Beyond the 10-fold way: 13 associative $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded superdivision algebras

Zhanna Kuznetsova

CMCC - Federal University of ABC Santo Andre - SP, Brazil

Workshop on Representation Theory and Applications ICTP - SAIFR, 25-29th April 2022 São Paulo, Brazil

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

10-fold way

Altland and Zirnbauer discovered in 1996 that substances can be divides in 10 kinds.

The basic idea:

- some substances have time reversal symmetry T (described by this ainit-unitary operator). There are three possibilities T² = 1, -1 or T = 0;
- some substances have charge conjugation symmetry C. Possibilities C² = 1, -1 or C = 0;
- \blacktriangleright \Rightarrow there are 9 klasses of matter. Where is the 10th kind?
- If *T* = 0 and *C* = 0 (no time reversal and charge conjugation symmetries) but a substance can be symmetric under *S* = *T C* symmetry. This (*S* = 0, *S* = 1) gives the 10th class of matter.

It happened that the 10-fold way is in a strong connection with the classification of super-division algebras.

On topological phases of condensed matter systems

Altland - Zirnbauer classes

quadratic fermionic Hamiltonians Ex. $H = -i\hbar v_F \psi^{\dagger} (\sigma_x \tau_z \partial_x + \sigma_y \partial_y) \psi$.

two anti-unitary + one unitary symmetry

Symmetry	Α	AIII	AI	BDI	D	DIII	All	CII	С	CI
Т	0	0	1	1	0	-1	-1	-1	0	1
С	0	0	0	1	1	1	0	-1	-1	-1
S	0	1	0	1	0	1	0	1	0	1

There is a *bijection* between the known universality classes of disordered single-particle systems and the large families of symmetric spaces (Cartan's classification).

Graded division algebras

An associative unital algebra \mathbb{D} over a field *k* is called a **division algebra** if any nonzero element of \mathbb{D} is invertible.

A graded algebra \mathbb{D} over *k* is a **graded division algebra** is any nonzero *homogeneous* element is invertible.

In this talk we consider \mathbb{Z}_2 -graded and $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded division algebras over a field \mathbb{R} of real numbers.

 \mathbb{Z}_2 -graded (or *superdivision*) algebras: Wall, Graded Brauer Groups, 1964; Trimble, a paper on superdivision algebras, 2005

There are exactly 10 superdivision algebras:

3 of them are purely even - $\mathbb{R}, \mathbb{C}, \mathbb{H}$;

7 of them have nonzero odd sector.

Superdivision algebras

We consider \mathbb{Z}_2 grading: $\mathbb{D} = \mathbb{D}_0 \oplus \mathbb{D}_1$.

If $\mathbb{D}_1 = \{0\}$, it gives the options: $\mathbb{D}_0 = \mathbb{R}, \mathbb{D}_1 = \{0\};$ $\mathbb{D}_0 = \mathbb{C}, \mathbb{D}_1 = \{0\};$ $\mathbb{D}_0 = \mathbb{H}, \mathbb{D}_1 = \{0\}.$

If $\mathbb{D}_1 \neq \{0\}$ and $\mathbb{D}_0 = \mathbb{R}$. We choose a nonzero element $e \in \mathbb{D}_1$. We can rescale *e* to obtain $e^2 = 1$ or $e^2 = -1$. $\mathbb{D}_0 \cong \mathbb{D}_1 \cong \mathbb{R}$ with an odd element *e* such that $e^2 = 1$; $\mathbb{D}_0 \cong \mathbb{D}_1 \cong \mathbb{R}$ with an odd element *e* such that $e^2 = -1$.

If $\mathbb{D}_0 = \mathbb{C}$, than the map $a \mapsto eae^{-1}$ defines an authomorfism of \mathbb{D}_0 which can be or identity, or complex conjugation: $eae^{-1} = a$ or $eae^{-1} = \overline{a}$. It gives three options: $\mathbb{D}_0 \cong \mathbb{D}_1 \cong \mathbb{C}$, odd element e with ei = ie and $e^2 = 1$; $\mathbb{D}_0 \cong \mathbb{D}_1 \cong \mathbb{C}$, odd element e with ei = -ie and $e^2 = 1$; $\mathbb{D}_0 \cong \mathbb{D}_1 \cong \mathbb{C}$, odd element e with ei = -ie and $e^2 = -1$.

