Representations of Jordan algebras and superalgebras

Iryna Kashuba

ICTP, April 2022

I.Kashuba Representations of Jordan algebras and superalgebras

Let \mathbf{k} be an algebraically closed field of char 0.

Definition

A Jordan algebra is a commutative k-algebra (J, \cdot) satisfying

$$(x^2 \cdot y) \cdot x = x^2 \cdot (y \cdot x) \quad x, y \in J.$$

Any associative k-algebra A gives rise to a Jordan algebra A^+ under symmetric multiplication

$$x \cdot y = \frac{1}{2}(xy + yx)$$

A Jordan algebra is called **special** if it can be realized as a Jordan subalgebra of some A^+ .

Example (Two types of special algebras)

- Let (A, ★) be an associative algebra with involution. The subspace of hermitian elements H(A, ★) = {x* = x | x ∈ A} forms a special Jordan algebra.
- Let f be symmetric bilinear form on vector space V dim V ≥ 2. The space J(V, f) = k1 ⊕ V becomes a Jordan algebra (called Jordan algebra of Clifford type) by making 1 act as a unit and defining v · w = f(v, w)1, v, w ∈ V. J(V, f) is special since we have one-to-one mapping

$$J(V, f) \to C(V, f)$$

$$\alpha 1 + v = \alpha 1 + v + R,$$

where C(V, f) = T(V)/R is the Clifford algebra of V relative to f, $R = \langle v \otimes v - f(v, v)1 | v \in V \rangle$.

Representations

Suppose *M* is a k-vector space with $I : (a, m) \rightarrow am$, $r : (a, m) \rightarrow ma$, define a product on $\Omega = J \oplus M$

$$(a_1 + m_1) \circ (a_2 + m_2) = a_1 \cdot a_2 + a_1 m_2 + m_1 a_2$$

Definition

2

M is a Jordan bimodule for $J \Leftrightarrow \Omega = (\Omega, \circ)$ is a Jordan algebra. Equivalently a linear map $\rho : J \to \operatorname{End}_k M$, $\rho(a)m = am$ defines a **(bi)representation** if for all $a, b \in J$

$$[\rho(\mathbf{a}), \rho(\mathbf{a} \cdot \mathbf{a})] = 0,$$

$$\rho(\mathbf{a})\rho(\mathbf{b})\rho(\mathbf{a}) + \rho(\mathbf{a}^{\cdot 2} \cdot \mathbf{b}) = 2\rho(\mathbf{a})\rho(\mathbf{a} \cdot \mathbf{b}) + \rho(\mathbf{b})\rho(\mathbf{a}^{\cdot 2})$$
(1)

J-bimod is equivalent to *U*-mod, where U = U(J), the **universal** multiplication envelope. U(J) = T(J)/R, where *R* is an ideal generated by (1).

Jacobson has shown the following

- $If \dim_{\mathbf{k}} J < \infty \ \Rightarrow \dim_{\mathbf{k}} U(J) < \infty.$
- For any finite-dimensional simple J its U(J) is finite-dimensional semi-simple.
- (a) if J has an identity element e

$$U(J) = \mathbf{k} \oplus S_1(J) \oplus U_1(J),$$

where $\mathbf{k} \oplus S_1(J) = S(J) = T(J)/\langle ab + ba - 2a \cdot b \rangle$ the special universal envelope of J.

$$\begin{array}{lll} J\operatorname{-mod} \simeq J\operatorname{-mod}_0 \oplus J\operatorname{-mod}_{\frac{1}{2}} \oplus J\operatorname{-mod}_1,\\ e \text{ acts as } 0 & \frac{1}{2} & 1 \end{array}$$
$$J\operatorname{-mod}_{\frac{1}{2}} \simeq S(J)\operatorname{-mod}, \qquad J \subset S(J)^+ \Longleftrightarrow J \text{ is special} \end{array}$$

Albert's classification of simple finite-dimensional Jordan algebras: $deg = 1 \ \mathbf{k}$

deg = 2 J(f, n) := J(V, f), where f is non-degenerate.

deg \geq 3 $H_n(C)$, $n \geq$ 3, (C, τ) composition algebra of dimension 1, 2, 4 for $n \geq$ 4, and 1, 2, 4, 8 for n = 3.

