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FeSC

New type of non conventional superconductors



FeSC

Picnitides (Fe+ Group 15, like As)

Chalcogens (Fe+ Group 15, like Se)

(dxy, dyz, and dxz) contribute to the
electronic states near the Fermi
surface (FS), and charge carriers
hop between Fe sites primarily via
a pnictogen or chalcogen ion. 

As shown in figure 2, most
FeSCs have energy bands that are
hole-like near the center of the re-
ciprocal-lattice unit cell (Brillouin
zone) and electron-like near the
zone boundary. Because electron
and hole FSs are small and well
separated in momentum space,
they are often called hole and elec-
tron pockets.

The crystallographic unit cell
actually contains two inequivalent
Fe positions, so the FSs and Bril-
louin zone shown in figure 2b
should be more properly viewed in
a representation with two Fe atoms
in a unit cell. However, the Bril-
louin zone corresponding to one Fe
per unit cell used throughout this
article allows for a more straight-
forward discussion without sacri-
ficing the essential physics. 

Figure 3 shows the phase dia-
gram of a typical FeSC. The un-
doped parent compound is usually

an antiferromagnet. The magnetic phase of the FeSC
is often called a spin-density wave (SDW) to stress
that the magnetism is of itinerant electrons rather
than of localized electron spins. The superconduct-
ing state can be reached by substituting with ele-
ments that add holes or electrons (hole or electron
doping), by applying pressure, or even by replacing
one element with another that has the same valence.
There is also another ordered phase, termed ne-
matic, in which the electronic state is believed to
spontaneously break the symmetry between the x
and y spatial directions without displaying mag-
netic or superconducting order.

Magnetic  and  nema tic  phases 

The magnetic, SDW phase is the best un-
derstood and least controversial part of
the phase diagram of FeSCs. Figure 4a
 illustrates the magnetic structure of most
undoped or weakly doped FeSCs, which
is best described as stripe order, with
spins aligning ferromagnetically in one
direction and antiferromagnetically in
the other. Such an order breaks not only
spin rotational symmetry but also an
 additional twofold discrete symmetry,
since the stripes align along either x or y.
Spin–orbit coupling requires that the

 lattice sym metry be simultaneously reduced from
tetragonal to orthorhombic. In some doped systems,
a small region of magnetic order that preserves
tetragonal lattice symmetry has recently been dis-
covered as well. 

Both tetragonal-breaking and tetragonal-
 preserving magnetic orders are consistent with the
theory of itinerant magnetism.3 In chromium metal,
researchers have known for some time that the pres-
ence of hole and electron pockets enhances mag-
netic fluctuations, and that picture appears to hold
for the FeSCs, where the wavevector Q of the mag-
netic order connects the Γ- and X- or Y-centered
pockets (see figure 2).

Measurements of lattice parameters, DC resis-
tivity, optical conductivity, magnetic susceptibility,
and other probes have found that as the tempera-
ture is lowered, the stripe SDW order is often pre-
ceded by a phase with broken tetragonal structural
symmetry but unbroken spin rotational symmetry
(see figure 4b). Such a state has been called nematic,
by analogy with liquid crystals, to emphasize that
the order breaks rotational symmetry but preserves
time-reversal and translational symmetry.

The debate about the origin of the nematic
phase has been lively. One proposal is that the ne-
matic order is a result of a conventional structural
transition caused by phonons. Another possibility is
spontaneous orbital order, specifically a difference
in the occupation of dxz and dyz orbitals. Yet another
is a so-called spin–nematic phase in which magnetic
fluctuations along x and y are no longer equivalent
but the long-range magnetic stripe order has not yet
taken place. 

The phonon-driven explanation seems un-
likely, since the orthorhombic distortion of the crys-
tal associated with nematic order is too tiny to ac-
count for the size of the observed anisotropy in
electronic properties. Most researchers believe that
nematic order is a spontaneous electronic order due
to electron–electron interactions. However, struc-
tural order, orbital order, and spin–nematic order 
all break the same tetragonal symmetry, hence the
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Figure 1. Crystallographic structures of 
various familiesof iron-based superconductors. Each family is 
labeled according to the stoichiometry of its prototype compound.
Common to all systems is the set of square lattices of Fe atoms, shown 
in red, with pnictogen or chalcogen atoms (arsenic or selenium, respectively, in the examples here), 
shown in green, located above and below the Fe plane. (Adapted from ref. 2, J. Paglione, R. L. Green)
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Microscopic Theory for Cuprates and 