Superdivision algebras

In the case $\mathbb{D}_0 = \mathbb{H}$ we have two cases: $\mathbb{D}_0 \cong \mathbb{D}_1 \cong \mathbb{H}$, the element *e* commutes with \mathbb{D}_0 and $e^2 = 1$; $\mathbb{D}_0 \cong \mathbb{D}_1 \cong \mathbb{H}$, the element *e* commutes with \mathbb{D}_0 and $e^2 = -1$.

We see here 10 different \mathbb{Z}_2 -graded division algebras.

In this talk we discuss $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded division algebras

obtained by use of the alphabetic presentation of Clifford algebras.

$\mathbb{Z}_2\times\mathbb{Z}_2$ grading

We will consider the grading labeled by the $(a, b) \in \mathbb{Z}_2 \times \mathbb{Z}_2$.

$\mathbb{D}=\mathbb{D}_{00}\oplus\mathbb{D}_{01}\oplus\mathbb{D}_{10}\oplus\mathbb{D}_{11}$

A homogeneous element g belongs to one of the graded sectors $g \in \mathbb{D}_{ij}$.

The graded multiplication results in the sector by the rule

$$g_{ij}g_{kl} \subset \mathbb{D}_{i+k,j+l}$$

the sum in the indexes i + k and j + l is understood as mod 2.

The procedure is similar to this of superdivision algebras, we begin with real, or complex numbers, or quaternions and construct a graded spaces.

It comes that alphabetic presentation is very much useful for the classification.

Alphabetic presentation

We denote by letters the following real 2×2 matrices

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad X = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$
$$Y = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

A tensor product of *n* matrices we write as a *n*-letter word. Example $AXY \equiv A \otimes X \otimes Y$.

Properties:

- 1. if the word begins with *I* or *X*, the matrix *M* is block-diagonal; If the word begins with *Y* or *A*, the matrix is block-antidiagonal;
- 2. if a matrix *M* includes even number of the letter *A*, than $M^2 = Id$; If *M* contains an odd number of *A*, than $M^2 = -Id$.

For example, the 8 × 8 matrix M = AXA is block-antidiagonal and $M^2 = Id$.

Example: quaternions

The three imaginary quaternions q_i (i = 1, 2, 3) satisfy

$$q_i q_j = -\delta_{ij} + \varepsilon_{ijk} q_k$$

(where $\varepsilon_{123} = 1$.)

The alphabetic presentation is given by

$$\overline{q}_1 = IA, \qquad \overline{q}_2 = AY, \qquad \overline{q}_3 = AX,$$

or by

$$\widetilde{q}_1 = AI, \qquad \widetilde{q}_2 = YA, \qquad \widetilde{q}_3 = XA.$$

The 4 × 4 real matrices for \bar{q}_i are given by

$$\overline{q}_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}, \qquad \overline{q}_2 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix},$$

$$\overline{q}_3 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

In the alphabetic presentation of not-graded division algebras

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

ℝ: *I*;

 $\mathbb{C} \text{: } \textit{I},\textit{A}$

 $\mathbb{H}: \mathit{II}, \mathit{IA}, \mathit{AX}, \mathit{AY}.$

Graded division algebras

A homogeneous element $g \in \mathbb{D}$ is represented by a matrix $g = M \otimes N$.

The matrix *M* encodes the information of the grading: \mathbb{Z}_2 or $\mathbb{Z}_2 \times \mathbb{Z}_2$.

The matrix *N* is for the real, complex or quaternionic structure.

The matrix size for *M* is

 $\mathbb{Z}_{2}\text{-grading}: \ (2\times 2); \qquad \qquad \mathbb{Z}_{2}\times \mathbb{Z}_{2}\text{-grading}: \ (4\times 4).$

The matrix size for N is

 \mathbb{R} -series : (1×1) ; \mathbb{C} -series : (2×2) ; \mathbb{H} -series : (4×4) .

