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Let k be an algebraically closed field of char 0.

Definition
A Jordan algebra is a commutative k-algebra (J, ·) satisfying

(x2 · y) · x = x2 · (y · x) x , y ∈ J.

Any associative k-algebra A gives rise to a Jordan algebra A+ under
symmetric multiplication

x · y =
1
2

(xy + yx)

A Jordan algebra is called special if it can be realized as a Jordan
subalgebra of some A+.
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Example (Two types of special algebras)

Let (A, ?) be an associative algebra with involution. The
subspace of hermitian elements H(A, ?) = {x? = x | x ∈ A}
forms a special Jordan algebra.
Let f be symmetric bilinear form on vector space V
dimV ≥ 2. The space J(V , f ) = k1⊕ V becomes a Jordan
algebra (called Jordan algebra of Clifford type) by making 1
act as a unit and defining v · w = f (v ,w)1, v ,w ∈ V .
J(V , f ) is special since we have one-to-one mapping

J(V , f )→ C (V , f )

α1 + v = α1 + v + R,

where C (V , f ) = T (V )/R is the Clifford algebra of V relative
to f , R = 〈v ⊗ v − f (v , v)1 | v ∈ V 〉.
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Representations

Suppose M is a k-vector space with l : (a,m)→ am,
r : (a,m)→ ma, define a product on Ω = J ⊕M

(a1 + m1) ◦ (a2 + m2) = a1 · a2 + a1m2 + m1a2.

Definition
M is a Jordan bimodule for J ⇔ Ω = (Ω, ◦) is a Jordan algebra.
Equivalently a linear map ρ : J → EndkM, ρ(a)m = am defines a
(bi)representation if for all a, b ∈ J

[ρ(a), ρ(a · a)] = 0,

2ρ(a)ρ(b)ρ(a) + ρ(a·2 · b) = 2ρ(a)ρ(a · b) + ρ(b)ρ(a·2)
(1)

J-bimod is equivalent to U-mod, where U = U(J), the universal
multiplication envelope. U(J) = T (J)/R , where R is an ideal
generated by (1).
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Jacobson has shown the following
1 If dimkJ <∞ ⇒ dimkU(J) <∞.
2 For any finite-dimensional simple J its U(J) is

finite-dimensional semi-simple.
3 if J has an identity element e

U(J) = k⊕ S1(J)⊕ U1(J),

where k⊕ S1(J) = S(J) = T (J)/〈ab + ba− 2a · b〉 the
special universal envelope of J.

J-mod ' J-mod0 ⊕ J-mod 1
2
⊕ J-mod1,

e acts as 0 1
2 1

J-mod 1
2
' S(J)-mod, J ⊂ S(J)+ ⇐⇒ J is special
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Albert’s classification of simple finite-dimensional Jordan algebras:
deg = 1 k
deg = 2 J(f , n) := J(V , f ), where f is non-degenerate.
deg ≥ 3 Hn(C ), n ≥ 3, (C , τ) composition algebra of dimension 1, 2, 4

for n ≥ 4, and 1, 2, 4, 8 for n = 3.

deg = 2: S1(J) ' C (V , f ) and U1(J) ' T (V )/RM ,
RM = 〈u ⊗ v ⊗ u − f (u, v)u | u, v ∈ V 〉,

J S1(J) U1(J)

J(f , n) M2n ⊕sMs

n is even s =
(n+1

1

)
,
(n+1

3

)
, . . . ,

(n+1
n+1

)
J(f , n) M2n−1 + M2n−1 M 1

2(n+1
ν ) ⊕M 1

2(n+1
ν ) ⊕s Ms

n = 2ν − 1 s =
(n+1

0

)
,
(n+1

1

)
, . . . ,

(n+1
ν−1

)
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deg ≥ 3: If C is associative S1(Hn(C )) ' Mn(C ).

There is a functor Hn: (C , τ)-bimod → Hn(C )-mod.