FeSC not known yet

BUT

Indications that NEMATIC PHASES

might play a fundamental rol



Electronic nematicity in unconventional superconductors

Initially a theoretical 

proposal 

The topic



Electronic nematicity in unconventional superconductors

The topic



Electronic nematic phase

Nematic phase Constituent 

elements 

Environment Broken Symmetry

Traditional: 

liquid crystals

Electronic

Strongly 

correlated 

electrons 

Orientable 

molecules

Free 

space

Ion Lattice

Continuous rotational symmetry

Discrete rotational symmetry

tetragonal
orthorhombic

𝑇𝑠

a

t
𝑏



Electronic nematicity in unconventional superconductors

Example : Ba(Fe1-x Cox)2As2 (122)

𝐵2𝑔 𝐶4

tetragonal

paramagneticorthorhombic

AF
Superconductor

Nematic phase

A spontaneous symmetry breaking in both structural and

electronic properties below a critical temperature 𝑇𝑠.

R. Prozorov et. al., Phys. Rev. Lett. 80, 174517 (2009) 

There is vast evidence that these transition is

driven by electronic properties, giving rise to

true nematic phase transition.

tetragonal orthorhombic

𝑇𝑠

at

𝑎𝑡

𝑏

at



𝛿 < 0.03%

Ba(Fe1-xCox)2As2 single crystals grown 

in P. C. Canfield’s group (Ames Lab). 

Co dopping 𝑥 = 0.062, near optimal.
𝑥 = 0.062

orthorhombic 

distortion 

Samples

At 𝑇 < 𝑇𝑠: Dense array of 

TBs with very subtle 

orthorhombic distortion. 

Experiments

Superconducting transition is 

undergone under nematic order, 

without long range magnetic order.

𝑇 > 𝑇𝑆 𝑇 < 𝑇𝑆

Samples cut along (110) tetragonal 

direction, (100) in orthorhombic axis.

tetragonal orthorhombic

𝑎𝑡

𝑎𝑡

𝑎



Fase nemática electrónica

Evidence of nematicity in the metallic phase

 ∝
𝜌
𝑎′
−𝜌

𝑏′

𝜌𝑎′+𝜌𝑏′
= 0Tetragonal phase:

If no external stress is present:

“ B2g” (compress or pull  a’)  =
∆𝐿

𝐿
: 

 ∝
𝜌
𝑎′
−𝜌

𝑏′

𝜌𝑎′+𝜌𝑏′
(𝜀)= = 𝑚

simplifying
elasto-resistivity

𝜕
𝜕𝜀

∝
𝜕( Τ∆ )

𝜕𝜀
= 𝑚 Nematic susceptibility

When a stress in applied .
 = 0 a

’
b

’

tetragonal

𝑇 > 𝑇𝑠

 > 0

Resistive anisotropy



Evidence of nematic transition

H-H Kuo et al. Science 352.6288 (2016) 

Nematic susceptibility m66  , and Curie law

𝑚66 =
𝑚0

𝑇 − 𝑇∗





Superconductivity 1911 
Ginzburg – Landau 

(1950)

Modelo Bardeen –

Cooper – Schrieffer

(BCS)  (1957)

Ginzburg Landau Theories



quasi- tetragonal 

superconductor:

𝐶4 symmetry . 

…

Nematic-superconducting coupling

𝑚⊥

𝑚||

𝑚||

Interplay between nematicity and superconductivity

Ginzburg Landau (GL) approach

ℱ𝑠𝑐

𝜕

𝜕𝑥𝜇
+
𝑖2𝑒

ℎ𝑐
𝐴𝜇

𝑎 = 𝑎0 𝑇 − 𝑇∗

𝛾 =
𝑚⊥

𝑚||

Superconducting 

. anisotropy  

𝜉𝜇
2 =

ℏ2

2𝑚𝜇 𝛼
𝜆𝐿
2 =

𝑚𝜇𝑐
2𝛽

4𝜋𝑒2𝛼

Ginzburg Landau parameter

Superconductor

Coherence length
London Length Ginzburg Landau parameter



𝜅 > 𝜅𝑐 =
𝜆𝐿
𝜉
=

1

2

Τ∆ ∆∞
2

𝜙0 =
ℎ

2𝑒

B

F
LJ

B

Limit between type I and 

type II superconductors



Attraction RepulsionNon Interacting

Vortex Vortex Interaction in the standard GL model



Truly nematic 

coupling
Bi quadratic couplingPure nematic energy

Ising type order parameter

Ginzburg – Landau nematic

Nematic symmetry is 

broken if 

𝛾3 < 0



How do we describe time 
dependent phenomena?