$$deg = 2: S_1(J) \simeq C(V, f) \text{ and } U_1(J) \simeq T(V)/R_M,$$

$$R_M = \langle u \otimes v \otimes u - f(u, v)u | u, v \in V \rangle,$$

J	$S_1(J)$	$U_1(J)$
J(f, n)	M_{2^n}	$\oplus_s M_s$
<i>n</i> is even		$s = \binom{n+1}{1}, \binom{n+1}{3}, \dots, \binom{n+1}{n+1}$
J(f, n)	$M_{2^{n-1}} + M_{2^{n-1}}$	$M_{\frac{1}{2}\binom{n+1}{n}} \oplus M_{\frac{1}{2}\binom{n+1}{n}} \oplus_{s} M_{s}$
$n=2\nu-1$		$s = {\binom{n+1}{0}}, {\binom{n+1}{1}}, \dots, {\binom{n+1}{\nu-1}}$

deg \geq 3: If C is associative $S_1(H_n(C)) \simeq M_n(C)$. There is a functor \mathcal{H}_n : (C, τ) -bimod $\rightarrow H_n(C)$ -mod.

J	$S_1(J)$	$U_1(J)$
$H_n(\mathbf{k})$	M _n	$M_{\frac{n(n+1)}{2}} \oplus M_{\frac{n(n-1)}{2}}$
$H_n(\mathbf{k}+\mathbf{k})$	$M_n \oplus M_n$	$M_{n^2} \oplus \overline{M}_{\underline{n(n+1)}} \oplus \overline{M}_{\underline{n(n+1)}}$
		$\oplus M_{\underline{n(n-1)}} \oplus M_{\underline{n(n-1)}}$
$H_n(M_2(\mathbf{k}))$	M _{2n}	$M_{n(2n-1)} \oplus M_{n(2n+1)} *$
\mathcal{A}	0	M ₂₇

4 E b

3.5 3

 $S_1(J)$ for $deg J \ge 3$ were described in K., Ovsienko S., Shestakov I., Representation type of Jordan algebras, 2011

Quivers $Q(S_1(J))$ were constructed using generalization of functor \mathcal{H}_n . It was shown that

$$Rad^2S_1(J)=0.$$

For finite dimensional associative A, $Rad^2A = 0$, A is of finite (tame) representation type \iff the quiver double D(Q(A)) is a disjoint union of oriented Dynkin diagrams (extended Dynkin diagrams).

A short grading of \mathfrak{g} is a \mathbb{Z} -grading of the form $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$. Let P be the commutative bilinear map on J: $P(x, y) = x \cdot y$. We associate to J a Lie algebra with short grading

$$Lie(J) = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1.$$

Put $\mathfrak{g}_{-1} = J$, $\mathfrak{g}_0 = \langle L_a, [L_a, L_b] | a, b \in J \rangle$, $\mathfrak{g}_1 = \langle P, [L_a, P] | a \in J \rangle$ • [L, x] = L(x) for $x \in \mathfrak{g}_{-1}$, $L \in \mathfrak{g}_0$; • [B, x](y) = B(x, y) for $B \in \mathfrak{g}_1$ and $x, y \in \mathfrak{g}_{-1}$;

• [L, B](x, y) = L(B(x, y)) - B(L(x), y) - B(x, L(y)) for any $B \in \mathfrak{g}_1, L \in \mathfrak{g}_0$ and $x, y \in \mathfrak{g}_{-1}$.

Then $\mathfrak{g} = Lie(J)$ is Lie algebra and is called the **Tits-Kantor-Koecher (TKK) construction** for J.

A short subalgebra of \mathfrak{g} is an \mathfrak{sl}_2 subalgebra spanned by e, h, f such that the eigenspace decomposition of *ad h* defines a short grading on \mathfrak{g} .

For any J with identity e consider in Lie(J)

$$h_J = -L_e, \quad f_J = P, \text{ then } \alpha_J = \langle e, h_J, f_J \rangle$$

defines short subalgebra of Lie(J).

Let $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be the \mathbb{Z}_2 -graded Lie algebra, $p \in \mathfrak{g}_1$. For any $x, y \in \mathfrak{g}_{-1}$ set

$$x \cdot y = [[p, x], y]$$

then $Jor(\mathfrak{g}) := (\mathfrak{g}_{-1}, \cdot)$ is a Jordan algebra.

Relations between *J*-mod and $\mathfrak{g} = TKK(J)$ -modules? We define two adjoint functors *Jor* and *Lie* between *J*-mod and \mathfrak{g} -modules admitting a short grading.