J S1(J) U1(J)

Hn(k) Mn M n(n+1)
2
⊕M n(n−1)

2

Hn(k + k) Mn ⊕Mn Mn2 ⊕M n(n+1)
2
⊕M n(n+1)

2
⊕M n(n−1)

2
⊕M n(n−1)

2

Hn(M2(k)) M2n Mn(2n−1) ⊕Mn(2n+1)
∗

A 0 M27
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Case of Rad2J = 0

S1(J) for degJ ≥ 3 were described in K., Ovsienko S., Shestakov I.,
Representation type of Jordan algebras, 2011

Quivers Q(S1(J)) were constructed using generalization of functor
Hn. It was shown that

Rad2S1(J) = 0.

For finite dimensional associative A, Rad2A = 0, A is of finite
(tame) representation type ⇐⇒ the quiver double D(Q(A)) is a
disjoint union of oriented Dynkin diagrams (extended Dynkin
diagrams).
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The Tits-Kantor-Koecher construction

A short grading of g is a Z-grading of the form g = g−1⊕ g0⊕ g1.
Let P be the commutative bilinear map on J: P(x , y) = x · y .
We associate to J a Lie algebra with short grading

Lie(J) = g−1 ⊕ g0 ⊕ g1.

Put g−1 = J, g0 = 〈La, [La, Lb]|a, b ∈ J〉, g1 = 〈P, [La,P]|a ∈ J〉
[L, x ] = L(x) for x ∈ g−1, L ∈ g0;
[B, x ](y) = B(x , y) for B ∈ g1 and x , y ∈ g−1;
[L,B](x , y) = L(B(x , y))− B(L(x), y)− B(x , L(y)) for any
B ∈ g1, L ∈ g0 and x , y ∈ g−1.

Then g = Lie(J) is Lie algebra and is called the
Tits-Kantor-Koecher (TKK) construction for J.
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A short subalgebra of g is an sl2 subalgebra spanned by e, h, f
such that the eigenspace decomposition of ad h defines a short
grading on g.

For any J with identity e consider in Lie(J)

hJ = −Le , fJ = P, then αJ = 〈e, hJ , fJ〉

defines short subalgebra of Lie(J).

Let g = g−1 ⊕ g0 ⊕ g1 be the Z2-graded Lie algebra, p ∈ g1. For
any x , y ∈ g−1 set

x · y = [[p, x ], y ]

then Jor(g) := (g−1, ·) is a Jordan algebra.
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Relations between J-mod and g = TKK (J)-modules?
We define two adjoint functors Jor and Lie between J-mod and
g-modules admitting a short grading.

Not every J-module can be obtained from a g-module by
application of Jor : one has to consider ĝ the universal central
extension of g.

Let S (resp. S 1
2
) be the category of ĝ-modules M such that the

action of αJ induces a short grading on M (resp. a grading of
length 2, namely M− 1

2
⊕M 1

2
).

J-mod 1
2
' S 1

2
J-mod0 ⊕ J-mod1 ↔ S
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Representation table for TKK (J)

J g S 1
2

S
Hn(k) sp2n V ad , Λ2V

Hn(k + k) sl2n V , V ∗ ad , S2(V ), S2(V ∗), Λ2(V ), Λ2(V ∗)

Hn(M2(k)) so4n V ad , S2(V )

A E7 ad

J(f , n) son+3 Γ Λi (V ), i = 1, . . . , ν + 1
n = 2ν spinor
J(f , n) son+3 Γ+, Γ− Λi (V ), i = 1, . . . , ν

n = 2ν − 1 spinor Λν+1(V )±
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Quiver of an abelian category

Let C be an abelian category with finitely many simple modules
such that every object has finite length and every simple object has
a projective cover.
Then C is equivalent to the category of finite-dimensional
A-modules. If L1, . . . , Lr is the set of all up to isomorphism simple
objects in C and P1, . . . ,Pr are their projective covers, then A is a
pointed algebra which is usually realized as the path algebra of a
certain quiver Q with relations.
The vertices

