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Lecture 1 

Perspective - The current paradoxalic state of 
particle physics, 

observations vs. 2-soft principles (naturalness 
& quality), anthropics …



Outline

The current state of particle physics, observational problem vs. theoretical expectations   

Soft principles: (1) naturalness (2) quality (will come later)  

Anthropics: deviation from naturalness with cosmology, Weinberg’s solution to the hierarchy 

problem 

The anthropic solution to the weak scale and its lack of robustness, the weakless universe   

 Quality of theories, UV (in)sensitivity                                                                                                                         



The rules of the game for this lecture

♦ What is particle physics ? Understanding the microscopic (high-energy) nature, in region where we 

can’t neglect v/c and  (can’t include gravity):

                        

ℏ

ℒmic
Nature = ℒForces + ℒMatter + ℒInt. + ℒHiggs+ℒNew

♦ This requires usage quantum field theory (QFT), it makes our lives more demanding but also more 

interesting 

♦ Shall try to use minimal exp’ input, mainly focus on principles & theory (no anomalies)



So what is our quest ?

ℒmic
Nature = ℒForces + ℒMatter + ℒInt. + ℒHiggs + ℒNew

Regarding our current understanding: 
 

Do we miss anything conceptually ?
Do we miss anything associated with observation ?



We are definitely missing stuff …

ℒmic
Nature = ℒForces + ℒMatter + ℒInt. + ℒHiggs + ℒNew

-oscillationν baryogenesis dark matter

New forces and/or particle must exist!



Our paradox: what exists can’t be guaranteed, what 
guaranteed might barely exists

ℒmic
Nature = ℒForces + ℒMatter + ℒInt. + ℒHiggs + ℒNew

New forces and/or particle must exist!

Sounds straightforward - let’s find them



Searching for dark matter ??Mass scale of dark matter

10-22 eV keV GeV
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FIG. 3. The mass range of allowed DM candidates, comprising both particle candidates and primordial
black holes. Mass ranges are only approximate (in order of magnitude), and meant to indicate general
considerations.

possible by mass and spin. Fig. 3 gives a compact summary of the landscape and the main tourist
spots - we will visit each below.

A brief aside on MOND. — MOdified Newtonian Dynamics (MOND) is a framework for modified
gravity on galactic scales [8], originally put forth as an alternative to dark matter. A specific
relativistic theory is needed to obtain predictions during the early universe. Assuming no additional
matter content, popular candidates such as TeVeS [9] give a notably worse fit to CMB and large
scale structure data compared to ⇤CDM [10, 11]. A recent analysis of Milky Way rotation curve
and stellar kinematics data is also in tension with MOND [12].

A Bosons vs. fermions and the WDM limit

The keV mass scale is a special scale which, roughly speaking, demarcates thermally-produced
DM (either a fermion or boson) from nonthermally-produced bosonic DM. There are two separate
arguments here: first, a fermion DM candidate must have mass greater than O(keV) in order to
be consistent with observations of galaxies, and second, DM that is thermally produced from the
SM bath must also have mass greater than O(keV) to be consistent with observations of large scale
structure.

Using observations of the kinematics of stars in galaxies, a general statement can be made about
the spin of a potential DM candidate. Galaxies reside inside dark matter halos, gravitationally
bound overdensities that extend well beyond the typical radius for the stellar component of the
galaxy. As a simple example, we can model this halo as an object that underwent gravitational
collapse and is now virialized. Except close to the baryonic component, the gravitational potential
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(1050 eV)

This is crazily hard! 
How can we cover all this range? 
Is there any prefer region? 
Not really unless you add some more theoretical guidance (speculations) 



The paradoxalic state of particle physics 

ℒNature = ℒForces + ℒMatter + ℒInt. + ℒHiggs + ℒNew

-oscillationν baryogenesis dark matter

New forces and/or particle must exist 
However, we have no idea regarding their energy scale !!

Homework: neutrino masses,          
                   Works both with:                      
                                                                    

ℒν(N, L, H ) = MN NN + yNHLN (⟨H⟩ ∼ 102 GeV)
MN ≈ 1014 GeV & yN ≈ 1
MN = 0 GeV & yN ≈ 10−12



The paradoxalic state of particle physics 

ℒNature = ℒForces + ℒMatter + ℒInt. + ℒHiggs + ℒNew

-oscillationν baryogenesis dark matter

New forces and/or particle must exist 
However, we have no idea regarding their energy scale !!

To make progress we need (theoretical) guidance  



Theoretical guidance, 2 “soft principles”  

Naturalness* [mainly involves scalars within Quantum Field Theories (QFT)] 

Quality of theory, sensitivity to “quantum gravity” (Planck-mass suppressed contributions)                                                                                                                  

In order to prioritise where and how to search for new physics, 
let us add more “soft principles”:

see lectures by Csaki from last week, here I’m only going to emphasise the minimal stuff to 
contrast with alternative solutions



1st principle, naturalness

Naturalness [mainly involves scalars within Quantum Field Theories (QFT)] 

Quality of theory, sensitivity to “quantum gravity” (Planck-mass suppressed contributions)                                                                                                                 

In order to prioritise where and how to search for new physics, 
let us add more soft principles:



The Higgs hierarchy & scale

♦ Recall our task is to figure out:   ℒmic
Nature = ℒForces + ℒMatter + ℒInt. + ℒHiggs+ℒnew

♦  consists of fields and coefficient, “constants of nature”, that however in QFT 

depend on energy and on each other: 

ℒmic
Nature

ℒν = MN NN + yNHLN + M2
HH2

  MN = MN (E) & yN = yN (E) & M2
H = M2

H (E, MN, yN)For instance:

♦ You have already heard last week about the Higgs and the naturalness problem, 
let’s reiterate the argument in a way that would help us later



QFT havoc (simplistic picture)

♦ If all couplings depend on energy and on each other, how can we even define our 
theory and seek for microscopic description ??? 

coupling

energy

We’d like to describe our theory 
at microscopic distances We typically perform our 

measurements at low energies

UVIR



What’s the issue with unnatural light Higgs? Warmup ex.

♦ Best explained using observable effects looking at the energy dependence of the 
Higgs mass, however, as a warmup let’s just investigate a simple natural fermion mass 
model:

yN

energy ( )μ̄

ℒν(N, L, H) = MNNN + yNHLN

1000 105 107 109

0.4

0.6

0.8

1.0

dyN

d log μ̄
= ynβn , βn =

2y2
N

16π2

Start smallEnd small

Change in coupling prop’ to coupling

<- simple relation ->

UVIR



What’s the issue with an unnatural light Higgs?

♦ First energy evolution of Higgs mass within the standard model (SM, boring):

m2
H

energy ( )μ̄

independent, as it should [9], and explicitly given by2
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are the finite parts of the usual Passarino-Veltman functions and Mt is the top quark mass,
MW is the W mass, MZ is the Z mass. This correction reproduces the well known one-loop
SM RGE equation for m2
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In view of the log divergence, the finite part of the correction to m
2 is scheme-dependent; it

depends on the value of µ̄ and on its definition (e.g. when choosing MS instead then MS).3

From eq. (6) we see that the MS Higgs mass parameter equals m(µ̄ = Mt) = 132.8GeV.
Renormalizing it at large energies [12] we find m(µ̄ = MPl) = 141.1GeV. As a consequence
the SM satisfies ‘finite naturalness’, for the observed values of its parameters. Fig. 1 shows
contour-levels of the fine-tuning � ⌘ m

2(Mt)/M2
h
� 1: we see that � ⇡ 0.13 is small for the

observed values of the SM parameters, while a Higgs mass ⇡ 10 times lighter than the top
would have led to a ‘finite naturalness’ problem within the SM.

We now explore the implications for ‘finite naturalness’ of new physics motivated by ob-
servations.

3 Finite naturalness, neutrino masses and leptogenesis

The observation of neutrino masses [13], presumably of Majorana type, points to new physics
at some scale possibly as high as v

2
/m⌫ ⇠ 1014 GeV. At tree level, neutrino masses can be

mediated by 3 types of new particles, called type I, II and III see-saw. We will study the
corrections to the Higgs mass parameter in these scenarios.

2 Equivalent expressions for the one loop SM correction to the pole Higgs mass have already been presented
in various papers, including appendix C of [10], eq. (3.14) of [11], appendix A of [8]. These computations
are here used (maybe for the first time) to extract the fundamental SM parameter m from data with one-loop
accuracy; the result with two-loop accuracy will appear in [9].

3In general, the constant terms here and in the following computations depend on the regulator as well as
an on the renormalisation scheme; we will use MS. On the other hand, the log-enhanced terms are univocally
defined and correspond to the coefficients of the usual renormalisation group equations.
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Higgs mass evolution in Seesaw model, matching the SM
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While the Yukawa coupling is multiplicative normalised 
  
the Higgs is like a trash bin it’s additively normalised  



What if we change the Higgs mass in the UV by x 2?

m2
H

energy ( )μ̄

Same “Threshold” corrections 
prop’ to M2

N

SM

Seesaw

observed 
LHC-mass

UVIR
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Catastrophe 
 m2

H ∼ 104m2
H



Organising principle, (technical) naturalness

♦ ’t Hooft proposed a principle to distinguish in QFT

parameters that nicely behave (UV-insensitive), that we                                      
denote as technical natural parameters, and those that
 are unnatural

1999

NATURALNESS, CHlRAL SYMMETRY, AND SPONTANEOUS 

CHlRAL SYMMETRY BREAKING 

G. 't Hooft 

Institute for Theoretical Fysics 

Utrecht, The Netherlands 

ABSTRACT 

A properly called "naturalness" is imposed on gauge theories. 
It is an order-of-magnitude restriction that must hold at all 
energy scales To construct models with complete naturalness for 
elementary particles one needs more types of confining gauge 
theories besides quantum chromodynamics. We propose a search 
program for models with improved naturalness and concentrate on 
the possibility that presently elementary fermions can be con-
sidered as composite. Chiral symmetry must then be responsible 
for the masslessness of these fermions. Thus we search for QCD-
like models where chiral symmetry is not or only partly broken 
spontaneously. They are restricted by index relations that often 
cannot be satisfied by other than unphysical fractional indices. 
This difficulty made the author's own search unsuccessful so far. 
As a by-product we find yet another reason why in ordinary QCD 
chiral symmetry must be broken spontaneously. 

1111. INTRODUCTION 

The concept of causality requires that macroscopic phenomena 
follow from microscopic equations. Thus the properties of liquids 
and solids follow from the microscopic properties of molecules 
and atoms. One may either consider these microscopic properties 
to have been chosen at random by Nature, or attempt to deduce 
these from even more fundamental equations at still smaller 
length and time scales. In either case, it is unlikely that the 
microscopic equations contain various free parameters that are 
carefully adjusted by Nature to give cancelling effects such that 
the macroscopic systems have some special properties. This is a 
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Technical naturalness => Causality (UV=>IR)
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Naturalness vs Scalars

♦ What are technically natural parameters?
Natural parameter: when taken to zero => theory admits a new symmetry 

♦ Bottomline for the school: 
In interacting theory, scalar mass is not a natural parameter

♦ Roughly, expect scalars to be, at least, as massive as the product of the  
heaviest particle that they coupled to and their coupling to it

♦ So how what is the SM fare on this front of naturalness?



