UNIVERSIDADE FEDERAL DO ABC

BLACK HOLE SPECTROSCOPY: PROSPECTS FOR TESTING THE NATURE OF BLACK HOLES WITH GRAVITATIONAL WAVE Observations

arXiv:2208.07980

IARA NAOMI NOBRE OTA Advisor: Cecilia Chirenti (UMD, NASA GSFC, UFABC)

August 30th, 2022

14 SEPTEMBER 2015 – FIRST DIRECT DETECTION OF GRAVI

- Gravitational waves are ripples of spacetime
- Nobel Prizes in Physics:
 - 1993: Hulse and Taylor
 - 2017: Weiss, Thorne and Barish
- ► GW observation: new window to the universe!

GRAVITATIONAL WAVES OBSERVATIONS

GRAVITATIONAL WAVE DETECTORS

Updated March 2022	— 01	O 2	O 3	— O4	O 5
IGO	80 Mpc	100 Мрс	100-140 Мрс	160-190 Mpc	240 280 325 N
⁄irgo		30 Mpc	40-50 Mpc	80-115 Mpc	150-260 Mpc
AGRA			0.7 Mpc	(1-3) ~ 10 Mpc	25-128 Mpc
02127-v11	2015 2016	1 1 2017 2018 2	019 2020 2021	2022 2023 2024 202	25 2026 2027 20

arXiv:2208.07980

3

GRAVITATIONAL WAVES OBSERVATIONS

UFABC

LIGO-VIRGO-KAGRA DETECTIONS ▶ 83 BBH + 5 NSBH or BBH

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

GRAVITATIONAL WAVES OBSERVATIONS

BINARY BLACK HOLE MERGER

- ► 3 stages: inspiral, merger and ringdown
- Ringdown is well approximated by quasinormal modes

BLACK HOLES

NORMAL MODE

closed system vanishes at boundary

THE NO-HAIR THEOREM

- The no-hair theorem: black holes are described by 3 numbers. Astrophysical black holes are described by only 2.
- QNMs frequencies depend only on mass and spin.

QNM waveform:

 $h = \sum h_{\ell m n} = \sum A_{\ell m n} e^{i\omega_{\ell m n}(t-t_i) + \phi_{\ell m n}} S_{\ell m}(a\omega_{\ell m n})$

complex frequency: $\omega_{\ell mn} \equiv 2\pi f_{\ell mn} + i/\tau_{\ell mn}$

DETECTION OF QUASINORMAL MODE

The frequency and damping time of the dominan mode (2,2,0) can be determined in some LVC detections

theorem

BLACK HOLE SPECTROSCOPY

[Dreyer et al., 2004] [Berti et al., 2006] [Berti et al., 2007] [Kamaretsos et al., 2012] [Berti et al., 2016] [Thrane et al., 2017] [Baibhav et al., 2018]

- Detection of two or more modes to test the no-hair theorem.
- Check if the remnant black hole is described by the Kerr metric.
- Independent test.
- Dominant mode: $(\ell, m, n) = (2, 2, 0)$

 $\omega_{\ell mn} \equiv 2\pi f_{\ell mn} + i/\tau_{\ell mn}$ $\omega_{\ell,mn} \star$ MASS **SPIN** $\omega_{\ell'm'n'}$

SUB-DOMINANT MODES

UFABC

BLACK HOLE SPECTROSCOPY

SUB-DOMINANT MODES IN THE DATA GW150914 *z* ~ 0.09

GW190521 *z* ~ 0.8

the inclusion of subdominant modes in the analyzes decreases the uncertainties for the mass and spin but the data does not provide strong evidence for a [Carullo et al., 2019] [Bustillo et al., 2020] [lsi et al., 2021] [Capano et al., 2021] [Cotesta et al., 2022]

[Abbott et al., 2019]

FUTURE DETECTORS

- Ground-based:
 - Einstein Telescope (ET)
 - Cosmic Explorer (CE)
 - Neutron Star Extreme Matter Observatory (NEMO)

[elisascience.org]

Space-based:

- Laser Interferometer Space Antenna (LISA)
- ► TianQin

[et-gw.eu]

GRAVITATIONAL WAVES DETECTORS

FUTURE DETECTORS

BLACK HOLE SPECTROSCOPY HORIZONS

RESOLVABILITY: RAYLEIGH CRITERION

The Rayleigh criterion require resolvability of two modes for an independent test of the no-hair theorem

[Ota and Chirenti, 2022]

errors are computed using Fisher Matrix

BAYESIAN INFERENCE AND MODEL COMPARISON Signal:

$$d_2 = h_{220} + h_{\ell mn} + n$$

QNMs injected in the signal have parameters informed by NR simulations

Models:

1) one mode: $M_1 = h_{220}$

2) two modes: $M_2 = h_{220} + h_{\ell mn}$

We require $\ln \mathscr{B} > 8$ as our threshold to favor the \mathcal{M}_2 over \mathcal{M}_1 .

TWO MODES BH SPECTROCOPY HORIZONS

RAYLEIGH CRITERION

the detection of the first overtone is favored for low mass ratios.

Higher harmonics are favored for high mass ratios

[Ota and Chirenti, 2022]

MULTIMODE BH SPECTROCOPY HORIZONS (LIGO)

Signal:
$$d = h_{220} + h_{221}$$

+ $h_{330} + h_{440} + h_{210} + n$

Models: 1) single-mode: $M_1 = h_{220}$ 2) two-mods: $M_2 = h_{220}$ $+h_{\ell mn}$

2) three-mode: $M_3 = h_{220}$

 $+h_{\ell mn}+h_{\ell' m'n'}$

UFABC-

[Ota and Chirenti, 2022]

BLACK HOLE SPECTROSCOPY HORIZONS

TESTING THE NO-HAIR THEOREM |W[]–M[]

- For low mass ratios the overtone is the first mode detected followed by the (3,3,0)mode
- For high mass ratios the (3,3,0) is the secondary mode and the (4,4,0)tertiary mode

BLACK HOLE SPECTROSCOPY HORIZONS

UFABC

PARAMETER ESTIMATION: MULTIMODE HORIZONS The contours enclose 90% of the posterior distribution

The secondary mode is not negligible at the horizon distance!

 $q = 1.5, M = 156.3 M_{\odot}$

FINAL REMARKS

- There are exciting prospects for testing the nature of black holes with gravitational waves!
- Black hole spectroscopy provides an independent test of the no-hair theorem using information contained in the ringdown of a binary black hole merger.
- The first overtone is favored for binaries with more symmetric masses (q = 1) and higher harmonics are favored for less symmetric masses (q = 10).
- Einstein Telescope and Cosmic Explorer will be sensitive enough to resolve events similar to the events detected so far.
- LISA black hole spectroscopy horizons are very large, but its sources are still uncertain.
- Closer sources will be needed to perform black hole spectroscopy with a single LIGO detector. Multiple detections analysis and mode stacking may compensate the low sensitivity. UFABC