Not every J-module can be obtained from a g-module by application of Jor: one has to consider \hat{g} the universal central extension of g.

Let S (resp. $S_{\frac{1}{2}}$) be the category of $\hat{\mathfrak{g}}$ -modules M such that the action of α_J induces a short grading on M (resp. a grading of length 2, namely $M_{-\frac{1}{2}} \oplus M_{\frac{1}{2}}$).

 $\begin{array}{c} J\operatorname{-mod}_{\frac{1}{2}}\simeq \mathcal{S}_{\frac{1}{2}}\\ J\operatorname{-mod}_{0}\oplus J\operatorname{-mod}_{1}\leftrightarrow \mathcal{S} \end{array}$

J	g	$\mathcal{S}_{\frac{1}{2}}$	S
$H_n(\mathbf{k})$	sp _{2n}	V	ad, $\Lambda^2 V$
$H_n(\mathbf{k}+\mathbf{k})$	sl _{2n}	V, V*	ad, $S^{2}(V)$, $S^{2}(V^{*})$, $\Lambda^{2}(V)$, $\Lambda^{2}(V^{*})$
$H_n(M_2(\mathbf{k}))$	\$04n	V	ad, S ² (V)
\mathcal{A}	E ₇		ad
J(f,n)	\mathfrak{so}_{n+3}	Г	$\Lambda^i(V), \ i=1,\ldots, u+1$
$n=2\nu$		spinor	
J(f, n)	\mathfrak{so}_{n+3}	Γ ⁺ , Γ ⁻	$\Lambda^i(V), i = 1, \dots, \nu$
$n=2\nu-1$		spinor	$\wedge^{ u+1}(V)^{\pm}$

< ∃ >

э

Let C be an abelian category with finitely many simple modules such that every object has finite length and every simple object has a projective cover.

Then C is equivalent to the category of finite-dimensional A-modules. If L_1, \ldots, L_r is the set of all up to isomorphism simple objects in C and P_1, \ldots, P_r are their projective covers, then A is a pointed algebra which is usually realized as the path algebra of a certain quiver Q with relations.

The vertices

$$Q_0 = \{ \text{simple modules } L_1, \ldots, L_r \}$$

 $Q_1 = \{ \# \text{ arrows from vertex } L_i \text{ to vertex } L_j \text{ is } \dim \text{Ext}^1(L_j, L_i) \}$

伺下 イヨト イヨト

Q(S) and $Q(S_{\frac{1}{2}})$ are now straightforward:

Lemma

Let $\mathfrak{g} = \mathfrak{g}_s + R$ be the Levi decomposition of \mathfrak{g} . Denote by $\mathfrak{r} = R/R^2$. Let L and L' be two simple \mathfrak{g}_s -modules then dim $\operatorname{Ext}^1(L, L')$ equals the multiplicity of L' in $L \otimes \mathfrak{r}$.

Example (Category S)

Let $J = J(2n-2, f) + V_1$ then $Lie(J) = \mathfrak{g} = \mathfrak{so}_{2n+1} \oplus V$, $n \geq 3$

$$tr \stackrel{\sim}{\underset{\sim}{\sim}} \frac{\gamma_0}{\delta_0} \stackrel{\sim}{\underset{\sim}{\sim}} V \stackrel{\gamma_1}{\underset{\sim}{\sim}} \Lambda^2 V \stackrel{\gamma_2}{\underset{\sim}{\sim}} \dots \stackrel{\sim}{\underset{\sim}{\sim}} \Lambda^{n-1} V \stackrel{\gamma_{n-1}}{\underset{\sim}{\sim}} \Lambda^n V \stackrel{\gamma_n}{\underset{\sim}{\sim}} \gamma_n$$

with the relations

$$\gamma_{r-1}\gamma_r = \delta_r \delta_{r-1} = 0, \ \gamma_{r-1}\delta_{r-1} = \delta_r \gamma_r, \gamma_{n-1}\delta_{n-1} = \gamma_n^2, \text{ for } r = 1, \dots, n-1.$$

Tame and finite J-mod₁, deg J = 2 were determined in K., Serganova V., On the Tits-Kantor-Koecher construction of unital Jordan bimodules, 2017.

伺下 イヨト イヨト

Category $S_{\frac{1}{2}}$

It is completely different picture for $\mathcal{S}_{\frac{1}{2}}$.