• Normally a Free Energy is thermodynamical concept 
suited to describe equilibrium

• A standard procedure to describe out of equilibrium 
evolution Is via dissipative dynamics.   

𝛾
𝑑𝑥

𝑑𝑡
= −

𝛿𝐻

𝛿𝑥

Whre x is a dynamical 

variable and 𝛾 Is a 

dissipative constant



Model and  method

Interplay between nematicity and superconductivity

Time Dependent GL Dynamics

TDGL

Schmid ´60

ℏ2

2𝑚𝒱𝑠
𝜕𝑡𝜓 = −

𝛿ℱ

𝛿𝜓∗

𝜎

𝑐2
𝜕𝑡𝑨 = −

𝛿ℱ

𝛿𝑨

𝜎 normal conductivity

𝒱𝑠
diffusion constants

Solving the Time Dependent GL Dynamics: an alternative approach

𝜓 𝑥, 𝑦, 𝑡
𝐵𝑧(𝑥, 𝑦, 𝑡) 𝑥

𝑦

𝑧

Non-Linear  differential equations 

ussually solved using finite

Difference methods (but we will do in a 

different way)



Model and  method

Interplay between nematicity and superconductivity

Stable configurations minimize

ℱ = ℱ𝑠𝑐 + ℱ𝑛𝑒𝑚 + ℱ𝑖𝑛𝑡
2 + ℱ𝑖𝑛𝑡

1

A theoretical problem:

• We are able to control the  total magnetic flux 𝜙
• Fixed controlled temperature 𝑇

Time Dependent GL Dynamics

The simplest problem: Bulk infinite clean superconductor
ℏ2

2𝑚𝒱𝑠
𝜕𝑡𝜓 = −

𝛿ℱ

𝛿𝜓∗

ℏ2

2𝑚𝒱𝑛
𝜕𝑡𝜂 = −

𝛿ℱ

𝛿𝜂

𝜎

𝑐2
𝜕𝑡𝑨 = −

𝛿ℱ

𝛿𝑨
𝜎 normal conductivity

𝒱𝑠 and 𝒱𝑛
diffusion constants 

Numerical solution by using pseudo spectral methods 

(numerical code GHOST) developed to study quantum fluids .

Solving the Time Dependent GL Dynamics: an alternative approach

P. D. Mininni et al. Parallel Computing, 37(6):316 (2011) 

𝜓 𝑥, 𝑦, 𝑡
𝜂(𝑥, 𝑦, 𝑡)
𝐵𝑧(𝑥, 𝑦, 𝑡)

𝑥
𝑦

𝑧



https://github.com/pmininni/GHOST



Magnetic fied

SC order paramter

One vortex solution for different 𝜅

Checking the numerical methods with known results

Superconducting order parameter



Effects of biquadratic coupling
one vortex

Nematic order increases in vortex core

competition

Nematic order decreases in vortex core

cooperation

ℱ𝑖𝑛𝑡
2

Magnetic SC Nematic



Effects of the gardient coupling
one vortex

interact ion. In part icular, λ̂1 couples the nematic order parameter to the derivat ives of the

superconduct ing order and the magnet ic field in a di↵erent way, i.e., with a di↵erent sign,

for the x̂ and ŷ direct ions. The result ing density plots from running the TDGL dynamics

are shown in Fig. 6. The e↵ect of the C4-symmetry breaking coupling causes the vort ices

to elongate along the x̂ (ŷ) axis for posit ive (negative) λ̂1. Not ice nevertheless that in both

cases the nemat ic order parameter is enhanced in the vortex core.

