Quasinormal modes for Kerr black hole via Painlevé transcendents
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Introduction Numerical Results

The Teukolsky Master equation (TME) governs linear perturbations of the Kerr metric [2],
where, for vaccum perturbations, one has
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where A =r?-2Mr + a? = (r-r)(r = r ), K(r) =(r*+a?)w - am. M and J = aM are the mass and
angular momentum of the black hole. The spin-weight field s can assume the values 0, +1,
and +2.

Riemann-Hilbert map

The Riemann-Hilbert map, between t, , ¢ and g, ), is made possible by the isomonodromig 1

function, which has a natural expansion in terms of monodromy data [3]. Thus, the RHm
is expressed in terms of T, by
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where @ = {6, 6, 6,} are the parameters in the CHE associated to the local monodromy of

solutions and § = {6, 9(~1, 0, +1}. In turn, the Riemann-Hilbert map associated to the DCHE
is given by
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where 4 = {8 ,8,} are the parameters in the DCHE associated to the local monodromy of
solutions and ¢_= {6 -1,0, +1}.

The function 1, and 1, can be expressed in terms of Fredholm determinant [4] or via

Nekrasov partition function [5], while the parameters o and n are functions of the monodromy
parameters of the equations (CHE and DCHE).

Extremal Limita - M: A. We observed numerically that for the modes | = m, with m # 0, the
eigenfrequencies tend to m/(2M). In this case, the Riemann Hilbert map (3) actually solved
the QNMs for a/M € [0,1].

Near-extremal behavior for the fundamental quasi-normal frequency fors = =2, 1=m = 2,
where a/M = cos(v).

B. Mw does not go to m/2. All modes with | # m, including those with negative m, will not
tend to M w = m/2 in the extremal limit. In this situation the modes for a =M are calculated
using the Riemann-Hilbert map (4).

The near-extremal behavior for the fundamental quasi-normal frequency for s = -1, | = 2 and
m = 1, where the mode calculated using t,, converges to the frequency for 1, as v goes to 0.
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