Easy problems

Baryogenesis
Leptogenesis
EW-baryo’
Cold-baryo’

Inflation decay
RS phase trans’

…

Neutrino masses
EFT

Seesaw
Dirac neutrinos
Radiative masses

Infinite flavor models
…

Dark matter
BH

WIMP
MeV-GeV

Composite variety
Axion-like-particle
Asymmetric DM

…

Hard problems

Cosmological 
constant

Higgs mass

Technical natural parameters                                      Technical unnatural parameters
Perspective, digression: SM & vs. naturalness

Strong CP (“7-loop” problem)



Conventional Naturalness vs the SM Higgs

♦ The conventional way to address the Higgs mass is to promote it to a 
technical natural parameter, we basically know 2 ways to do it (Csaki):

i. SUSY (chirality)
ii. Dimensional-transmutation/compositeness/technicolor/RS 

Sounds good, but what about the cosmological constant (CC)?

Λ
M 4

Pl
∼ 10−120 ⇒ Requires subeV new physics that couples to everything 

All conventional attempts failed!!



Weinberg’s observation

♦ Observers requires complexity (elements, galaxies, stars etc.)

♦ Requires time for evolution: > 105 years for DM to form halos and for 
Hydrogen molecules to form,  > 109 yrs for galaxies

(1987)

♦ Large CC does not allow it: 
   Matter and radiation decrease with time, CC is constant
   There’s a finite time equal to that takes it to dominate 

M2
PlH

2 = ΩM /(1 + z)3 + Ωrad /(1 + z)4 + Λ

tΛ ∼ 10 Gyr
10−12eV4

Λ

(for more cosmological details, see lectures by Hubisz)



Weinberg’s anthropic argument

♦ Values of the CC of roughly 103 bigger =>  forbid the creation of galaxies, 
not to mention stars & planet etc => no conventional observers

♦ Now, suppose that there are many realisation of our universe, either 
because of eternal inflation or other more speculative ideas, and also that 
there is a mechanism allow to scan the value of the CC in each of them, 
then while all the others would either become empty quickly or crunch there 
will be a few with small CC that are long lived and allow for structure/
complexity to form 



Anthropic reasoning applied to the Higgs mass?

♦ What if during cosmology the Higgs VEV/mass is scanned? 
Agrawal, Barr, 
Donoghue & Seckel (98)

mn −mp = (md −mu−1.7) MeV=(3(v/v0)−1.7) MeV,

and the Q value for neutron beta decay, Q ≡ mn − mp − me is (2.5(v/v0) − 1.7) MeV

As v increases neutron becomes more unstable, mn − mp increases, and the 
nuclear potential between nucleons gets weaker (since mπ  is getting hevier).

For instance: the critical reaction for decay of the deuteron is d → p + p + e− + ν 
which occurs whenever Bd < mn − mp − me ∼ [2.5(v/v0) − 1.7] MeV.
With mπ ∝ ((mu + md)fπ)1/2 and 
Bd ~[2.2-6 delta v/v0] MeV, so already at v/v0 ~ 1.5 deuteron doesn’t bind

V(r) ∼ e−mπr /r with r ∼ 1/mπ



Anthropic reasoning applied to the Higgs mass?

♦ What if during cosmology the Higgs VEV/mass is scanned? 

Agrawal, Barr, 
Donoghue & Seckel (98)

Estimate that for  there will be no stable nuclei resulting with inert 
proton universe

For     becomes the lighters state resulting with a Helium-like 
inert universe …

v/v0 ≳ 5

v/v0 ≳ 103 Δ++

♦ Looks like we’ve found the best explanation for the lightness of the Higgs 
mass … 



A universe \wo weak interaction

♦ What if the scan is such that the masses are kept fixed?

So  

♦ We can even try to take weakless universe

One can go through the whole stages of the universe and see that with 
some amendments a universe similar to ours, with baryon, structure, 
chemistry, stars are formed

y
y0

v
v0

= m0 = fixed

MH & v → MPl ⇒

Harnik, Kribs & GP (06)



Weakless universe and flat direction

♦ From deuterium heavy element can be fused, and then star burn for long 
times 

Gedalia, Jenkins & GP (10)

♦ How unlikely is this? Model Yukawa according to FN with scanning over 
VEV and charges suggests that it is very likely …

♦ So it seems that the antropics argument for the Higgs mass is not-robust.
   Is there anything other lesson related to flavor on this front? Maybe …

♦ The baryon/fermion asymmetry taken to be  to create deuterium ηb ∼ 10−12



The top-Higgs phase diagram & criticality

A raise of < 3% in top Yukawa => weakless universe

Is it coincidence or does it tells us something? (Hall et al., 2003 onwards)
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Figure 5: Regions of absolute stability, meta-stability and instability of the SM vacuum in the Mt–
Mh plane. Right: Zoom in the region of the preferred experimental range of Mh and Mt (the
gray areas denote the allowed region at 1, 2, and 3�). The three boundaries lines correspond to
↵s(MZ) = 0.1184± 0.0007, and the grading of the colors indicates the size of the theoretical error.
The dotted contour-lines show the instability scale ⇤ in GeV assuming ↵s(MZ) = 0.1184.

3.3 Phase diagram of the SM

The final result for the condition of absolute stability is presented in eq. (2). The central

value of the stability bound at NNLO on Mh is shifted with respect to NLO computations

(where the matching scale is fixed at µ = Mt) by about +0.5GeV, whose main contributions

can be decomposed as follows:

+ 0.6GeV due to the QCD threshold corrections to � (in agreement with [14]);

+ 0.2GeV due to the Yukawa threshold corrections to �;

� 0.2GeV from RG equation at 3 loops (from [12,13]);

� 0.1GeV from the e↵ective potential at 2 loops.

As a result of these corrections, the instability scale is lowered by a factor ⇠ 2, for Mh ⇠ 125

GeV, after including NNLO e↵ects. The value of the instability scale is shown in fig. 4.

The phase diagram of the SM Higgs potential is shown in fig. 5 in the Mt–Mh plane,

taking into account the values for Mh favored by ATLAS and CMS data [1, 2]. The left

plot illustrates the remarkable coincidence for which the SM appears to live right at the

border between the stability and instability regions. As can be inferred from the right plot,

which zooms into the relevant region, there is significant preference for meta-stability of the

SM potential. By taking into account all uncertainties, we find that the stability region is

disfavored by present data by 2�. For Mh < 126 GeV, stability up to the Planck mass is

excluded at 98% C.L. (one sided).
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♦ Still notice a peculiar criticality associated with the top  dλH

d log μ
∝ − |yt |
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Intermediate summary: Solution to the SM 
naturalness problems; Scales of new physics
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Before go to discuss the second soft principle:
Let’s summarise the big picture

Observational vs. Conceptual cases for BSM



Easy problems
No NP scale

Baryogenesis
Leptogenesis
EW-baryo’
Cold-baryo’

Inflation decay
RS phase trans’

…

Neutrino masses
EFT

Seesaw
Dirac neutrinos
Radiative masses

Infinite flavor models
…

Dark matter
BH

WIMP
MeV-GeV

Composite variety
Axion-like-particle
Asymmetric DM

…

Hard problems
NP scale?

Cosmological 
constant

Higgs mass

Technical natural parameters                                     Technical unnatural parameters

Strong CP (“7-loop” problem)

Perspective, digression: SM & beyond scoreboard



Homework 1

1.Is the theta term technically natural parameter?  
2.Assuming the Planck scale as the cutoff of the SM, is the strong CP problem severe one? 
3.By how many order of mag. will the EDM-neutron bound has to be improved such that the 

strong CP problem becomes significantly more serious? Why?



2nd principle, “quality”, blindness of gravity

Naturalness [mainly involves scalars within Quantum Field Theories (QFT)] 

Quality of theory, sensitivity to “quantum gravity” (Planck-mass suppressed contributions)                                                                                                                     

In order to prioritise where and how to search for new physics, 
let us add more soft principles:



What to expect from the unknown

We don’t know much about quantum gravity so everything would be speculative 

In effective field theory approach (EFT) we can generically expect that the 

dynamics at around the Planck scale would connect different sectors of the SM and 

would not respect global symmetry 

For instance we should expect the presence of the operators for neutrino masses:

,   or, 

  soft squark masses:  (FX - SUSY breaking)

L2H2/MPl ⇒ mν ≳ 10−5 eV

X†XQ̃†Q̃/M2
Pl ⇒ msquark ≳ FX /MPl



Planck suppression for ultralight spin 0 field

In the following we shall discuss theories with ultra (pseudo) scalars (a) , how do 

such models fare with the above principle?  

Let’s add some dimension 5 operators, and ask if current sensitivity reach the 

Planck scale:   

where we have assumed that gravity respects parity

ϕ

ℒPl ∈ dme

ϕ
MPl

meēe + dg
ϕ

2gMPl
βgGG +

a
f

m̄eeγ5e +
a

32π2f
GG̃

ameliorated.

The paper is organized as follows: in Section 1, we introduce the ULDM models

of interest and their couplings to the SM. Furthermore, we give a first look at the

phenomenological consequences of these models, and in particular, the profile of

quadratically coupled DM. In Section 2, we review the bounds from di↵erent ULDM

searches, considering current and future ones. In Section 3, we study in detail the

behavior of the DM field in the presence of a massive source, such as the earth, in

both linear and quadratic theories. In addition, we comment on the challenges of

EP tests and DDM searches due to the DM field profile. In sections 4 and 5, we

review the theoretical aspects of DM models with sizable quadratic DM interactions

with the SM and provide various examples in which these couplings are technically-

natural. In Section 6, we study a specific model inspired by the relaxed-relaxion

model, show how it solves the naturalness problem of the ULDM and allows for

a hierarchy between the linear and quadratic coupling of the DM field. Lastly, In

Section 7, we conclude our results.

1.1 Model with linear DM couplings

We start by reviewing the case where the DM couples linearly to the SM fields.

Since we choose to focus on CP invariant theories, we distinguish between a CP

odd pseudo-scalar, �(x) = a(x), and a CP-even scalar, �(x) = '(x). The linear

interactions can be characterized by the following low-energy e↵ective Lagrangians

L
'

lin scalar =
d(1)e �e
4MPl e

'F µ⌫Fµ⌫ �
d(1)g �g
2MPl g

'Gbµ⌫Gb

µ⌫
�

d(1)mi

MPl
'mf f 

c

f
+ h.c. , (1.2)

L
a

lin pseudo-scalar =
d̃(1)e �e
MPl e

aFµ⌫F̃
µ⌫ +

d̃(1)g

MPl
aGb

µ⌫
G̃bµ⌫

�
id̃(1)mi

MPl
amf f 

c

f
+ h.c. , (1.3)

where, Fµ⌫ is the Electro-magnetic (EM) field strength, Gb

µ⌫
is the gluon field strength

with color index b. �e = e
3

12⇡2 and �g = �
�
11
3 �

2
3Nf

�
g
3

16⇡2 are the EM and QCD

beta functions respectively, with Nf being the number of light quarks.  i ( c

i
)

are the SM Weyl fermions (anti-fermion) with mass mf (f = u, d, e being a flavor

index), MPl = 2.4 ⇥ 1018 GeV is the reduced plank mass, X̃µ⌫ = ✏µ⌫⇢�X⇢� with

X = F,Gb. d(1)
i

and d̃(1)
i

are the dimensionless CP-even and CP-odd linear DM

couplings, respectively.1

The analysis and the bounds on the CP-even coupling, d(1)
i
, can be found in [2, 36].

1Eq. (1.3) is basis dependent. One can perform field redefinitions of the fermionic fields to
remove the pseudo scalar, a(x), coupling from the mass term or from a topological term.