1.3 1.4 1.5 1.6 1.7 1.8 1.9

1.3

1.4

1.5

1.6

1.7

1.8

1.9

x/L

y
/L

4.2
8.4
12.6
16.8
21.0
25.2
29.4
33.6
37.8
42.0

1.3 1.4 1.5 1.6 1.7 1.8 1.9

1.3

1.4

1.5

1.6

1.7

1.8

1.9

x/L

y
/L

0.09
0.18
0.27
0.36
0.45
0.54
0.63
0.72
0.81
0.90

1.3 1.4 1.5 1.6 1.7 1.8 1.9

1.3

1.4

1.5

1.6

1.7

1.8

1.9

x/L

y
/L

1.0045
1.0094
1.0143
1.0192
1.0241
1.0290
1.0339
1.0388
1.0437
1.0486

1.3 1.4 1.5 1.6 1.7 1.8 1.9

1.3

1.4

1.5

1.6

1.7

1.8

1.9

x/L

y
/L

4.2
8.4
12.6
16.8
21.0
25.2
29.4
33.6
37.8
42.0

1.3 1.4 1.5 1.6 1.7 1.8 1.9

1.3

1.4

1.5

1.6

1.7

1.8

1.9

x/L

y
/L

0.09
0.18
0.27
0.36
0.45
0.54
0.63
0.72
0.81
0.90

1.3 1.4 1.5 1.6 1.7 1.8 1.9

1.3

1.4

1.5

1.6

1.7

1.8

1.9

x/L

y
/L

1.0045
1.0094
1.0143
1.0192
1.0241
1.0290
1.0339
1.0388
1.0437
1.0486

FIG. 6. Density plots obtained by solving TDGL equat ions for a single vortex with a C4-symmetry

breaking coupling, with λ̂1 = 0.5 (top) or λ̂1 = − 0.5 (bottom). In both cases the biquadrat ic

coupling λ̂2 is set to zero. The vortex cores elongate along a preferred direct ion, determined by

the sign of λ̂1. Not ice that for both signs of the coupling parameter the nemat ic order parameter

is enhanced in the vortex core.

Finally, we analyze the case when both λ̂2 6= 0 and λ̂1 6= 0. When λ̂2 > 0 and λ̂1 6= 0

both couplings tend to enhance the value of the nemat ic order parameter in the core of the

vortex, so we do not expect major surprises. But for the case λ̂2 < 0 and λ̂1 < 0 both

terms compete, and the behavior of the nematic order parameter in the vortex core is more

difficult to predict. This situat ion can be observed in Fig. 7. Indeed, for specific values of

λ̂2 and λ̂1 the minimum of the nematic order parameter may happen in a ring around the
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FIG. 6. Density plots obtained by solving TDGL equat ions for a single vortex with a C4-symmetry

breaking coupling, with λ̂1 = 0.5 (top) or λ̂1 = − 0.5 (bottom). In both cases the biquadrat ic

coupling λ̂2 is set to zero. The vortex cores elongate along a preferred direct ion, determined by

the sign of λ̂1. Not ice that for both signs of the coupling parameter the nemat ic order parameter

is enhanced in the vortex core.

Finally, we analyze the case when both λ̂2 6= 0 and λ̂1 6= 0. When λ̂2 > 0 and λ̂1 6= 0

both couplings tend to enhance the value of the nemat ic order parameter in the core of the

vortex, so we do not expect major surprises. But for the case λ̂2 < 0 and λ̂1 < 0 both

terms compete, and the behavior of the nematic order parameter in the vortex core is more

difficult to predict. This situat ion can be observed in Fig. 7. Indeed, for specific values of

λ̂2 and λ̂1 the minimum of the nematic order parameter may happen in a ring around the
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interaction. In part icular, λ̂1 couples the nemat ic order parameter to the derivat ives of the

superconduct ing order and the magnet ic field in a di↵erent way, i.e., with a di↵erent sign,

for the x̂ and ŷ directions. The result ing density plots from running the TDGL dynamics

are shown in Fig. 6. The e↵ect of the C4-symmetry breaking coupling causes the vort ices

to elongate along the x̂ (ŷ) axis for posit ive (negat ive) λ̂1. Not ice nevertheless that in both

cases the nematic order parameter is enhanced in the vortex core.
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breaking coupling, with λ̂1 = 0.5 (top) or λ̂1 = − 0.5 (bottom). In both cases the biquadrat ic

coupling λ̂2 is set to zero. The vortex cores elongate along a preferred direct ion, determined by

the sign of λ̂1. Not ice that for both signs of the coupling parameter the nemat ic order parameter

is enhanced in the vortex core.