A D F A 同 F A E F A E F A Q A

Structure

 \mathbb{Z}_2 grading: the even (odd) sector is denoted as M_0 (M_1).

$$\left(\begin{array}{cc} * & 0 \\ 0 & * \end{array}\right) \in M_0, \qquad \left(\begin{array}{cc} 0 & * \\ * & 0 \end{array}\right) \in M_1.$$

 $M_0: I, X; M_1: Y, A.$

 $\mathbb{Z}_2\times\mathbb{Z}_2\text{-grading:}$

(* 0 0	0 * 0 0	0 0 * 0	$\left.\begin{array}{c}0\\0*\end{array}\right)\in M_{00},$	$\left(\begin{array}{ccccc} 0 & * & 0 & 0 \\ * & 0 & 0 & 0 \\ 0 & 0 & 0 & * \\ 0 & 0 & * & 0 \end{array}\right) \in M_{01},$
(0 (0 * 0	0 0 0 *	* 0 0 0	$\left.\begin{array}{c}0*\\0\\0\end{array}\right)\in M_{10},$	$\left(\begin{array}{cccc} 0 & 0 & 0 & * \\ 0 & 0 & * & 0 \\ 0 & * & 0 & 0 \\ * & 0 & 0 & 0 \end{array}\right) \in M_{11}.$

<i>M</i> ₀₀ :	11, 1X,	XI, XX;	<i>M</i> ₀₁ :	IA, IY, XA, XY;	
<i>M</i> ₁₀ :	AI, AX,	YI, YX;	<i>M</i> ₁₁ :	AA, AY, YA, YY.	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

\mathbb{Z}_2 -graded superdivision algebras

Without loss of generality (up to similarity transformations) the even sector \mathbb{D}_0 can be expressed as

R-series : 1; C-series : 11, 1A; H-series : 111, 11A, 1AX, 1AY.

Real series:

$$\begin{split} \mathbb{D}_{\mathbb{R};1}^{[1]} & : \qquad I \in \mathbb{D}_0^{[1]}, \quad A \in \mathbb{D}_1^{[1]}, \quad e = A, e^2 = -1 \\ \mathbb{D}_{\mathbb{R};2}^{[1]} & : \qquad I \in \mathbb{D}_0^{[1]}, \qquad Y \in \mathbb{D}_1^{[1]} \quad e = Y, e^2 = 1. \end{split}$$

Complex series (i = IA):

$$\begin{split} \mathbb{D}_{\mathbb{C};1}^{[1]} &: & II, \ IA \in \mathbb{D}_{0}^{[1]}, & AX, \ AY \in \mathbb{D}_{1}^{[1]}, \ e = AX, \ ei = -ie, \ e^{2} = -1 \\ \mathbb{D}_{\mathbb{C};2}^{[1]} &: & II, \ IA \in \mathbb{D}_{0}^{[1]}, & YX, \ YY \in \mathbb{D}_{1}^{[1]}, \ e = YX, \ ei = -ie, \ e^{2} = 1 \\ \mathbb{D}_{\mathbb{C};3}^{[1]} &: & II, \ IA \in \mathbb{D}_{0}^{[1]}, & AI, \ AA \in \mathbb{D}_{1}^{[1]} \ e = IA, \ ie = ei, \ e^{2} = 1 \end{split}$$

Quaternionic series:

$$\begin{split} \mathbb{D}_{\mathbb{H};1}^{[1]} & : & \textit{III, IIA, IAY, IAX} \in \mathbb{D}_0^{[1]}, & \textit{AII, AIA, AAY, AAX} \in \mathbb{D}_1^{[1]}, & \textit{e} = \textit{AII, e}^2 = -1 \\ \mathbb{D}_{\mathbb{H};2}^{[1]} & : & \textit{III, IIA, IAY, IAX} \in \mathbb{D}_0^{[1]}, & \textit{YII, YIA, YAY, YAX} \in \mathbb{D}_1^{[1]} & \textit{e} = \textit{YII, e}^2 = 1 \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Associated superdivision algebras

Symmetry	Α	AIII	AI	BDI	D	DIII	All	CII	С	CI
Т	0	0	1	1	0	-1	-1	-1	0	1
С	0	0	0	1	1	1	0	-1	-1	-1
S	0	1	0	1	0	1	0	1	0	1
division	C3	\mathbb{C}	C2	R2	\mathbb{R}	R1	H2	C1	\mathbb{H}	H1

$\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded division algebras: the structure

The alphabetic presentation is extended to the $\mathbb{Z}_2 \times \mathbb{Z}_2$ superdivision algebras by taking into account that:

up to similarity transformations the even sector D₀₀ can be expressed as

ℝ-series : II; C-series : III, IIA; H-series : IIII, IIIA, IIAX, IIAY; (2)