– 4 –



Quality problem, 5th force vs EP violation, electron coupling

dme
∼ 1 or ge ∼

me

MPl

EP: Planck suppressed operators are excluded for  
5th force: operators are excluded for 

mϕ ≲ 10−6 eV
10−19 ≲ mϕ ≲ 10−13 eV

5th force searches

EP tests

A. Banerjee



Quality problem, 5th force vs EP violation, gluon

EP: Planck suppressed operators are excluded for  
5th force: operators are excluded for 

mϕ ≲ 10−5 eV
mϕ ≲ 10−3 eV
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Quality problem, bounds for QCD-axion-couplings (similar for electron) 
2

FIG. 1. Constraints and future projections on the axion-
gluon coupling are summarized as follows: Rb/Cs clock
comparison (blue) [19], H/Si comparison (red) [24], Iodine
molecular spectroscopy (brown) [28], GEO 600 gravitational
wave detector (orange) [22], 229Th nuclear isomer transition
(red dashed) [13, 32], and strontium monohydroxide (green
dashed) [33]. The gray dotted line is f = Mpl. The diag-
onal grey line is allowed parameter space for the QCD ax-
ion, m2f2 ⇠ m2

⇡f
2
⇡ . Other bounds, such as oscillating neu-

tron EDM (purple) [34], supernova 1987A [35] (light cyan),
co-magnetometer and NASDUCK [36, 37] (gray), and axion
superradiance [38] (cyan), are also included for the compar-
ison. Projections of axion-nucleon interaction searches, such
as CASPEr-electric (blue dashed) [39] and NASDUCK (gray
dashed) [37], are also included. Spectroscopy bounds above
the green solid line must be taken carefully as the axion could
develop a static profile around the earth [40]. If such a static
profile exists, it a↵ects the propagation of DM axion, but this
parameter space is already excluded by static neutron EDM
experiments. See the main text for details.

@ lnmp/@ lnm2
⇡
' 0.06. For now, we take m and f as

independent parameters to investigate the reach of spec-
troscopy experiments for axion-gluon coupling search.
Axion DM background does not change fine structure
constant and electron mass to the leading order, so the
variation of those quantities is ignored. The dependence
of gp and mp on the pion mass is computed by using
chiral perturbation theory at the chiral order O(p3) and
compared with lattice computations. See Appendix A for
details. We have used ✓

2(t) = (⇢DM/m
2
f
2)[1+cos(2mt)]

with ⇢DM ' 0.4GeV/cm3. A constant o↵set is ignored as
it is unobservable. Equation (3) suggests that the axion-
gluon coupling strength might be probed by looking for
a harmonic signal in �fH/fH at the frequency ! = 2m.

The above discussion is more than an academic ex-
ercise. A recent experiment performed by Kennedy et
al [24] monitored hydrogen maser frequency (fH) to-
gether with silicon optical cavity resonance frequency
(fSi) to probe scalar DM interactions to electromagnetic
field strength and electron mass. Since the silicon optical
cavity resonance frequency has a rather weak dependence
on proton mass, the fractional variation of frequencies is

dominated by that of hydrogen maser,

�(fH/fSi)

(fH/fSi)
'

�fH

fH
.

Claimed short-term stability of transition frequency is
⇠ 3 ⇥ 10�13

/
p
Hz. Using Eq. (3) and 33 days of experi-

mental results obtained in Ref. [24], we place a constraint
on axion-gluon coupling, shown as a red line in Figure 1.

Hydrogen maser is one example of many frequency
standards based on hyperfine structure. An earlier at-
tempt to probe scalar DM based on hyperfine transitions
was made by Hees et al [19], where they used measure-
ment of rubidium (87Rb) and cesium (133Cs) hyperfine
transitions. For the hyperfine structure of heavier atoms,
the parametric dependence of transition frequency is sim-
ilar,

f / gm
2
e
↵
4
/mp,

but the g-factor is replaced by that of the nucleus. The
nuclear g-factor can be written as a function of nucleon
g-factor and the spin expectation value of valence and
core nucleons. Using the result of Ref. [41] together with
the nucleon g-factor computed in the chiral perturbation
theory, we find

@ ln g

@ lnm2
⇡

=

(
�0.024 87Rb,

+0.011 133Cs,
(4)

See Appendix A for details. The fractional frequency
variation is therefore

�(fA/fB)

(fA/fB)
' �0.04

�m
2
⇡

m2
⇡

' �10�16 cos(2mt)

m
2
15f

2
10

(5)

where A = 87Rb and B = 133Cs. Using the experimental
result of Rb/Cs fountain clock [19], we obtain a constraint
on axion-gluon coupling constant, which is shown as blue
line in Figure 1. It is similar to the constraint from the
H/Si comparison test, but Rb/Cs constraint extends to a
much lower mass range due to its long experimental time
scale.

We have only considered hyperfine transitions so far.
In principle, any stable frequency standards can be used
for axion DM search as long as the transition frequency
depends on g-factor and/or nucleon mass. Another ex-
ample is a vibrational molecular excitation. Since the

vibrational energy level depends on fvib / m
�1/2
p , we

find

�fvib

fvib
= �

1

2

�mp

mp

' �10�16
⇥

cos(2mt)

m
2
15f

2
10

. (6)

A recent experiment performed by Oswald et al [28] used
molecular transitions in molecular iodine (I2) to probe
the variation of fundamental constants. We use their re-
sult to place a constraint on axion-gluon coupling, which
is shown as brown in the summary figure. The constraint
is relevant for the relatively high mass end of the shown
parameter space.

Seems like the bound are weaker, and so, for QCD axion-like models do not suffer 
neither from quality nor from naturalness, but that’s naive, see more later …



ultralight spin 0 field & naturalness

For this action there’s also an issue of naturalness:   

With  (for mirror model) => 

dme
< 4πmϕ /Λe × MPl /me

Λe ≳ me dme
≲ 106,0 ×

mϕ

10−10 eV
×

me, TeV
Λe

EP 

Λ e
∼

m e Λ e
∼ TeV

dme



Homework 2

Could you comment about the MNS mixing angles, not long ago we didn’t know the value of ,  
what would be the lower bound on its size? 

Within the SM is there any precision measurement that lead to a tension with the idea that the SM is an EFT valid up 
to the Planck scale? 

Repeat the naturalness analysis done for the electron coupling to the gluon coupling

θ13



To make sure that we’re on the same page
Let’s quickly go through the relevant part of the 

QCD axion story

For the full story see D’Agnolo’ lectures



Outline

Naive parameter space of QCD axion, the QCD line 

Quality argument      

How to go above the QCD line naturally & addressing the quality problem 

simultaneously                                                                                                                 



QCD low energy (2 gen ignoring eta’)

At low energies: 

follow a semi-historical route. We first describe how to get low-energy QCD, aka the theory of pions, incorrectly. We
then fix it via a better understanding of anomalous symmetries. Next, we describe how to get the theory of pions
correctly. Finally, we add neutrons into the theory and calculate the neutron eDM.

A. Low-energy QCD done incorrectly

We consider QCD with two light flavors. This theory has gluons (Aµ), left-handed quarks (q = (u d)) and
right-handed quarks (qc = (uc dc)). The fermions q and qc are Weyl fermions. For those unfamiliar or in search of a
review of Weyl fermions, both Ref. [5] and Ref. [6] provide good introductions to the topic. Aside from the kinetic
terms, the theory has the Lagrangian

L � ✓g2
s

32⇡2
GG̃+ qMqc, M =

✓
,mu 0
0 md

◆
(9)

where G̃µ⌫ = 1
2✏

µ⌫⇢�G⇢�. ✓ plays no roll in this subsection and will be ignored for now. This theory has an SU(3)
gauge group and 4 global symmetries SU(2)L ⇥ SU(2)R ⇥ U(1)B ⇥ U(1)A. Under these symmetries, the particles
and spurions transform as

SU(3) SU(2)L SU(2)R U(1)B U(1)A

Aµ adj

q 1 1

qc -1 1

M -2

(10)

At low energies, this theory becomes strongly coupled and we have no analytic traction on what happens.
Instead, what we will do is use various inputs from experiment to build an e↵ective field theory of the pions. The
starting point is the measured fact that QCD confines. In particular, it has been determined experimentally that

hqqci 6= 0, (11)

which breaks SU(2)L ⇥ SU(2)R down to its diagonal SU(2)D, and also breaks U(1)A. As with any spontaneous
symmetry breaking, there will exist Goldstone bosons: These are called the pions and are expressed in terms of the
matrix

U = e
i

⇧a
p

2f⇡
�
a

, (12)

where �1�3 are the Pauli spin matrices and �0 is the identity matrix. ⇧0 is associated with the breaking of U(1)A
and is called the ⌘0 boson. Meanwhile the other pions are typically referred to as ⇧3 = ⇡0 and ⇧1,2 = ⇡1,2. U is a
unitary matrix so that UU† is the identity matrix. U has the symmetry transformation properties

SU(2)L SU(2)R U(1)B U(1)A

U 2
(13)

I’ll leave it as an exercise to the reader to demonstrate that the vev of U preserved the diagonal group L = R while
breaking the axial group L = R†.

As we know nothing of how we got to this theory, we will write down all renormalizable operators consistent
with symmetries with arbitrary coe�cients. The leading order operator that one can write down is

L = f2
⇡
Tr @µU@µU† =

1

2
@µ⇡

a@µ⇡a + · · · (14)

All other terms in the potential are higher-dimensional operators and their coe�cients are fixed by the requirement
that when U is expanded in terms of the pion fields, the kinetic term is canonically normalized. We now include the
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Breaks SU(2) L x R to diagonal



Chiral Goldstone action
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SU(2)L SU(2)R U(1)B U(1)A

U 2
(13)

I’ll leave it as an exercise to the reader to demonstrate that the vev of U preserved the diagonal group L = R while
breaking the axial group L = R†.

As we know nothing of how we got to this theory, we will write down all renormalizable operators consistent
with symmetries with arbitrary coe�cients. The leading order operator that one can write down is

L = f2
⇡
Tr @µU@µU† =

1

2
@µ⇡

a@µ⇡a + · · · (14)

All other terms in the potential are higher-dimensional operators and their coe�cients are fixed by the requirement
that when U is expanded in terms of the pion fields, the kinetic term is canonically normalized. We now include the
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mass of the quarks, keeping only the leading-order operator. In other words, we perform a series expansion in small
masses. Remembering that the mass matrix has transformation properties under the flavor symmetries, we write the
leading-order operator as

L = f2
⇡
Tr @µU@µU † + af3

⇡
Tr MU + h.c., (15)

where a is an arbitrary constant that will be determined by matching with data. Expanding this Lagrangian in terms
of the pion fields, one obtains the mass matrix

V = af⇡(mu +md)⇡
+⇡� +

af⇡
2

⇣
⇡0 ⌘0

⌘ mu +md mu �md

mu �md mu +md

! 
⇡0

⌘0

!
, ⇡± =

⇡1 ± i⇡2

p
2

. (16)

We see that there are four light particles whose masses obey 2m⇡+ = m⇡0 + m⌘0 . At this point, we again turn to
experiment and find that m⇡+ ⇡ m⇡0 ⇡ 140 MeV while m⌘0 ⇡ 960 MeV. This clearly does not obey the sum rule
that the EFT just derived, so something has gone wrong. As we will discuss in the next section, it turns out that
U(1)A is actually not a good symmetry and that the ⌘0 boson obtains a large mass from another source.