Finally, we analyze the case when both λ̂2 6= 0 and λ̂1 6= 0. When λ̂2 > 0 and λ̂1 6= 0

both couplings tend to enhance the value of the nematic order parameter in the core of the

vortex, so we do not expect major surprises. But for the case λ̂2 < 0 and λ̂1 < 0 both

terms compete, and the behavior of the nematic order parameter in the vortex core is more

difficult to predict . This situat ion can be observed in Fig. 7. Indeed, for specific values of

λ̂2 and λ̂1 the minimum of the nematic order parameter may happen in a ring around the
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ℱ𝑖𝑛𝑡
1

𝑥 𝑦

Elliptical vortices

“nematic coupling”



How does the presence of 
this couplings change

the vortex-vortex 
interaction?



Self Dual Equations

In the standar GL theory, the attractive and repulsive character of the vortices, and the 

excistence of a critical value 𝜅𝑐=1/ 2 can be shown exactly using a trick due to 
Bogomol´nyi (1975).

This point has deep mathematical and physical consequences (Self Dual Equations, 
Topological Field Theories,  Supersymmetry, BPS states).

At 𝜅𝑐=1/ 2 , the energy is proportional to the vorticity, indicating vortices do not interact.

𝐸 𝑁 = 𝑁 𝐸 1 = 𝑁Φ1



…

Vortex-vortex interaction in Nematic  Superconductors 

A bilinear nematic 𝟏𝟎 ≠ 𝟎 always favors type II SC

ATTRACTIVE INTERACTION

1) SC coupled with  a fixed nematic background 
(single nematic domain with  = 𝟎)

Analytical solution for the self-dual point 

𝜅𝑐
2 =

1

2
1 −

10
2

The biquadratic coupling  𝟐 does not affect 𝜿𝒄
(in the limit of constant nematicity)

2) General numerical solution with 

SC-nematic coupling

attraction

𝜅𝑐 is obtained from the limit between

vortex- vortex attraction and repulsion  

(non interacting vortices within our numerical resolution) 

𝜅 > 𝜅𝑐𝜅 < 𝜅𝑐 𝜅~𝜅𝑐

E. B. Bogomolny. Sov. J. Nucl. Phys, 24:449, 1976 

R. Severino, P. Mininni, E. Fradkin, V.Bekeris, G.Pasquini, and G. S. Lozano , preprint (2022)

repulsion

Self Dual Equations for nematic order



…

Vortex-vortex interaction in Nematic  Superconductors 

2) General numerical solution with 

SC-nematic coupling

attraction

𝜅𝑐 is obtained from the limit between vortex- vortex 

attraction and repulsion  
(non interacting vortices within our numerical resolution) 

𝜅 > 𝜅𝑐𝜅 < 𝜅𝑐 𝜅~𝜅𝑐

repulsion

Self Dual Equations for nematic order

Attraction RepulsionNon Interacting

Vortex Vortex Interaction in the standard GL model



NUMERICS

-

Resulsive interaction (no nematicity)

We use pseudo spectral methods to solve TDGL. We use 

Geophysical High-Order Suite for Turbulence (GHOST)



…

Model and method: classical SC

Interplay between nematicity and superconductivity

Solving the dynamics with pseudo spectral methods (an alternative approach).

Classical uncoupled SC

𝜿𝒄

𝜿𝒄 = 𝟏/ 𝟐

𝜿 ~ 𝟎. 𝟗𝟐 > 𝜿𝒄

𝜿~𝟎. 𝟒𝟗 < 𝜿𝒄

Fast and accurate convergence

No numerical dispersion

One vortex: 

𝜙 = 𝜙0

Repulsive vortex-vortex interaction for 𝜅 > 𝜅𝑐 = 1/ 2

Attractive vortex-vortex  interaction for 𝜅 < 𝜅𝑐 = 1/ 2

Two vortices: 𝜙 = 2 𝜙0

𝜅 ~ 0.92 > 𝜅𝑐

1 giant vortex

2 single vortices

R. Severino, P. Mininni, E. Fradkin, V.Bekeris, G.Pasquini, and G. S. Lozano , preprint (2022)

𝑥 = 0

𝑦0 𝜉

Δ(𝑦)

𝐵(𝑦)



Elliptical Vortices. Vortex-Vortex interaction

We use dynamics to determine the critical value



We determine how nematiciy affects the value of 𝜅𝑐

Gradiente coupling-> Repulsion

Biquadratic coupling ->Attraction



Energy (and force) as function of separation



Playing with N-vortices

N=4



Whats is next?