► each one of the three subalgebras S₁₀, S₀₁, S₁₁ ⊂ D, given by the direct sums

 $\mathbb{S}_{01} := \mathbb{D}_{00} \oplus \mathbb{D}_{01} \qquad \mathbb{S}_{10} := \mathbb{D}_{00} \oplus \mathbb{D}_{10}, \qquad \mathbb{S}_{11} := \mathbb{D}_{00} \oplus \mathbb{D}_{11}, \tag{3}$

is isomorphic to one (of the seven) Z₂-graded superdivision algebra;

In the alphabetic presentation can be assumed for S₀₁ and, since the second Z₂ grading is independent from the first one, S₁₀. The closure under multiplication for any g ∈ D₀₁, g' ∈ D₁₀ implies that gg' ∈ D₁₁ is alphabetically presented.

The 13 cases are split into 13 = 4 + 5 + 4 subcases; 4 -from the real series, 5 - from the complex series, 4 - from the quaternionic series.

The sectors 01, 10, 11 are on equal footing, the \mathbb{Z}_2 -graded subalgebra projections of a superdivision algebra can be characterized by the triple

$$(S_{\alpha}/S_{\beta}/S_{\gamma}),$$
 (4)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where the order of the subalgebras is inessential.

The $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded division algebras: real series

The matrix representatives of "real" division algebras are expressed in the table below:

	00	01	10	11
$\mathbb{D}_{\mathbb{R};1}^{[2]}$:	11	IA	AX	AY
$\mathbb{D}_{\mathbb{R};2}$:	11	IA	ΥX	YY
$\mathbb{D}_{\mathbb{R};3}$:		IA	AI	AA
$\mathbb{D}^{[2]}_{\mathbb{R};4}$:	11	IY	YI	YY

Comment 1 - squaring the matrices entering the 01, 10, 11 sectors gives the signs

 $\mathbb{D}_{\mathbb{R};1}:\;---;\quad \mathbb{D}_{\mathbb{R};2}^{[2]}:\;++-;\quad \mathbb{D}_{\mathbb{R};3}^{[2]}:\;+--;\quad \mathbb{D}_{\mathbb{R};4}:\;+++.$

Comment 2 - the projections to the \mathbb{Z}_2 -graded subalgebras, see formula (4), are given by

 $\mathbb{D}_{\mathbb{R};1}:(\underline{1}/\underline{1}/\underline{1});\qquad \mathbb{D}_{\mathbb{R};2}:(\underline{1}/\underline{2}/\underline{2});\qquad \mathbb{D}_{\mathbb{R};3}:(\underline{1}/\underline{1}/\underline{2});\qquad \mathbb{D}_{\mathbb{R};4}:(\underline{2}/\underline{2}/\underline{2}),$

where $\underline{1} := \mathbb{D}_{\mathbb{R};1}^{[1]}$ and $\underline{2} := \mathbb{D}_{\mathbb{R};2}^{[1]}$. *Comment* 3 - the $\mathbb{D}_{\mathbb{R};1}^{[2]}$ superdivision algebra is a $\mathbb{Z}_2 \times \mathbb{Z}_2$ gradation of the quaternions \mathbb{H} , the $\mathbb{D}_{\mathbb{R};2}^{[2]}$ superdivision algebra is a $\mathbb{Z}_2 \times \mathbb{Z}_2$ gradation of the split-quaternions $\widetilde{\mathbb{H}}$, the superdivision algebras $\mathbb{D}_{\mathbb{R};3}^{[2]}$ and $\mathbb{D}_{\mathbb{R};4}^{[2]}$ are commutative.