B. Anomalous symmetries

In this subsection, we discuss how the U(1)A symmetry discussed above is actually not a good symmetry of the
theory and the implications of it. From any number of QFT textbooks, e.g. Ref. [7], one finds that if one rotates the
quarks by

u ! ei↵u, uc ! ei↵uc, (17)

then under this rotation, the Lagrangian also changes as

L ! L+ ↵
g2

16⇡2
GG̃. (18)

The reason for this anomalous symmetry is that the measure is not invariant under this transformation.
Because there is no symmetry, there should be no Goldstone boson. However, explicitly broken symmetries are

still useful. After all, in the previous subsection, we showed how to start building a theory of pions even when there
are explicit mass terms that break the symmetries. The star of the previous show were spurions, constants that
transform under symmetries. Thus, we wish to find a constant under which we can take this non-symmetry and turn
it into a spurious symmetry. This particular example is usually called an anomalous symmetry due to the association
with the anomaly in Eq. 18.

By remembering that there was a term in the Lagrangian that is

L � ✓
g2

32⇡2
GG̃, (19)

we see that we can cancel the piece added to the Lagrangian in Eq. 18 by shifting ✓. ✓ is now our spurion. For
2-flavor QCD, the proper anomalous symmetry is

u ! ei↵u, d ! ei↵d, ✓ ! ✓ � 2↵. (20)

Note that there are several important di↵erences between ✓ as a spurion and M as a spurion. A major di↵erence
is that ✓ realizes the symmetry non-linearly, i.e. it shifts under the symmetry rather than changing multiplicatively
the way U(1)A acts on the pion matrix U . To obtain a spurion that transforms linearly, we let ✓ appear in the
Lagrangian as ei✓.

For the spurion M , the masses of the pseudo-Goldstone bosons are suppressed by M in the M ! 0 limit. The
reason is that the symmetry is restored in the M ! 0 limit so that the Goldstone boson masses must go to zero in
this limit. Thus we can take M small and apply a Taylor series. However, this sort of expansion is impossible for ✓
because |ei✓| = 1, so even if ✓ = 0, the pseudo-Goldstone boson mass is still non-zero. This is reflected in the fact
that ✓ = 0 does not convert the anomalous symmetry into a true symmetry. The anomalous symmetry never was
and never will be a symmetry of the theory 1. Despite this, it still has its uses, as we will see in the next subsection.

1
If gs = 0 then the anomalous symmetry would be a good symmetry, but then confinement does not occur.

6

C. The theory of pions and neutrons done properly

As mentioned in the previous subsection, the U(1)A symmetry is not a good symmetry of nature. Recall that
the anomalous symmetry is

u ! ei↵u, d ! ei↵d, ✓ ! ✓ � 2↵. (21)

Because a constant of nature, ✓, transforms under this symmetry, the corresponding pseudo-Goldstone boson, ⌘0,
obtains a mass even in the limit where the quark masses go to zero.

As in the case of non-zero quark masses, broken symmetries are still useful in constraining how their correspond-
ing pseudo-Goldstone boson appears. To see how ⌘0 transforms under U(1)A, we note that q ! ei↵q tells us how
U / qqc transforms. Thus there is an anomalous symmetry

U ! ei↵U, ✓ ! ✓ � 2↵, M ! e�i↵M. (22)

Written in terms of the ⌘0 boson, this means that the following is a good symmetry of the theory :

⌘0 ! ⌘0 +
p
2↵f⌘0 , ✓ ! ✓ � 2↵, M ! e�i↵M. (23)

Now armed with the fact that U(1)A is not a good symmetry of nature, we can write down a new term in the
e↵ective Lagrangian :

L = f2
⇡
Tr @µU@µU † + af3

⇡
Tr MU + bf4

⇡
detU + h.c. (24)

which is invariant under SU(2)L ⇥ SU(2)R ⇥ U(1)B but not invariant under U(1)A. But that is fine because U(1)A
was never a true symmetry to begin with. Note that while U(1)A isn’t a good symmetry, the anomalous symmetry
given in Eq. 23 is still valid. Thus we see that the phase of the complex coe�cient b is fixed to be

b = |b|ei✓. (25)

The mass of the ⌘0 boson can be obtained by Taylor expanding Eq. 24 as

L =
1

2
m2

⌘0
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p
2

◆2

+ · · · (26)

Plugging this expectation value into the matrix U , we find that

U = ei
✓
2 e

i
⇡a

p
2f⇡

�
a

. (27)

Now that we understand how the ⌘0 behaves, we can finally go back and redo the theory of pions carefully. The
first step is to find the vacuum about which to expand. This vacuum can be non-trivial. The easiest way to see this
is to look at the pion masses, m⇡ ⇠ mu + md. If the quark masses were negative, then the pion mass would also
be negative. To find the vacuum state, we assume that ⇡0 has an expectation value h⇡0i = �

p
2f⇡. It is left as an

exercise to the reader to show that the charged pions do not obtain an expectation value. Thus we are expanding
about

U =

 
ei�+i✓ 0

0 e�i�+i✓

!
. (28)

� comes from the expectation value of ⇡0, while ✓ appears due to the expectation value of ⌘0.
The potential comes from the term

V = �af3
⇡
Tr

  
muei✓u 0

0 mdei✓d

!
U

!
+ h.c. = �2af3

⇡


mu cos(�+

✓

2
) +md cos(�� ✓

2
)

�
, (29)

✓ = ✓ + ✓u + ✓d, (30)
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C. The theory of pions and neutrons done properly

As mentioned in the previous subsection, the U(1)A symmetry is not a good symmetry of nature. Recall that
the anomalous symmetry is

u ! ei↵u, d ! ei↵d, ✓ ! ✓ � 2↵. (21)

Because a constant of nature, ✓, transforms under this symmetry, the corresponding pseudo-Goldstone boson, ⌘0,
obtains a mass even in the limit where the quark masses go to zero.

As in the case of non-zero quark masses, broken symmetries are still useful in constraining how their correspond-
ing pseudo-Goldstone boson appears. To see how ⌘0 transforms under U(1)A, we note that q ! ei↵q tells us how
U / qqc transforms. Thus there is an anomalous symmetry

U ! ei↵U, ✓ ! ✓ � 2↵, M ! e�i↵M. (22)

Written in terms of the ⌘0 boson, this means that the following is a good symmetry of the theory :

⌘0 ! ⌘0 +
p
2↵f⌘0 , ✓ ! ✓ � 2↵, M ! e�i↵M. (23)

Now armed with the fact that U(1)A is not a good symmetry of nature, we can write down a new term in the
e↵ective Lagrangian :

L = f2
⇡
Tr @µU@µU † + af3

⇡
Tr MU + bf4

⇡
detU + h.c. (24)

which is invariant under SU(2)L ⇥ SU(2)R ⇥ U(1)B but not invariant under U(1)A. But that is fine because U(1)A
was never a true symmetry to begin with. Note that while U(1)A isn’t a good symmetry, the anomalous symmetry
given in Eq. 23 is still valid. Thus we see that the phase of the complex coe�cient b is fixed to be

b = |b|ei✓. (25)

The mass of the ⌘0 boson can be obtained by Taylor expanding Eq. 24 as

L =
1

2
m2

⌘0

✓
⌘0 � ✓f⌘0

p
2

◆2

+ · · · (26)

Plugging this expectation value into the matrix U , we find that

U = ei
✓
2 e

i
⇡a

p
2f⇡

�
a

. (27)

Now that we understand how the ⌘0 behaves, we can finally go back and redo the theory of pions carefully. The
first step is to find the vacuum about which to expand. This vacuum can be non-trivial. The easiest way to see this
is to look at the pion masses, m⇡ ⇠ mu + md. If the quark masses were negative, then the pion mass would also
be negative. To find the vacuum state, we assume that ⇡0 has an expectation value h⇡0i = �

p
2f⇡. It is left as an

exercise to the reader to show that the charged pions do not obtain an expectation value. Thus we are expanding
about

U =

 
ei�+i✓ 0

0 e�i�+i✓

!
. (28)

� comes from the expectation value of ⇡0, while ✓ appears due to the expectation value of ⌘0.
The potential comes from the term

V = �af3
⇡
Tr
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0 mdei✓d

!
U

!
+ h.c. = �2af3

⇡


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✓

2
) +md cos(�� ✓

2
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�
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
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2
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2
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�
, (29)

✓ = ✓ + ✓u + ✓d, (30)
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Removing the GGdual coupling, phase freedom

wrote all the possible terms that are invariant under SU(2)L ⇥ SU(2)R, with the fields obeying the

transformation rules
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2 Lagrangian for Nucleon-Pion interactions

2.1 ✓-dependence in the quark mass matrix

For the purposes of the following discussion, it is convenient to remove the term (1) from the Lagrangian

by performing a rotation of the quark fields

u ! ei�uu (3)

d ! ei�dd, (4)

such that

�u + �d = ✓. (5)

This introduces an equivalent ✓ dependence in the quark mass matrix, that we write as MU0, where

M =
✓

mu 0
0 md

◆
, U0 =

✓
ei�u 0
0 ei�d

◆
. (6)

2.2 The sigma model

The sigma model Lagrangian provides a framework for understanding the very low energy limit of

QCD. We use the notation of the text by Srednicki [9], and write our effective Lagrangian for pions and

nucleons as

L = � 1
4
f2

⇡Tr[@µU@µU †] + B0Tr[(MU0)U + (MU0)†U †]

+ iN̄�µ@µN � mN N̄(U †PL + UPR)N

� 1
2
(gA � 1)iN̄�µ(U@µU †PL + U †@µUPR)N

� c1N̄((MU0)PL + (MU0)†PR)N � c2N̄(U †(MU0)†U †PL + U(MU0)UPR)N

� c3Tr((MU0)U + (MU0)†U †)N̄(U †PL + UPR)N

� c4Tr((MU0)U � (MU0)†U †)N̄(U †PL � UPR)N,

(7)

where U = ei⇡
a
⌧

a
/f⇡ , ⇡a is the pion field, ⌧a are the isospin matrices, f⇡ = 92.4 MeV is the pion decay

constant, N is the nucleon field, PL = 1
2(1 � �5) and PR = 1

2(1 + �5) are the projection operators,

gA = 1.27 is the axial vector coupling, and c1, c2, c3, c4 are dimensionless constants. B0 is a constant

with dimension of [mass]3 that can be determined from ratios of meson masses in SU(3). Roughly

speaking, B0 ⇠ ⇤3
QCD. In this paper we use B0 = 7.6 ⇥ 106 MeV3. In the Lagrangian above we
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QCD parameter space

wrote all the possible terms that are invariant under SU(2)L ⇥ SU(2)R, with the fields obeying the

transformation rules

NL ! LNL, NR ! RNR, U ! LUR†, (MU0) ! R(MU0)L†, (8)

for L, R in SU(2).