Q0 = {simple modules L1, . . . , Lr}

Q1 = {#arrows from vertex Li to vertex Lj is dim Ext1(Lj , Li )}
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Q(S) and Q(S 1
2
) are now straightforward:

Lemma
Let g = gs + R be the Levi decomposition of g. Denote by
r = R/R2. Let L and L′ be two simple gs -modules then
dim Ext1(L, L′) equals the multiplicity of L′ in L⊗ r.
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Example (Category S)
Let J = J(2n − 2, f ) + V1 then Lie(J) = g = so2n+1 ⊕ V , n ≥ 3

tr
γ0 **

V
γ1 ,,

δ0

jj Λ2V
γ2

**

δ1

jj . . .
δ2

ll
--
Λn−1V

γn−1 ,,
kk ΛnV

δn−1

mm γnff

with the relations

γr−1γr = δrδr−1 = 0, γr−1δr−1 = δrγr ,
γn−1δn−1 = γ2

n , for r = 1, . . . , n − 1.

Tame and finite J-mod1, degJ = 2 were determined in
K., Serganova V., On the Tits-Kantor-Koecher construction of
unital Jordan bimodules, 2017.
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Category S 1
2

It is completely different picture for S 1
2
.

Example

Let J = J(f , 2n − 2) + V1 then Lie(J) = g = so2n+1 ⊕ V , n ≥ 3

Γ

α
��

α2 = 0.

Theorem
The category S 1

2
is equivalent to the category of representations of

a finite-dimensional graded quadratic algebra
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Quiver blocks corresponding to simple modules in S 1
2
:

Each block has either one, two, three or four vertices;
Each simple block has either one or two arrows;
Quivers with relations are the following quivers

1. •
α

++ •
β

kk αβ 6= 0

2. •
α

++ •
β

kk
δ

++ •
γ

kk αβ = γδ
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3. •α
%%

βee αβ = βα

4. •
α

++

γ

##
•

β

kk

δ

cc βα = −δγ δα = −βγ
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Case of superalgebras

Theorem
Every finite dimensional simple Jordan superalgebra over an
algebraically closed field of characteristic 0 is isomorphic to

Qn (n ≥ 2), M
(+)
n|m , JP(n) (n ≥ 2), Josp(n, 2m), J(m + 2n),

K3, Dt , K10,Kan(n).

Example

TKK (M
(+)
n|m) = sl(2m, 2n) TKK (JP(n)) = P(2n − 1)

TKK (Q(n)) = Q(2n) TKK (Dt) = D(2, 1; t)
TKK (J(m + 2n)) = Osp(m + 3, 2n) TKK (K10) = F (4)
TKK (Josp(n, 2m)) = Osp(2n, 2m) TKK (Kan(n)) = H(n + 3)
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Irreducible modules

All irreducible bimodules over finite dimensional simple Jordan
superalgebras over an algebraically closed field of characteristic
0 are classified.
A.Shtern: K10 and Kan(n) have only regular irreducible
supermodules. (He did not consider central extension).
C.Martinez and E.Zelmanov proved that if J is
finite-dimensional simple Jordan superalgebra such that J0 is
of rank ≥ 3 then U(J) is finite-dimensional and semisimple
(Q(n), JP(n), (n ≥ 3); M(+)

n|m , (n+m ≥ 3); Josp(n, 2m); K10).

Analogously to algebra case superalgebras J(m + 2n) have the
finite number of irreducible finite-dimensional bimodule, the
same is true for Q(2). Moreover Q(2) is completely reducible.
C.Martinez, E.Zelmanov, I.Shestakov proved that the
superalgebras K3, Dt , M

(+)
1|1 , JP(2) have infinite number of

irreducible superbimodules.
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Indecomposable modules

Simple Jordan superalgebras which are not completely reducible:
K3, Dt , JP(2), Kan(n), M(+)

1|1 .

C.Martinez and E.Zelmanov have described the indecomposable
modules over K3 and Dt .