Pining by nematic walls?

3

(a) (b)

FIG. 1. (a)Plot of the init ial condit ion for the nemat ic order parameter simulat ing a domain wall on the xy plane (b) Profi les

along the x axis for three di↵erent domain walls, varying the nemat ic coherence length l⌘. The coherence length is direct ly
related to the width of the wall.

total flux in the simulat ion box) sat isfies the necessary condit ions of periodicity and are easy to implement from a
numerical point of view.

For the nemat ic order parameter, we take the init ial condit ion to be a domain wall at the x/ L = ⇡ / 2 plane as

⌘(x, y, t = 0) =
⌘̃v

tanh
⇣

1p
2l⌘

⌘tanh

✓
λ(x)

2l⌘

◆

(16)

with l⌘the nemat ic coherence length, which will define the width of the wall (see Fig. 1. Due to the sharp derivat ive
of the domain wall at x/ L = ⇡ / 2, the grid resolut ion will have to be chosen carefully to ensure stability of the method.

We begin the study of the domain wall interact ion by checking that the superconductor order parameter follows the

same behavior with λ̂2 as we have stated previously for the case of vort ices in [5], i.e it is enhanced for posit ive coupling

and depressed for negat ive coupling. Therefore, we placed a homogeneous superconduct ing background  ̃ =  v in the
presence of a nemat ic domain wall and checked that for posit ive (negat ive) coupling the order parameter is enhanced
(depressed) on the domain wall. These results can be seen in Fig. 2, which show exact ly the predicted behaviour.

We studied the case of a single vortex in the presence of a nemat ic twin boundary as was presented in the previous
sect ion. The interact ion between the vortex and the boundary will change its character based on the signs and velues

of the biquadrat ic coupling parameter λ̂2. We present the results for two di↵erent representat ive cases λ̂2,+ = 0.24

and λ̂2,− = − 0.5.

For λ̂2,− we find that the interact ion between the twin boundary and the vortex is at t ract ive unt il it gets pinned.

Not ice that , as the vortex approaches the twin boundary bends towards the vortex. On the other hand, for λ̂1,+ the
at t ract ion is repulsive and the vortex t ravels as far as 7 London lengths in the xy plane.

We can see also from the figures (more evident in 3) that the wall has a ” bending” when the vortex is close enough.

The experiment in BaFeCoAs show that show that the vort ices avoid pinning on twin boundaries... This behaviour
can be explained by the observat ion of enhanced super fluid density on twin boundaries in B a(F e1− x Cox )2As2 (paper
by Kalinsky, PHYSICAL REVIEW B 83, 064511 (2011) .

This seems to be consistent with the case of λ1 to be posit ive, that is compet it ive interact ions.

While for ” FeSe” the experiments show that the vortices move easily along directions that are paral lel to the
orientations of twin domain walls and pin strongly in a perpendicular direction which would be consistent with a
negat ive λ1 negat ive . Zhang et al , PHYSICAL REVIEW B 100, 024514 (2019)

The quest ion is, are there studies of the wall-vortex interact ion in the context of a GL theory?

We have found several papers where they study the vortex-twin boundary interact ions but the twin is modelled as
an (external, fixed) delta Dirac potent ial. But nothing yet when the wall comes from a GL scalar field that has some
internal st ructure. And much less details of the dynamics.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

FIG. 3. Density plots of ⌘̃(panels (a) to (d)) and | ̃ |2 (panels (e) to (f )) for λ̂ 2,− . The vortex begins at a distance 6⇠from

the nemat ic domain wall and is at t racted to it unt il it gets pinned. The vortex core is elongated before it gets pinned and this
e↵ect gets enhanced once pinning happens.

to have a non-zero value of the force at x/ λL = 0 (i.e, the vortex placed on top the singularity) which is consistent
with numerical simulat ions, since a vortex placed on top of the wall is a metastable state and eventually moves away
from the wall.

Vortex pining by a domain wall



Twin domain pining vs Nematic wall pining?



Vortex on the wall



Conclusions

1-We have studied the effect of nematicity in 
vortex-vortex interactions

2-We have implemented a new numerical method 
in the field of Superconductivity that allows to study 
time dependent phenomena more efficiently

3-The method is well suited to study other 
problems, like pining, disorder, temperature 
fluctuations
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