The pion mass. We first obtain a formula for the mass of the pion as a function of ✓. We can start by

writing

U = ei⇡
a
⌧

a
/f⇡ = cos

|~⇡|
f⇡

+ i
⇡a

|~⇡|⌧
a sin

|~⇡|
f⇡

. (9)

It will prove convenient also to adopt the following parametrization for the quark mass matrix

MU0 = A12 + iB12 + C⌧3 + iD⌧3. (10)

Using (9) and (10), the potential V in the Lagrangian (7) reduces to

V = �B0Tr[(MU0)U + (MU0)†U †] = �B0


4A cos

|~⇡|
f⇡

� 4D
⇡3

|~⇡| sin
|~⇡|
f⇡

�
. (11)

In order not to have a tadpole in ⇡3, we impose the condition D = 0

D =
1
2
Tr


⌧3

✓
mu sin �u 0

0 md sin �d

◆�
=

1
2
(mu sin �u � md sin �d) = 0 (12)

Solving (5) and (12) we find the useful relations

sin �u =
md sin ✓

[m2
u + m2

d
+ 2mumd cos ✓]1/2

(13)

sin �d =
mu sin ✓

[m2
u + m2

d
+ 2mumd cos ✓]1/2

(14)

cos �u =
mu + md cos ✓

[m2
u + m2

d
+ 2mumd cos ✓]1/2

(15)

cos �d =
md + mu cos ✓

[m2
u + m2

d
+ 2mumd cos ✓]1/2

. (16)

Next we determine A

A =
1
2
Tr

✓
mu cos �u 0

0 md cos �d

◆
=

1
2
(mu cos �u + md cos �d). (17)

We now have all the ingredients to get an expression for the pion mass. From eq. (11), expanding cos |~⇡|
f⇡

to second order we find

m2
⇡ =

2B0

f2
⇡

[m2
u + m2

d + 2mumd cos ✓]1/2. (18)
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4

Note that this is an even function of ✓, therefore CP conserving. This formula generalizes and, for

✓ = 0, reduces to the well known m2
⇡ = 2B0

f2
⇡

(mu + md). Note that, varying ✓ from 0 to ⇡, the pion

mass decreases, and it attains a minimum at ✓ = ⇡.

All this was done in SU(2). One could be more ambitious and try to find a formula for the pion

mass in SU(3). In that case, the analysis is carried out in the same way. Requiring the absence of

tadpoles translates into two conditions

mu sin �u = md sin �d = ms sin �s, (19)

and Eq. (5) is modified to

�u + �d + �s = ✓. (20)

Now (19) and (20) cannot be solved analytically, but if we make the reasonable approximation mu, md ⌧
ms, they reduce to

�u + �d = ✓ (21)

�s = 0 (22)

mu sin �u = md sin �d, (23)

which can be solved, leading to the same solution we found previously. The pion mass then turns out be

the same as in the SU(2) case.

The nucleons. Let’s now examine the part of the Lagrangian involving the nucleons. First we can

rewrite it in a more convenient way, using the following field redefinition 2

N = (u0uPL + u†
0u

†PR)N , (24)

where u2
o = U0 and u2 = U . The last five lines in (7) become

iN̄�µ@µN � mN N̄N + N̄�µvµN � gAN̄�µ�5aµN

� 1
2
c+N̄ (u(MU0)u + u†(MU0)†u†)N

+
1
2
c�N̄ (u(MU0)u � u†(MU0)†u†)�5N

� c3Tr[(MU0)U + (MU0)†U †]N̄N + c4Tr[(MU0)U � (MU0)†U †]N̄�5N ,

(25)

2This is the same field redifinition that the reader finds in [9]

5

where we have used a shift of � to express the potential in a clean form. Note that a is necessarily real because the
QCD Lagrangian is CP conserving up to the mass terms of the quarks (i.e. ✓u and ✓d can be non-zero) and ✓. Thus
all CP-violating e↵ects in QCD itself come from the ✓ term, and how ✓ appears is restricted by the anomalous U(1)A
symmetry. The mass term is U(1)A invariant so that there is no ✓ dependence and thus the arbitrary constant a
must be real. As the reader can check, whether a is positive or negative has no physical e↵ect, so for simplicity we
take it to be positive. On the other hand, the masses can break CP with their non-trivial phases so we have written
them out explicitly.

With a little bit of e↵ort, the minimum of this potential can be found to be

tan� =
mu �md

mu +md

tan
✓

2
, V = �m2

⇡
f2
⇡

s

1� 4mumd

(mu +md)2
sin2

✓

2
. (31)

Expanding about this minimum, we find that the pion masses are

m2
⇡0 = af⇡

q
m2

u
+m2

d
+ 2mumd cos ✓, m2

⇡± = af⇡(mu +md). (32)

It is an observed fact that m⇡+ ⇡ m⇡0 , giving the first indication that ✓ ⇡ 0. As a fun aside, I encourage the
reader to attribute the mass di↵erence between the charged and neutral pions to the quadratic divergence due to
the electric charge of the ⇡+. The particle that cuts o↵ this divergence is the ⇢ meson. The standard quadratic
divergence estimate for the mass di↵erence cut o↵ by the ⇢ meson should reproduce the measured di↵erence in mass
between the ⇡+ and ⇡0, lending credence to standard arguments for quadratic divergences.

After this long and arduous trek, we finally have a theory of pions that gives the correct pion masses. We can
now incorporate protons and neutrons into the theory. Again appealing to experiment, we know that protons and
neutrons are each composed of three quarks. We can thus construct a nucleon field N .

N = qqq =

 
p

n

!
, (33)

with N c = qcqcqc. I have not written down how the indices are contracted. I leave as a fun exercise to the reader to
contract the indices and show that the proton is made of two up quarks and a down quark, and that the proton and
neutron fall into a SU(2) doublet.

Working through the indices, N (N c) transforms as a doublet under SU(2)L (SU(2)R). As before, we now write
down all of the leading-order terms with arbitrary coe�cients :

L = �mNNU†N c � c1NMN c � c2NU†M†U†N c � i

2
(gA � 1)

⇥
N†�µU@µU

†N +N c,†�µU †@µUN c
⇤
. (34)

Expanding these terms out to leading order in pions and integrating by parts, we find that the leading CP-preserving
and violating interactions are

L = �✓
c+µ

f⇡
⇡aN⌧aN c � i

gAmN

f⇡
⇡aN⌧aN c, µ =

mumd

mu +md

. (35)

Note that in Weyl notation, the di↵erence between CP preserving and violating is whether the coupling is imaginary
or real, and not the �5 matrices seen in Dirac notation. c+ = c1 + c2 gives a mass splitting between various nucleons
and can be determined to be c+ ⇡ 1.7 using the measured value of their masses. gA gives the leading-order interaction
between protons and neutrons, so by scattering protons o↵ neutrons, we can measure gA ⇡ 1.27 2.

To obtain the neutron eDM, we calculate the Feynman diagram shown in Fig. 3. There is not much to be learned
from the computation itself, so I will only briefly sketch the procedure using Dirac notation. For those interested in
more details, see Ref. [8]. The matrix element of the Feynman diagram is

iM ⇡ �ie

p
2gAmN

f⇡

p
2✓c+µ

f⇡
✏⇤
µ
(q)

Z
d4l

(2⇡)4
2lµu(p0)

�
(�/l � /p/2� /p0/2 +mN )�5 + �5(�/l � /p/2� /p0/2 +mN )

�

((l + p/2 + p0/2)2 +m2
N
)((l + q/2)2 +m2

⇡
)((l � q/2)2 +m2

⇡
)
u(p)

⇡
e✓gAc+µ log ⇤2

m2
⇡

4⇡2f2
⇡

✏⇤
µ
(q)u(p0)�µ⌫q⌫i�5u(p), (36)

2
Actually, gA is better related to the decay of the neutron, but that would be a long digression all by itself.

8

VI. AXIONS

Axions and their variants are by far the most popular solution to the Strong CP problem. As such, I’ll dedicate
a whole section to describing axions and variations on the axion theme. The terminology surrounding axions can be
slightly annoying and confusing :

• QCD Axion : Solves the Strong CP problem

• ALP : Does not solve the Strong CP problem

• Axion : Figure it out yourself

If the reader encounters the word “axion”, he/she will have to determine from the context whether it solves the
Strong CP problem.

A. The QCD axion

After the massless up quark, the axion [32–35] is typically considered to be the simplest solution to the Strong
CP problem, though the minimal parity-based solution gives the axion EFT a run for its money. The EFT of the
axion is extremely simple and is the main reason for its popularity. The EFT consists of a single new particle, the
axion (a), and a single new coupling (fa) :

L �
✓

a

fa
+ ✓

◆
1

32⇡2
GG̃. (76)

We have written both the ✓ term and the axion coupling to demonstrate a simple trick that shows how the axion
couples. As is apparent from this interaction, the axion obeys an anomalous symmetry

a ! a+ ↵fa, ✓ ! ✓ � ↵, (77)

which dictates how the axion can couple to particles. For example, every non-derivative interaction of the axion can
be obtained by observing that wherever we have a coupling ✓, we can replace it with ✓ + a/fa. Derivative couplings
are more complicated because @✓ = 0, so they are not accompanied by a corresponding ✓ coupling.

UV completions of the QCD axion will occasionally generate other couplings, such as

L � a

fB

1

32⇡2
BB̃ +

a

fW

1

32⇡2
WW̃. (78)

Axions with these additional couplings are still called the QCD axion as long as the axion still has the coupling
shown in Eq. 76. Due to the anomalous symmetry structure of the axion and the topological nature of the spurion ✓,
these couplings must be there initially, or they are not generated by RG evolution 5. The other couplings generated
by RG evolution are derivative interactions with quarks :

@µa

fQ
Q†�µQ. (79)

Even if these couplings are zero at tree level, they are still generated by RG evolution [37].
The whole point of introducing the axion was to hopefully solve the Strong CP problem, so let’s show that the

axion sets the neutron eDM to zero. First we calculate the axion mass and expectation value. We already calculated
how the vacuum energy of QCD depended on ✓ in Eq. 31. Using our trick from before, we find that the axion
potential is

V = �m2
⇡
f2
⇡

s

1� 4mumd

(mu +md)2
sin2

✓
a

2fa
+

✓

2

◆
. (80)

5
See Ref. [36] for a more detailed symmetry based analysis of the RG running of axion couplings.
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∼ − (mπ fπ)2cos[a/f + θ̄]



The QCD line

ma ∼
1
f

× Λ2
QCD or ma ∼ ggluon × Λ2

cutoff, shiftsym

It is not hard to go naturally below the QCD line but it is very hard to go above it.

ma ≳ ggluon × Λ2
cutoff, shiftsym or 1/f ≲ ma/Λ2

QCD



The QCD line
2

FIG. 1. Constraints and future projections on the axion-
gluon coupling are summarized as follows: Rb/Cs clock
comparison (blue) [19], H/Si comparison (red) [24], Iodine
molecular spectroscopy (brown) [28], GEO 600 gravitational
wave detector (orange) [22], 229Th nuclear isomer transition
(red dashed) [13, 32], and strontium monohydroxide (green
dashed) [33]. The gray dotted line is f = Mpl. The diag-
onal grey line is allowed parameter space for the QCD ax-
ion, m2f2 ⇠ m2

⇡f
2
⇡ . Other bounds, such as oscillating neu-

tron EDM (purple) [34], supernova 1987A [35] (light cyan),
co-magnetometer and NASDUCK [36, 37] (gray), and axion
superradiance [38] (cyan), are also included for the compar-
ison. Projections of axion-nucleon interaction searches, such
as CASPEr-electric (blue dashed) [39] and NASDUCK (gray
dashed) [37], are also included. Spectroscopy bounds above
the green solid line must be taken carefully as the axion could
develop a static profile around the earth [40]. If such a static
profile exists, it a↵ects the propagation of DM axion, but this
parameter space is already excluded by static neutron EDM
experiments. See the main text for details.

@ lnmp/@ lnm2
⇡
' 0.06. For now, we take m and f as

independent parameters to investigate the reach of spec-
troscopy experiments for axion-gluon coupling search.
Axion DM background does not change fine structure
constant and electron mass to the leading order, so the
variation of those quantities is ignored. The dependence
of gp and mp on the pion mass is computed by using
chiral perturbation theory at the chiral order O(p3) and
compared with lattice computations. See Appendix A for
details. We have used ✓

2(t) = (⇢DM/m
2
f
2)[1+cos(2mt)]

with ⇢DM ' 0.4GeV/cm3. A constant o↵set is ignored as
it is unobservable. Equation (3) suggests that the axion-
gluon coupling strength might be probed by looking for
a harmonic signal in �fH/fH at the frequency ! = 2m.