The complex $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded division algebras

	00	01	10	11
D _{C;1} :	III, IIA	IAX, IAY	AIX, AIY	AAI, AAA
D ^[2] C;2 :	III, IIA	AIX, AIY	IYX, IYY	AYI, AYA
D ^[2] ℂ;3:	III, IIA	YIX, YIY	IYX, IYY	YYI, YYA
$\mathbb{D}^{[2]}_{\mathbb{C};4}$:	III, IIA	YII, YIA	XYI, XYA	AYI, AYA
D ^[2] C;5 :	III, IIA	YII, YIA	IYI, IYA	YYI, YYA

We denote here the three complex \mathbb{Z}_2 -graded superalgebras as $\underline{1} := \mathbb{D}_{C;1}^{[1]}$, $\underline{2} := \mathbb{D}_{C;2}^{[1]}$ and $\underline{3} := \mathbb{D}_{C;3}^{[1]}$. The table below (where the first underlined number denotes \mathbb{S}_{01} , the second number \mathbb{S}_{10} and the arrow gives the \mathbb{S}_{11} output:

$$\begin{split} \underline{1} \times \underline{1} \to \underline{3}, & \underline{1} \times \underline{2} \to \underline{3}, & \underline{1} \times \underline{3} \Rightarrow \swarrow_{\underline{2}}^{-1}, \\ \underline{2} \times \underline{1} \to \underline{3}, & \underline{2} \times \underline{2} \to \underline{3}, & \underline{2} \times \underline{3} \Rightarrow \swarrow_{\underline{2}}^{-1}, \\ \underline{3} \times \underline{1} \Rightarrow \swarrow_{\underline{2}}^{-1}, & \underline{3} \times \underline{2} \Rightarrow \swarrow_{\underline{2}}^{-1}, & \underline{3} \times \underline{3} \Rightarrow \underline{3}^{(*)}. \end{split}$$

 $\mathbb{D}_{\mathbb{C};1}^{[2]}:(\underline{1}/\underline{1}/\underline{3}); \quad \mathbb{D}_{\mathbb{C};2}^{[2]}:(\underline{1}/\underline{2}/\underline{3}); \quad \mathbb{D}_{\mathbb{C};3}^{[2]}:(\underline{2}/\underline{2}/\underline{3}); \quad \mathbb{D}_{\mathbb{C};4}^{[2]}:(\underline{3}/\underline{3}/\underline{3}); \quad \mathbb{D}_{\mathbb{C};5}^{[2]}:(\underline{3}/\underline{3}/\underline{3}).$

In D₄ generators in different sectors anticommute; In D₅ generators in different sectors commute = 🖡 👘 🚊 🖉 🖉 🖓

Quaternionic $\mathbb{Z}_2 \times \mathbb{Z}_2$ -graded division algebras

The generators of the 00 sector are chosen as

00 : IIII, IIIA, IIAX, IIAY.

The generators of the 01, 10, 11 sectors are expressed as

	01	10	11		
	IAII, IAIA, IAAX, IAAY	AXII, AXIA, AXAX, AXAY	AYII, AYIA, AYAX, AYAY		
D _{H;2} :	IAII, IAIA, IAAX, IAAY	AIII, AIIA, AIAX, AIAY	AAII , AAIA , AAAX, AAAY		
	IAII, IAIA, IAAX, IAAY	YXII, YXIA, YXAX, YXAY	YYII, YYIA, YYAX, YYAY		
D _{H;4} ^[2] :	IYII, IYIA, IYAX, IYAY	YIII, YIIA, YIAX, YIAY	YYII, YYIA, YYAX, YYAY		

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $\underline{1}:=\mathbb{D}_{\mathbb{H};1}^{[1]} \text{ and } \underline{2}:=\mathbb{D}_{\mathbb{H};2}^{[1]}.$

The quaternionic projections are then given by

 $\mathsf{D}^{[2]}_{\mathbb{H};1}:(\underline{1}/\underline{1}/\underline{1});\qquad \mathbb{D}^{[2]}_{\mathbb{H};2}:(\underline{1}/\underline{1}/\underline{2});\qquad \mathbb{D}^{[2]}_{\mathbb{H};3}:(\underline{1}/\underline{2}/\underline{2});\qquad \mathbb{D}^{[2]}_{\mathbb{H};4}:(\underline{2}/\underline{2}/\underline{2}).$

Some considerations

- This classification is done in terms os matrix representation of Clifford algebras expressed by alphabetic presentation. It can be easily expressed in terms of graded elements e_i, i = 1, 2, 3 together with the description of admissible properties as it was done for super division algebras.
- It is interesting to discuss the possibilities to "refine" the periodic table of condensed matter using the extra grading. Parafermionic sistems? What are their properties? Where they can be found?

► The division algebra are: 3 + 7 (superdivision) + 13 (Z₂ × Z₂-division). What is the 20-fold way?

Thank you for the attention

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