

Quasinormal modes for Kerr black hole via Painlevé transcendents

João Paulo Cavalcante * and Bruno Carneiro da Cunha[†]

Department of Physics, Federal University of Pernambuco, 50670-901, Recife, Brazil

Introduction

The Teukolsky Master equation (TME) governs linear perturbations of the Kerr metric [2], where, for vaccum perturbations, one has

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left[\sin\theta \frac{dS}{d\theta} \right] + \left[a^2 \omega^2 \cos^2\theta - 2a\omega s \cos\theta - \frac{(m+s\cos\theta)^2}{\sin^2\theta} + s + \lambda \right] S(\theta) = 0,$$

$$\Delta^{-s}\frac{d}{dr}\left(\Delta^{s+1}\frac{dR(r)}{dr}\right) + \left(\frac{K^2(r) - 2is(r-M)K(r)}{\Delta} + 4is\omega r - {}_s\lambda_{\ell,m} - a^2\omega^2 + 2am\omega\right)R(r) = 0,$$

where $\Delta = r^2$ - 2Mr + $a^2 = (r - r_+)(r - r_-)$, K(r) = $(r^2 + a^2)\omega$ - am. M and J = aM are the mass and angular momentum of the black hole. The spin-weight field s can assume the values 0, ±1, and ±2.

Riemann-Hilbert map

The Riemann-Hilbert map, between t_0 , c_{t0} and σ , η , is made possible by the isomonodromic τ function, which has a natural expansion in terms of monodromy data [3]. Thus, the RHm is expressed in terms of τ_v by

$$\tau_V(\vec{\theta}; \sigma, \eta; t_0) = 0, \qquad t_0 \frac{d}{dt_0} \log \tau_V(\vec{\theta}_-; \sigma - 1, \eta; t_0) - \frac{\theta_0(\theta_t - 1)}{2} = t_0 c_{t_0}$$
(3)

where $\vec{\theta} = \{\theta_0, \theta_t, \theta_*\}$ are the parameters in the CHE associated to the local monodromy of solutions and $\vec{\theta}_- = \{\theta_0, \theta_t, \theta_*, \theta_*, \theta_*, \theta_*, \theta_*\}$. In turn, the Riemann-Hilbert map associated to the DCHE is given by

$$\tau_{III}(\vec{\theta}; \sigma, \eta; u_0) = 0, \qquad u_0 \frac{d}{du_0} \log \tau_{III}(\vec{\theta}_-; \sigma - 1, \eta; u_0) - \frac{(\theta_0 - 1)^2}{8} - \frac{1}{2} = u_0 k_0, \quad (4)$$

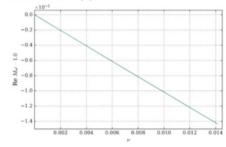
where $\vec{\theta} = \{\theta_{\bullet}, \theta_{\star}\}$ are the parameters in the DCHE associated to the local monodromy of solutions and $\vec{\theta}_{-} = \{\theta_{\bullet} - 1, \theta_{\star} + 1\}$.

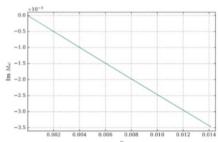
The function $\tau_{_{V}}$ and $\tau_{_{|||}}$ can be expressed in terms of Fredholm determinant [4] or via Nekrasov partition function [5], while the parameters σ and η are functions of the monodromy parameters of the equations (CHE and DCHE).

Numerical Results

Extremal Limit $a \to M$: A. We observed numerically that for the modes I = m, with $m \neq 0$, the eigenfrequencies tend to m/(2M). In this case, the Riemann Hilbert map (3) actually solved the QNMs for $a/M \in [0,1]$.

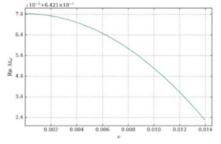
Near-extremal behavior for the fundamental quasi-normal frequency for s = -2, l = m = 2, where a/M = cos(v).

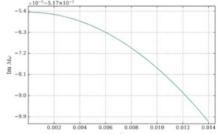




B. M ω does not go to m/2. All modes with I \neq m, including those with negative m, will not tend to M ω = m/2 in the extremal limit. In this situation the modes for a =M are calculated using the Riemann-Hilbert map (4).

The near-extremal behavior for the fundamental quasi-normal frequency for s = -1, l = 2 and m = 1, where the mode calculated using τ_v converges to the frequency for τ_{lll} as v goes to 0.





Bibliography

- [1] Carneiro da Cunha, Bruno and Cavalcante, João Paulo, Confluent conformal blocks and the Teukolsky master equation, Phys. Rev. D, 102, 10, 2020.
- [2] Teukolsky, Saul A., Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations, Astrophys. J., vol 185, 1973
- [3] M. Jimbo, T. Miwa, and A. K. Ueno, Monodromy Preserving Deformation of Linear Ordinary Differential Equations with Rational Coefficients, I, Physica D2 (1981) 306–352.
- [4] da Cunha, Bruno Carneiro and Cavalcante, João Paulo, Teukolsky master equation and Painlev\'e transcendents: Numerics and extremal limit, Phys. Rev. D, Vol 104, 2021.
- [5] O. Gamayun, N. Iorgov, and O. Lisovyy, How instanton combinatorics solves Painlevé VI, V and IIIs, J.Phys. A46.