The above discussion is more than an academic ex-
ercise. A recent experiment performed by Kennedy et
al [24] monitored hydrogen maser frequency (fH) to-
gether with silicon optical cavity resonance frequency
(fSi) to probe scalar DM interactions to electromagnetic
field strength and electron mass. Since the silicon optical
cavity resonance frequency has a rather weak dependence
on proton mass, the fractional variation of frequencies is

dominated by that of hydrogen maser,

�(fH/fSi)

(fH/fSi)
'

�fH

fH
.

Claimed short-term stability of transition frequency is
⇠ 3 ⇥ 10�13

/
p
Hz. Using Eq. (3) and 33 days of experi-

mental results obtained in Ref. [24], we place a constraint
on axion-gluon coupling, shown as a red line in Figure 1.

Hydrogen maser is one example of many frequency
standards based on hyperfine structure. An earlier at-
tempt to probe scalar DM based on hyperfine transitions
was made by Hees et al [19], where they used measure-
ment of rubidium (87Rb) and cesium (133Cs) hyperfine
transitions. For the hyperfine structure of heavier atoms,
the parametric dependence of transition frequency is sim-
ilar,

f / gm
2
e
↵
4
/mp,

but the g-factor is replaced by that of the nucleus. The
nuclear g-factor can be written as a function of nucleon
g-factor and the spin expectation value of valence and
core nucleons. Using the result of Ref. [41] together with
the nucleon g-factor computed in the chiral perturbation
theory, we find

@ ln g

@ lnm2
⇡

=

(
�0.024 87Rb,

+0.011 133Cs,
(4)

See Appendix A for details. The fractional frequency
variation is therefore

�(fA/fB)

(fA/fB)
' �0.04

�m
2
⇡

m2
⇡

' �10�16 cos(2mt)

m
2
15f

2
10

(5)

where A = 87Rb and B = 133Cs. Using the experimental
result of Rb/Cs fountain clock [19], we obtain a constraint
on axion-gluon coupling constant, which is shown as blue
line in Figure 1. It is similar to the constraint from the
H/Si comparison test, but Rb/Cs constraint extends to a
much lower mass range due to its long experimental time
scale.

We have only considered hyperfine transitions so far.
In principle, any stable frequency standards can be used
for axion DM search as long as the transition frequency
depends on g-factor and/or nucleon mass. Another ex-
ample is a vibrational molecular excitation. Since the

vibrational energy level depends on fvib / m
�1/2
p , we

find

�fvib

fvib
= �

1

2

�mp

mp

' �10�16
⇥

cos(2mt)

m
2
15f

2
10

. (6)

A recent experiment performed by Oswald et al [28] used
molecular transitions in molecular iodine (I2) to probe
the variation of fundamental constants. We use their re-
sult to place a constraint on axion-gluon coupling, which
is shown as brown in the summary figure. The constraint
is relevant for the relatively high mass end of the shown
parameter space.

1/f ≲ ma/Λ2
QCD

Unnatural models

1/f ≳ ma/Λ2
QCD

Natural models



ALP/axion quality problem, 2nd look

Planck suppressed operators typically destroy the axion potential. 
Barr & Seckel; Kamionkowski & March-Russell (92); see also talk by Raffaele …

Can be addressed if the axion has additional contribution to its mass (lowering f): 

where with n<7 operators,  and the strong CP problem is not solve!  δθ > 10−10

Rubakov (97); Berezhiani, Gianfagna & Giannotti (01); Hook (14); 

Fukuda, Harigaya, Ibe & Yanagida (15); Alves & Weiner (17) … 

55

V = Λ4
QCD cos(a /f + θ̄) +

Φn

Mn
Pl

(Φ†Φ)2 ⇒ Λ4
QCD sin δθ ∼ ϵNf 4 ⇒f→1010 GeV (

ΛQCD

1010 GeV )
4

10−10 ∼ ( 1010 GeV
MPl )

n

Can be addressed with a Zn sym



Homework 3

Repeat the same analysis for general axion-like-particle (ALP), namely add higher dim’ operators, derive a 
naturalness bound, identify the level of quality required as a function of the ALP mass. 



2nd part
Sensible unnatural models



To prepare our discussion on “unnatural” models,
let’s focus more on the anthropic solution & inflation



Bare minimal to understand field evolution during inflation

♦ Therefore, in addition to the classical evolution the field is develop 
quantum spread around its classical value.

♦ Standard inflation “classical” story- field 
slow rolling down flat potential 
for 60-e-folds ( ): ··ϕ + 3H ·ϕ − V(ϕ)′ = 0

5/15/2009

6

PHY306 11

Inflation with scalar fieldInflation with scalar field

! Need potential U with broad nearly flat plateau 
near φ = 0
! metastable false vacuum
! inflation as φmoves very slowly away from 0 
! stops at drop to minimum 

(true vacuum)
! decay of inflaton field at this

point reheats universe, 
producing photons, quarks etc.
(but not monopoles – too heavy)

! equivalent to latent heat of a 
phase transition

 

U 

φ 

PHY306 12

Inflation and structureInflation and structure

! Uncertainty Principle means that in quantum 
mechanics vacuum constantly produces 
temporary particle-antiparticle pairs
! minute density fluctuations
! inflation blows these up to

macroscopic size
! seeds for structure formation

! Expect spectrum of fluctuations to
be approximately scale invariant
! possible test of inflation idea?

 

V(ϕ)

ϕ

ϕ

♦ However, this is in expanding background   and so the 
field is subject to quantum fluctuation, can be literally thought as associated 
with   evolution in fine temparature (Gibbons–Hawking)  .

H2 ∼ V(ϕslow)/M2
Pl

T ∼ H

(for more cosmological details, see lectures by Hubisz)



Stochastic field evolution 

♦ Large Hubble implies non-classical evolution drives into critical points 
(max’ of potential)

♦ The probability distribution of slow-rolling scalar field is describe by the Fokker-

Planck equation:   ∂ϕ [ 1
8π2

∂ϕ(H3P) +
V′ P
3H ] = ∂tP , ∫ dϕP(ϕ, t) = 1 , MPlH ∼ V(ϕ)

♦ The volume weighted version, , of the  Fokker-Planck equation: 
 gives advantage to uphill evolution 

⟨e3Ht⟩

∂ϕ [ 1
8π2

∂ϕ(H3Pv) +
V′ Pv

3H ] + 3HPv = ∂tPv , ∫ dϕPv(ϕ, t) ≠ 1

diffusion            drift

Emphasised in: Csaki, D’Agnolo, Geller & Ismai (20)
Geller et al; Giudice McCullough & You (21)

[FP obtained when  as quick check we can see weather        

                                                                                                   ]

·ϕ ≈ aV′ + f stoc(t) & ⟨ f(t)f(t′ )⟩ ∝ H3δ(t − t′ )
ΔϕQM < Δϕclas ⇔ H ≲ ·ϕ/H ∼ V′ /3H2



Measure problem

♦ However, volume weighting is not gauge invariant, can’t define 
synchronous time gauge

♦ The conclusion might depends on which gauge is chosen 

♦ The “only” safe way might be a measure which follows a single observer, 
say following a casual path, and typically it removes the volume 
enhancement, so the jury is still out (at least for me …) 

see e.g. Bousso’s TASI lectures

♦ More generally, why should we care about the volume? (different than complexity, it’s non-anthropic)



Alternative to naturalness with cosmology

♦ There are many ideas related to this concept, most effort was related to
Solving the CC problem (even pre-Weinberg), and I won’t attempt to cover 
them all

♦ What is interesting is that recently variety of ideas were introduced to 
account for the lightness of the Higgs using combination of multiverse/
cosmological scanning of its mass

♦ I”ll just mention a few and then focus on the relaxion, because it is 
concrete can be understood via QFT & has interesting unnatural pheno’



Incomplete list on: Linking the Higgs naturalness to the CC or multiverse

♦ Linking the Higgs mass to the volume of the corresponding universe.  
   Namely, constructing an extended inflation sector, such that      
   the universe volume is an increasing function of inverse of the weak scale
 Inflating to the Weak Scale, Hochberg, Geller, Kuflik (19)

Selfish Higgs, Giudice, Kehagias, Riotto; 

A Goldilocks Higgs, Kaloper, Westphal (19)

See also “criticality” papers mentioned above

♦ NNaturalness, many copies of the SM with different Higgs mass, reheat 
dynamics is of low scale and only low EW scale is reheated (Arkani-Hamed et al. 16)

 

♦ Density of vacua is inversely proportional to the weak scale
Cosmological attractors, Dvali (varoius)
Small weak scale from small CC, Arvanitaki et al. (16)

Weak scale as a trigger, Arkani-Hamed, Raffaele, Kim (20) 
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   Namely, constructing an extended inflation sector, such that      
   the universe volume is an increasing function of inverse of the weak scale
 Inflating to the Weak Scale, Hochberg, Geller, Kuflik (19)

Selfish Higgs, Giudice, Kehagias, Riotto; 

A Goldilocks Higgs, Kaloper, Westphal (19)

See also “criticality” papers mentioned above

♦ NNaturalness, many copies of the SM with different Higgs mass, reheat 
dynamics is of low scale and only low EW scale is reheated (Arkani-Hamed et al. 16)

 

♦ Density of vacua is inversely proportional to the weak scale
Cosmological attractors, Dvali (varoius)
Small weak scale from small CC, Arvanitaki et al. (16)

Weak scale as a trigger, Arkani-Hamed, Raffaele, Kim (20) 

Many of these involve light scalars 
Some of them have generic scanning,  
but usually not 
Some rely on measures, some factories the inflation 
from the Higgs, some not 
Let’s focus in the relaxion, for now decouple the 
inflaton from the relaxion dynamics



The relaxion mechanism

Graham, Kaplan & Rajendran (15)



Graham, Kaplan & Rajendran (15)

(i) Add an ALP (relaxion) Higgs dependent mass:                                          .
�
⇤2 � g

2
�
2
�
H

†
H

µ2(�)

� roles till µ2 changes sign ) hHi 6= 0 ) stops rolling.(ii)

V (�)

�

�

 U(1) toy model, symmetric phase

77

V (H) = �µ
2
H

†
H + �(H†

H)2

For further use, consider the following toy model,  of a global U(1) sym’: 

µ2 < 0 ) trivial case:

H ! e
i✓
H(invariant under:                ,          ) � > 0

V (H)

H

Both Lagrangian & Higgs VEV (ground state) respect the symmetry,             .       

♦

hHi = 0

µ2(�) = 0

Relaxion mechanism (inflation based, slow rolling)

66

low freq. 

high freq. 
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For further use, consider the following toy model,  of a global U(1) sym’: 

Higgs VEV (ground state) breaks the symmetry,                       =>                .       