Example

Let
$$J = J(f, 2n-2) + V_1$$
 then $Lie(J) = \mathfrak{g} = \mathfrak{so}_{2n+1} \oplus V$, $n \geq 3$

$$\overset{\alpha}{\Gamma} \qquad \alpha^2 = 0.$$

Theorem

The category $S_{\frac{1}{2}}$ is equivalent to the category of representations of a finite-dimensional graded quadratic algebra

Quiver blocks corresponding to simple modules in $S_{\frac{1}{2}}$:

- Each block has either one, two, three or four vertices;
- Each simple block has either one or two arrows;
- Quivers with relations are the following quivers

$$\beta \alpha = -\delta \gamma \quad \delta \alpha = -\beta \gamma$$

I.Kashuba Representations of Jordan algebras and superalgebras

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theorem

Every finite dimensional simple Jordan superalgebra over an algebraically closed field of characteristic 0 is isomorphic to

$$egin{aligned} Q_n\,(n\geq 2), & M_{n|m}^{(+)}, & JP(n)\,(n\geq 2), & Josp(n,2m), & J(m+2n), \ & K_3, & D_t, & K_{10}, \, Kan(n). \end{aligned}$$

Example

$$TKK(M_{n|m}^{(+)}) = \mathfrak{sl}(2m, 2n) \qquad TKK(JP(n)) = P(2n-1) \\ TKK(Q(n)) = Q(2n) \qquad TKK(D_t) = D(2, 1; t) \\ TKK(J(m+2n)) = Osp(m+3, 2n) \qquad TKK(K_{10}) = F(4) \\ TKK(Josp(n, 2m)) = Osp(2n, 2m) \qquad TKK(Kan(n)) = H(n+3)$$

Irreducible modules

- All irreducible bimodules over finite dimensional simple Jordan superalgebras over an algebraically closed field of characteristic 0 are classified.
- A.Shtern: K₁₀ and Kan(n) have only regular irreducible supermodules. (He did not consider central extension).
- C.Martinez and E.Zelmanov proved that if J is finite-dimensional simple Jordan superalgebra such that J_0 is of rank ≥ 3 then U(J) is finite-dimensional and semisimple $(Q(n), JP(n), (n \geq 3); M_{n|m}^{(+)}, (n + m \geq 3); Josp(n, 2m); K_{10}).$
- Analogously to algebra case superalgebras J(m + 2n) have the finite number of irreducible finite-dimensional bimodule, the same is true for Q(2). Moreover Q(2) is completely reducible.
- C.Martinez, E.Zelmanov, I.Shestakov proved that the superalgebras K₃, D_t, M⁽⁺⁾_{1|1}, JP(2) have infinite number of irreducible superbimodules.

- 4 同 6 4 日 6 4 日 6

Simple Jordan superalgebras which are not completely reducible: K_3 , D_t , JP(2), Kan(n), $M_{1|1}^{(+)}$.

C.Martinez and E.Zelmanov have described the indecomposable modules over K_3 and D_t .

The indecomposable modules over JP(2) and Kan(n) and $M_{1|1}^{(+)}$ were described in

K., Serganova V., Representations of simple Jordan superalgebras, 2020.

JP(n) case

Recall that JP(n) is the superalgebra of symmetric elements of $M_{n+n}(F)$ with respect to the superinvolution

$$*: \left(\begin{array}{cc} A & B \\ C & D \end{array}\right) \rightarrow \left(\begin{array}{cc} D^t & -B^t \\ C^t & A^t \end{array}\right),$$

$$JP(n) = \left\{ \left[\begin{array}{cc} A & B \\ C & A^T \end{array} \right] \mid A, B, C \in M_n(\mathbf{k}), B^T = -B, C^T = C \right\}.$$

TKK(JP(n)) = P(2n-1).The Lie superalgebra P(n), $n \ge 2$ a subalgebra of $\mathfrak{sl}_{n+1,n+1}$ consisting of all matrices of the form

$$\begin{bmatrix} A & B \\ C & -A^t \end{bmatrix}, \quad trA = 0, \ B^t = B, \ C^t = -C$$

For JP(n), Martinez and Zelmanov presented four unital irreducible bimodules: regular and P(n-1) together with their opposites.

MZ showed that Lie(M) decomposes into a direct sum of eigenspaces with respect to certain Cartan subalgebra and using weight arguments they proved that for $n \ge 3$ there are at most four irreducible modules in S.