The indecomposable modules over JP(2) and Kan(n) and M
(+)
1|1

were described in
K., Serganova V., Representations of simple Jordan superalgebras,
2020.
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JP(n) case

Recall that JP(n) is the superalgebra of symmetric elements of
Mn+n(F ) with respect to the superinvolution

∗ :

(
A B
C D

)
→
(

Dt −Bt

C t At

)
,

JP(n) =

{[
A B
C AT

]
|A, B, C ∈ Mn(k), BT = −B, CT = C

}
.

TKK (JP(n)) = P(2n − 1).
The Lie superalgebra P(n), n ≥ 2 a subalgebra of sln+1,n+1
consisting of all matrices of the form[

A B
C −At

]
, trA = 0, Bt = B, C t = −C
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For JP(n), Martinez and Zelmanov presented four unital irreducible
bimodules: regular and P(n − 1) together with their opposites.

MZ showed that Lie(M) decomposes into a direct sum of
eigenspaces with respect to certain Cartan subalgebra and using
weight arguments they proved that for n ≥ 3 there are at most four
irreducible modules in S.
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JP(2) case

P̂(3) = P(3) + k.

For JP(2) again using Lie algebra arguments MZ showed that for
an arbitrary t ∈ k there are at most four (two + opposite)
non-isomorphic unital irreducible finite-dimensional modules of level
t (of central charge t, the central element z acts as t on Lie(M)).

Finally, MZ gave the explicit realization of two JP(2)-bimodules of
level t as submodules of M2,2(W )+, where
W =

∑
i≥0(k1 + ka)d i = k[d ] + ak[d ], the Weyl algebra of the

differential algebra (k1 + ka, d), da− ad = d(a) = ta.
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JP(2) case: indecomposable modules

Let g = P̂(3) be the central extension of the simple Lie
superalgebra P(3). There is a consistent (with Z2-grading)
Z-grading

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1,

where g−2 is a one-dimensional center, g0 is isomorphic to so6 and
g−1 is the standard so6-module.

Fix z ∈ g−2. On V = k4|4 define ρt : g→ Endk(V ) by

ρt

[
A B
C −At

]
:=

[
A B + tC ∗

C −At

]
, ρ(z) := t,

where c∗ij = (−1)σckl for σ = {1, 2, 3, 4} → {i , j , k , l}. Denote the
corresponding g-module by V (t). When t = 0 this module
coincides with the standard g-module.
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Proposition

Any simple object in the category S 1
2
is isomorphic to V (t) or

V (t)op for some t ∈ C.
Every block in the category S 1

2
has a unique simple object.

The category St1
2
is equivalent to the direct sum of two copies

of the category of finite-dimensional representations of the
polynomial ring C[x ].

V (t/2)⊗ V (t/2) = S2V (t/2)⊕ Λ2V (t/2).

Then clearly both S2V (t/2) and Λ2V (t/2) are objects in S and
have central charge t.
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t 6= 0

If t 6= 0 then S2V (t/2) and Λ2V (t/2) are simple.
Let g−modt1 be the full subcategory of S consisting of modules
on which z acts with eigenvalue t.

Theorem

The category g−modt1 has two equivalent blocks Ω+
t and Ω−t .

Ω+
t has two simple objects S2V (t/2) and Λ2V (t/2) .

For every block Ω±t two corresponding projective modules are
consructed.
The category Ω+

t is equivalent to the category of nilpotent
representations of the quiver Q with relation βα = γβ

Q : •

α

�� β // •

γ

��
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If t = 0 both S2V (t/2) and Λ2V (t/2) have simple submodules of
codimension 1, denote them Λ±(0).

Theorem

The category g−mod0
1 has two equivalent blocks Ω+

0 and Ω−0 .
Ω+

0 has three simple objects Λ±(0) and kop .
The category Ω+

0 is equivalent to the category of nilpotent
representations of the quiver Q

Q : •

µ

$$α )) • δ ))
β
ii •γii

modulo some relations. These relations include δα = βγ = 0,
µβα = δγµ .
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