♦

hHi = v 6= 0

µ2 > 0 ) at present: V (H)

H

V (H)

H

mW,Z 6= 0

µ2(�) = 0

Relaxion mechanism (inflation based)
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For further use, consider the following toy model,  of a global U(1) sym’: 

Higgs VEV (ground state) breaks the symmetry,                       =>                .       
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hHi = v 6= 0

µ2 > 0 ) at present: V (H)

H

V (H)

H

mW,Z 6= 0
hHi = v 6= 0

µ2(�) = 0

evolution  
ends

backreaction 
μ 2
b |H | 2cos(ϕ/f )

Relaxion mechanism (inflation based)
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The basic relations & parametric dependence 

As the relaxion is an ALP, the potential must be a periodic function of it:  

                    μ2(ϕ) = Λ2 + M2 cos(ϕ/F) + m 2
back cos(ϕ/f + α)V(ϕ)rol ∼ M4 cos(ϕ/F)

We start assuming  and the stopping condition reads:      

              

Require very big hierarchy between f and F

ϕ ∼ F

V′ (ϕ) = 0 ⇔ M4/F = v2m 2
back /f ⇒ v/Λ ≲ ( f /F)1

4

with f ≪ F & M ∼ Λ ≫ mback, v & mback ≲ v Espinosa et al. (15)

Gupta, Komargodski, GP & Ubaldi (15)



Clockwork

72

Choi, Kim & Yun (14); Choi & Im; Kaplan & Rattazzi (15) 

To have a cut-off of 104 v we need f/F =10-16 



Clockwork model

73

♦ The following linear sigma model:

♦ However there is only one true Goldstone, upon the charge 
assignment:

Choi, Kim & Yun (14); Choi & Im; Kaplan & Rattazzi (15) 

In the ✏ ! 0 limit have U(1)N ) N Goldstones.

Q = 1,1/3,1/9,...1/3
N 

♦ Move to the non-linear sigma model:



Clockwork model at low energies
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♦ The following effective low energy non-linear sigma potential:

Choi, Kim & Yun (14); Choi & Im; Kaplan & Rattazzi (15) 

♦ There is only one true Goldstone with the following profile:



The 0-mode/exact Goldstone profile & breaking
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Choi, Kim & Yun (14); Choi & Im; Kaplan & Rattazzi (15) 

 

 

CHOI-KIM-YUN ALIGNMENT/
CLOCKWORK RELAXION

• Double breaking again on 1st and last site: 

Choi, Kim & Yun (2014) 
Choi & Im (2015) 

Kaplan & Rattazzi(2015)

soft 
breaking

soft 
breaking

0   1    2                                  N-1 N  
⇤N⇤0

♦ Add small breaking on first and last sites:



The 0-mode/exact Goldstone profile & breaking
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Choi, Kim & Yun (14); Choi & Im; Kaplan & Rattazzi (15) 

♦ Add small breaking on first and last sites:

f ≡ fa & F = 3Nf

To have a cut-off of 104 v we need f/F =10-16 => 35 cites …



Homework 4

Derive a quality type argument for the clockwork model



A bit about the relaxion cosmology



Relaxion and cosmology

Must not disturb inflation  

                    

H2 > Λ4/M2
Mpl

There is also an interesting relation between the cutoff and the number of e-folds  

      

                                  

Δϕ ∼ F ⇒ Nef ∼ F/ ·ϕ × H ∼ FH2/V′ ∼ F2H2/Λ4 ≳ F2/M2
Pl

∼ (Λ /v)8 f 2/M2
Pl ≳ Λ10/v8M2

Pl ∼ ( Λ
100 TeV )

10

Dominated by classical evolution    H < ·ϕ/H ∼ V′ /H2 ≲ v4/fH2 ⇒ Λ < f < v4/H3

Combining the two Λ ≲ M
3
7v

4
7 ∼ 108 GeV



Relaxion phenomenology



m2
ϕ ∼ ∂2

ϕVbr(ϕ, h) ∼
μ2

bv2
EW

f 2
cos

ϕ0

f

sin θhϕ ∼ ∂ϕ∂hVbr(ϕ, h)/v2
EW ∼

μ2
b

f vEW
sin

ϕ0

f

∼ 1

Naively: mixing angle in terms of mass sin ✓h� ⇠ m�

vEW

µb

vEW
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Maximum mixing angle (sin ✓h�)max ⇠ m�

vEW
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Naturalness 
bound

Minimum mixing angle (sin ✓h�)min ⇠
m2

�⇤min

v3EW
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Relaxion’s naive parameters (similar to ALP, backreaction domination)

The relaxion is light 
and mixes with the Higgs

Flacke, Frugiuele, Fuchs, Gupta & GP; 
Choi & Im (16); Banerjee, Kim & GP (18)



2 differences from generic Higgs portal  

82

(i)  Lower + upper bound on mixing angle, apparent unnaturalness  

(ii) [Relaxion has also parity-odd-ALP (axion-like-particle) couplings]



The relaxion parameter space

As effective relaxion models can be described as a Higgs portal:

LS ∈ m2
S SS + μSH†H + λS2H†H , with S = light scalar & H = SM Higgs . 

Naive naturalness implies: sin θ ≃ μ/⟨H⟩ ≲
mS

⟨H⟩
& λ ≲

m2
S

⟨H⟩2
.

83

However, the (“relaxed”) relaxion parameter space, goes well above the natural 
mixing region => interesting & encouraging for pheno.

Banerjee, Kim, Matsedonski, GP & Safranova (20)
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Credit: A. Banerjee 
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Lesson 1 - finding NP requires diverse approach, searches across frontier 

Lesson 2 - experimentally, worth checking where many decades are covered:

NOT FOR DISTRIBUTION JHEP_196P_0420 v1
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Figure 7. Updated parameter space for relaxion. The region between two solid green lines denotes
the parameter space for relaxion when it stops at the first minimum. The region between the black
solid lines represents the parameter space for relaxion when it stops at a generic minima (see the
discussion in Sec. 5.3). The region above the dashed green line represents super-Planckian decay
constant. The brown triangular region represents relaxion DM parameter space as discussed in [8].
The blue, light yellow, light brown, and the light black shaded regions on the top right corner
describe excluded parameter space from various collider collider experiments and astrophysical
considerations. These are discussed in more detail in Section 5.5 and in Fig. 4. The turquoise, light
orange, magenta, pink, and grey dashed shaded region represents constraints on sub- eV relaxion
scenario from various fifth force and clock-comparison experiments which has been discussed in
Section 5.6 and in Fig. 5. The purple shaded region is excluded by recent clock caparison test with
dynamic decoupling [10], while the darker yellow shaded region is excluded by Cesium clock-cavity
comparison test [74].
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The log crisis

Banerjee, Kim, Matsedonski, GP & Safranova (20)



V(ϕ, h) = (Λ2 − Λ2 ϕ
F ) |H |2 −

Λ4

F
ϕ − μ 2

b |H |2 cos
ϕ
f

v2(ϕ) = {0 when ϕ < feff

> 0 when ϕ > feff

Relaxion stopping point determines the EW scale Λ4

F
∼

μ2
b v2

EW

f

Higgs mass change for              , �v2

v2
⇠ ⇤2

fe↵

f

v2
⇠ µ2

b

⇤2
⌧ 1
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Vbr = �µ
2
b|H|2 cos �

f
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Potential height grows 
incrementally

Resolution parameter

Less naive treatment, the relaxed relaxion

F ≡ δ2 ≪ 1



V 0
br

|V 0
roll|

�

V 0

V 0
br / (�� �?)
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�2|V 0
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�V
0
= |V

0

roll|
✓
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v2EW

◆
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Relaxion: barriers increase incrementally:
relaxion stops at shallow region => small mass 

Credit: A. Banerjee 

Stopping condition, fine resolution
Banerjee, Kim, Matsedonski, GP, Safranova (20)

m2
ϕ ≈ δ × (m2

ϕ)naive
≪ (m2

ϕ)naive



Max. Mixing angle: sin θmax
hϕ = (

mϕ

vEW )
2
3

≫ (
mϕ

vEW )
naturalness

Relaxed mass => natural violation of naturalness bound

100 10210-14
10-12
10-10
10-8
10-6

O(103)
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Credit: A. Banerjee 

Banerjee, Kim, Matsedonski, GP, Safranova (20)



3 models of ultralight scalar DM
(not using the word string-theory)



1st model, just a free scalar



Simplest possible model, free massive scalar

Most minimal model would be just a free massive scalar : 

                      

                              

    (can add a few more bounds, SR, isogurvature but still large parameter space, reasonable field excursion) 

Just remind you that if we add Planck suppressed operators then we did find bounds … 

Also, in the presence of these coupling if it’s too light there will be naturalness issues …

ℒ ∈ m2
ϕϕ2 , ρDM

Eq ∼ eV4 ∼ m2
ϕϕ2

Eq = m2
ϕϕ2

init(eV/Tosc)3

Tos ∼ MPlmϕ ⟹ ϕinit ∼ MPl ( 10−27 eV
mϕ )

1
4



The relaxion DM dynamical missalignment 

♦ Basic idea is similar to axion DM:

V (�)

�

�

Banerjee, Kim & GP (18)

92



Concrete ex.: relaxion dark matter (DM)

♦ Basic idea is similar to axion DM (but avoiding missalignment problem):

After reheating the wiggles disappear (sym’ restoration):

V (�)

�

�
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Concrete ex.: relaxion dark matter (DM)

♦ Basic idea is similar to axion DM (but avoiding missalignment problem):

After reheating the wiggles disappear: and the 
relaxion roles a bit.

V (�)

�

�
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Concrete ex.: relaxion dark matter (DM)

♦ Basic idea is similar to axion DM (but avoiding missalignment problem):

V (�)

�

�

After reheating the wiggles disappear: and the 
relaxion roles a bit.
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Concrete ex.: relaxion dark matter (DM)

V (�)

�

�

When the universe cools the electroweak symmetry is broken, brings back 
the wiggles.
Now the relaxion not at the min’, if trapped it starts to oscillates = DM
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Concrete ex.: relaxion dark matter (DM)

V (�)

�

�
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When the universe cools the electroweak symmetry is broken, brings back 
the wiggles.
Now the relaxion not at the min’, if trapped it starts to oscillates = DM



Concrete ex.: relaxion dark matter (DM)

V (�)

�

�
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When the universe cools the electroweak symmetry is broken, brings back 
the wiggles.
Now the relaxion not at the min’, if trapped it starts to oscillates = DM



Concrete ex.: relaxion dark matter (DM)

V (�)

�

�
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When the universe cools the electroweak symmetry is broken, brings back 
the wiggles.
Now the relaxion not at the min’, if trapped it starts to oscillates = DM



Concrete ex.: relaxion dark matter (DM)

V (�)

�

�

♦ Basic idea is similar to axion DM (but avoiding missalignment problem):

Now the relaxion not at the min’ & if it is trapped it starts to oscillates = DM.
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relaxion DM+GW

Banerjee, Kim & GP (18), update: Banerjee, Madge, GP, Ratzinger & Schwaller, submitted
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FIG. 3. Available parameter space (black framed region) for relaxion dark matter in the relaxion mass m„ vs. mixing angle
sin ◊h„ plane. The red and orange shaded regions are excluded by the indicated constraints of combinations thereof. The colored
regions inside the viable dark matter space can be probed via gravitational waves in µAres (green) or SKA (blue/turquoise).
The light shading and solid lines indicate points that can be probed for a subrange of reappearance temperatures, whereas the
darker shaded parts enclosed by dotted lines are accessible for all valid Tra.

by

flGW = M
2
Pl

4
+
ḣij ḣ

ij
,

=
⁄

df

f

dflGW
d log f

. (28)

Here, hij denotes the gravitational wave metric perturba-
tions and the dot indicates the derivative with respect to
cosmic time t. Switching to conformal time · , dt = a d· ,
where a is the scale factor of the Universe, the metric
reads

ds
2 = a(·)

)
d·

2
≠

#
”ij + hij(x, ·)

$
dx

i
dx

j
*

. (29)

During radiation domination, the Einstein equations in
the linear regime for the metric perturbations in momen-
tum space using transverse-traceless gauge become

(ˆ2
·

+ k
2) a(·) hij(k, ·) = 2 a(·)

M
2
Pl

�ij(k, ·) , (30)

where k = |k| is the comoving wave number. The
anisotropic stress tensor �ij relates to the energy-
momentum tensor Tij , via �ij(k, ·) = �ab

ij
(k)Tab(k, ·),

where �ab

ij
= P

a

i
P

b

j
≠

1
2 PijP

ab with Pij = ”ij ≠ kikj/k
2

is the projector that extracts the transverse and trace-
less part [1]. The equations of motion are then solved by
(by neglecting the a

ÕÕ term which vanishes in a radiation
dominated universe i.e. for a Ã ·)

ĥij(k, ·) = 2
M

2
Pl

⁄
·

d·
Õ a(· Õ)

a(·) �̂ij(k, ·) G(k, ·, ·
Õ) , (31)

where G(k, ·, ·
Õ) = sin[k(· ≠ ·

Õ)]/k is the causal Green’s
function. For notational convenience, we have denoted
the operator from of any quantity Q by Q̂.