JP(2) case

$$\widehat{P(3)} = P(3) + \mathbf{k}.$$

For JP(2) again using Lie algebra arguments MZ showed that for an arbitrary $t \in \mathbf{k}$ there are at most four (two + opposite) non-isomorphic unital irreducible finite-dimensional modules of level t (of central charge t, the central element z acts as t on Lie(M)).

Finally, MZ gave the explicit realization of two JP(2)-bimodules of level t as submodules of $M_{2,2}(W)^+$, where $W = \sum_{i\geq 0} (\mathbf{k}1 + \mathbf{k}a)d^i = \mathbf{k}[d] + a\mathbf{k}[d]$, the Weyl algebra of the differential algebra ($\mathbf{k}1 + \mathbf{k}a$, d), da - ad = d(a) = ta.

JP(2) case: indecomposable modules

Let $\mathfrak{g} = \hat{P}(3)$ be the central extension of the simple Lie superalgebra P(3). There is a consistent (with \mathbb{Z}_2 -grading) \mathbb{Z} -grading

$$\mathfrak{g} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1,$$

where \mathfrak{g}_{-2} is a one-dimensional center, \mathfrak{g}_0 is isomorphic to \mathfrak{so}_6 and \mathfrak{g}_{-1} is the standard \mathfrak{so}_6 -module.

Fix
$$z \in \mathfrak{g}_{-2}$$
. On $V = \mathbf{k}^{4|4}$ define $\rho_t : \mathfrak{g} \to \operatorname{End}_{\mathbf{k}}(V)$ by

$$\rho_t \begin{bmatrix} A & B \\ C & -A^t \end{bmatrix} := \begin{bmatrix} A & B + tC^* \\ C & -A^t \end{bmatrix}, \quad \rho(z) := t,$$

where $c_{ij}^* = (-1)^{\sigma} c_{kl}$ for $\sigma = \{1, 2, 3, 4\} \rightarrow \{i, j, k, l\}$. Denote the corresponding g-module by V(t). When t = 0 this module coincides with the standard g-module.

伺い イヨト イヨト

Proposition

- Any simple object in the category $S_{\frac{1}{2}}$ is isomorphic to V(t) or $V(t)^{op}$ for some $t \in \mathbb{C}$.
- Every block in the category $S_{\frac{1}{2}}$ has a unique simple object.
- The category S^t₁ is equivalent to the direct sum of two copies of the category of finite-dimensional representations of the polynomial ring C[x].

$$V(t/2)\otimes V(t/2)=S^2V(t/2)\oplus \Lambda^2V(t/2).$$

Then clearly both $S^2 V(t/2)$ and $\Lambda^2 V(t/2)$ are objects in S and have central charge t.

If $t \neq 0$ then $S^2 V(t/2)$ and $\Lambda^2 V(t/2)$ are simple. Let $\mathfrak{g} - \operatorname{mod}_1^t$ be the full subcategory of S consisting of modules on which z acts with eigenvalue t.

Theorem

- The category $\mathfrak{g} mod_1^t$ has two equivalent blocks Ω_t^+ and Ω_t^- . Ω_t^+ has two simple objects $S^2V(t/2)$ and $\Lambda^2V(t/2)$.
- For every block Ω_t^{\pm} two corresponding projective modules are consructed.
- The category Ω_t^+ is equivalent to the category of nilpotent representations of the quiver Q with relation $\beta \alpha = \gamma \beta$

$$Q : \qquad \begin{pmatrix} \alpha \\ \bullet \end{pmatrix} \xrightarrow{\beta} \begin{pmatrix} \gamma \\ \bullet \end{pmatrix}$$

If t = 0 both $S^2 V(t/2)$ and $\Lambda^2 V(t/2)$ have simple submodules of codimension 1, denote them $\Lambda^{\pm}(0)$.

Theorem

- The category $\mathfrak{g} mod_1^0$ has two equivalent blocks Ω_0^+ and Ω_0^- . Ω_0^+ has three simple objects $\Lambda^{\pm}(0)$ and \mathbf{k}^{op} .
- The category Ω_0^+ is equivalent to the category of nilpotent representations of the quiver Q

modulo some relations. These relations include $\delta\alpha=\beta\gamma=$ 0, $\mu\beta\alpha=\delta\gamma\mu$.