
n |+ |NHIk−1

n−1|)− |NHIk−2
n−1|.

These arguments prove the following proposition.



Proposition

M(Γe
n) equals the sum of the elements in the n-th row of the non

homological triangle NHIT.

Remark

The integer sequence generated by M(Γe
n) =

n−1∑
k=1

2n−2 − 2n−k−1 =

{1, 5, 17, 49, 129, 321, 769, 1793, 4097, 9217, . . .} is encoded
A000337 in the OEIS. Elements of the sequence A000337 also
correspond to the sums of the elements of the rows of the
Reinhard Zumkeller triangle.



Proposition

M(Γe
n) equals the sum of the elements in the n-th row of the non

homological triangle NHIT.

Remark

The integer sequence generated by M(Γe
n) =

n−1∑
k=1

2n−2 − 2n−k−1 =

{1, 5, 17, 49, 129, 321, 769, 1793, 4097, 9217, . . .} is encoded
A000337 in the OEIS. Elements of the sequence A000337 also
correspond to the sums of the elements of the rows of the
Reinhard Zumkeller triangle.



Similarly, for the homological ideals last Corollary induces the fol-
lowing triangle:

Homological triangle HIT.

n/k 2 3 4 5 6 7 8 · · ·
3 7 - - - - - - -

4 14 13 - - - - - -

5 28 26 25 - - - - -

6 56 52 50 49 - - - -

7 112 104 100 98 97 - - -
...

...
...

...
...

...
...

...
...

The elements of the homological triangle are closely related with
the research of categorification of integer sequences. Particularly,
these numbers deal with the work of Ringel and Fahr regarding
categorification of Fibonacci numbers.



Note that to each entry di ,i−j it is possible to assign a weight wi ,i−j
by using the numbers in the homological triangle HIT as follows:

wi ,i−j =



|HIk2s+2| − 22·s−k+1, if j is even, i is odd and i 6= j + 1,

|HIk2s+1| − 22·s−k , if j is even, i is even,

3, if i odd, j even and i = j + 1,

1, if i = j = 2h for some h ≥ 0,

0, if j is odd, i 6= j .

Where s = b i−j2 c and bxc is the greatest integer number less than
x . If we consider the multiplication of the entry di ,i−j with its
corresponding weight wi ,i−j we can define a partition formula for
even-index Fibonacci numbers in the following form:

f2i+2 =
i∑

j=0

(wi ,i−j)(di ,i−j), (8)



The following result give us a relationship between the number of
homological ideals and Fibonacci numbers:

Theorem

2t∑
j=0

(w2t,2t−j)(d2t,2t−j) =
∑
reven

|Tr | · at [r ], t ≥ 0

2t−1∑
j=0

(w2t−1,2t−1−j)(d2t−1,2t−1−j) =
∑
rodd

|Tr | · at [r ], t ≥ 1.

(9)
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