A. Gravitational wave production

The gravitational wave energy density per logarith-
mic interval in the comoving momentum k of a generic
stochastic source at conformal time · is given by [1]

dflGW
d log k

(k, ·) = k
3

4fi2M
2
Pla

4(·)

·⁄

·i

d·
Õ

·⁄

·i

d·
Õ
a(· Õ) a(· ÕÕ) ◊

cos[k(· Õ
≠ ·

ÕÕ)] �2(k, ·
Õ
, ·

ÕÕ) , (32)

where ·i is the time at which the gravitational
wave source starts operating and �2(k, ·

Õ
, ·

ÕÕ)
is the unequal time correlator (UTC) defined as
È0|�̂ab(k, ·)�̂ú

ab
(kÕ

, ·
Õ)|0Í = (2fi)3

”(k ≠ kÕ)�2(k, ·, ·
Õ).

In our case, the gravitational waves are generated
between reheating and reappearance, hence ·i = ·rh and
· Æ ·ra. As the gravitational waves produced before
the relaxion reaches its terminal velocity will however
be subdominant, we can take ·i = ·pp, so that to first
approximation the gravitational wave signature becomes
independent of the temperature to which the Universe
was reheated.

The dark-photon anisotropic stress sourcing the gravi-
tational waves can be written in terms of the dark electric
and magnetic fields as

�̂ab(k, ·) = ≠
�ij

ab
(k)

a2(·)

⁄
d

3
q

(2fi)3
#
Êi(q, ·)Êj(k ≠ q, ·) +

B̂i(q, ·)B̂j(k ≠ q, ·)
$

. (33)

Focusing on the dominant modes which have com-
pleted their phase of maximal tachyonic growth,

minimal relaxion DM

relaxion DM 
\w friction

The black solid line encompass the DM relaxion parameter space. The colored regions inside the viable DM space can be probed via 
GWs in μAres (green) or SKA (blue/turquoise). The light shading and solid lines indicate points that can be probed for a subrange of 
reappearance temperatures, whereas the darker shaded parts enclosed by dotted lines are accessible for all valid Tra. 

(         )
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3rd model, Dilation DM
It’s complicated and problematic, 

and I won’t have time
and tabletop signals are similar to the others 



3rd part
Precision frontier 

How to search for ultralight scalar DM



Equivalence principle (EP) tests, prelim

Consider the following effective action for scalar DM:   

The leading action in the non-relativistic limit, say, of the electron is 

    

Inside an atom we can rewrite it as:

  

   which can be readily generalised to any system.  

For a test particle at distances such that  and say  have  and 

the acceleration is given by  

ℒϕ ∈ dme

ϕ
MPl

meēe + dg
ϕ

2gMPl
βgGG

ℒNR
e = me(ϕ) +

1
2

mev2 = m0
e + dme

ϕ
MPl

⇒ a = dme

ϕ′ 

MPl

ℒNR
atm = MNuc(ϕ) + Nme(ϕ) + B ⇒ Matma = ϕ′ (∂ϕMNuc(ϕ) + N∂ϕme(ϕ)) ⇒ a = ϕ′ ∂ϕ ln Matm ≡ GNϕ′ αatm

mϕR ≪ 1 R ≳ REarth ϕ′ ∝ 1/R2

a = GNMtestαtestMEarthαEarth /R2
Damour & Donoghue (10)



Equivalence principle (EP) tests

We would compare two bodies, A and B, to search for a differential acceleration effect via 
the EotWash parameter     δaAB

a
= αEarth(αA − αB)

Or if we switch on one coupling  it is useful to define the corresponding individual 
“diatonic charge”     

di
diQi ≡ αi

The experiment test is very simple, let’s search for masses smaller than the inverse size of 
the Earth then we can use two test bodies on a satellite that are free falling with the satellite 
and just track them. That’s exactly what the Microscope mission is doing some 700km 
above earth

After >5 yrs of running they’ve achieve precision of better than  < 10-14 , which can be 
translated to the following bounds on generic scalar models

ηEP



Equivalence principle (EP) tests

For variety of coupling it can be expressed as: 

EP bounds : ( δatest
a ) < ηEP ∼ 10−14 ⇔ (d(1)

i d(1)
j ) ΔQtest

i QEarth
j

⃗Qa ≈ Fa (3 10−4 − 4 rI + 8 rZ , 3 10−4 − 3 rI , 0.9 ,0.09 −
0.04
A1/3

− 2 × 106r2
I − rZ,0.002 rI)

Where  
being the atomic number of the atom a 

⃗X ≡ Xe,me,g,m̂,δm , with m̂ ≡ (md + mu)/2 , δm ≡ (md − mu) , 104 rI;Z ≡ 1 − 2Z /A; Z(Z − 1)/A4/3 , & Fa = 931 Aa /(ma /MeV) with Aa

Tretiak, et al.; Oswald, et al (22)

Δ ⃗Q
Mic

≃ 10−3(−1.94 , 0.03 , 0.8 , − 2.61 , − 0.19)



Equivalence principle (EP) tests
Banerjee, GP, Safronova, Savoray & Shalit (to appear)

EP-violating acceleration as discussed in [? ? ].
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Fifth force

Figure 11. Bounds from various experiments which are looking for EP-violation and/or

deviation from Newtonian gravity (fifth force searches) on dme (left) and dg (right). The

turquoise line shows the strongest constraints from various EP violation searches [? ? ? ?
] assuming a model where only di 6= 0 where i = me, g. The blue line depicts the strongest
bound coming from various fifth force experiments (see [? ? ? ] and Refs. therein). The

red dashed (solid) line indicates di = 1.

3 The Challenges of Probing the Quadratic Interactions

[AB: I think the name is misleading]

[IS: Consider integrating in: As shown in the above figures, a linear

coupling between an ultralight DM and the SM is highly constrained.

In contrast to the linear � couplings, quadratic �2
couplings between an

ultralight DM and the SM could escape the strong bounds coming from

EP and DDM tests. In addition, as highly irrelevant couplings, they

are expected to be naturally suppressed by the e↵ective cuto↵ of the

theory. Therefore, probing quadratic DM interactions with the SM poses

a significant challenge.][AB: I guess it fits better in 1.2..but if not we can put it

here]

In this section, we want to discuss the sensitivity of EP tests and DDM searches

in the presence of both linear and quadratic coupling between DM and the SM. We

show that a theory with linear and quadratic couplings has a stronger constraint

on each individual coupling than a theory with only one of the couplings turned on.

Also, in the presence of both the couplings, there is a small region of parameter space

where the DDM bounds are stronger than that of the EP tests. The Lagrangian of

– 28 –

Where one can find models that avoid the strongest EP bounds and for a pure dilaton the EP bound can 
be avoided

Tretiak, et al.; Oswald, et al (22)



Direct dark matter searches, sensitivity

How do we search for ULDM directly?  

Take for example the Lagrangian  and focus first about 

the electron coupling? 

The most sensitive way is with clocks, because                                         then the electron 

mass oscillates with time => energy levels oscillates with time: 

ℒϕ ∈ dme

ϕ
MPl

meēe + dg
ϕ

2gMPl
βgGG

En ∼ meα21/2n2

ϕ ∼
2ρDM

mϕ
cos(mϕt)

For instance: ΔE21 ∼ meα21/2 × 3/4 × 1 + dme

2ρDM

mϕMPl ( ∼ 10−15 ×
dme

10−3

10−15 eV
mϕ ) × cos(mϕt)



Direct dark matter searches via clocks

Which implies that clocks can win over EP for precision of roughly 1:1015 for about 1 Hz 

DM mass

How the clock works: for this school it’s just creating a state which is a superposition of 

the two states and thus oscillates with time and picking up the above phase:  

However, to see the effect you need to compare it to another system that would not have 

the above precise dependence …

expiΔE(me(t))t



Enhanced sensitivity

The most robust coupling is to the gluons: 

Mixing with the Higgs, dilaton and even QCD axion have coupling to the gluons
How to be sensitive to the coupling to QCD? 

Could be via reduced mass, or via g-factor, magnetic moment-spin interactions-hyperfine          

or vibrational model in molecules, or the queen of all nuclear clock , 229Th 

It is super sensitive because   Enu−clock ∼ Enu − EQED ∼ 8 eV ≪ Enu ∼ MeV

ΔE
E

=
Enu(t) − EQED

Enu−clock
⇒

ΔEnu(t)
Enu−clock

∼
Enu

Enu−clock
× dg

mN

MPl
cos(mϕt) ∼ 105dg

mN

MPl
cos(mϕt)



Oscillations of energy levels induced by QCD-axion-like DM
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 Consider axion model \w  coupling, usually searched by magnetometers (αs /8) (a /f) GG̃

 However, spectrum depends on  :  θ2 = (a(t)/f )2

DESY-22-088

Oscillations of atomic energy levels induced by QCD axion dark matter

Hyungjin Kim⇤

Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

Gilad Perez†

Department of Particle Physics and Astrophysics,

Weizmann Institute of Science, Rehovot, Israel 7610001

Axion-gluon interaction induces quadratic couplings between the axion and the matter fields. We
find that, if the axion is an ultralight dark matter field, it induces small oscillations of the mass of
the hadrons as well as other nuclear quantities. As a result, atomic energy levels oscillate. We use
currently available atomic spectroscopy data to constrain such axion-gluon coupling. We also project
the sensitivities of future experiments, such as ones using molecular and nuclear clock transitions.
We show that current and near-future experiments constrain a finely-tuned parameter space of
axion models. These can compete or dominate the already-existing constraints from oscillating
neutron electric dipole moment and supernova bound, in addition to those expected from near
future magnetometer-based experiments.

We consider axion models, consisting of a pseudo-scalar
field a with the following coupling to the gluon field
strength,

L =
g
2
s

32⇡2

a

f
G

a

µ⌫
eGaµ⌫

, (1)

where f is an axion decay constant, gs is a strong cou-
pling and eGaµ⌫ is the dual gluon field strength. Below
the QCD scale, the above axion-gluon interaction induces
axion coupling to the hadronic states. The pion mass de-
pends on the axion field as

m
2
⇡
(✓) = B

q
m2

u
+m

2
d
+ 2mumd cos ✓ .

Here ✓ = a/f and B = �hq̄qi0/f
2
⇡

with a pion decay
constant f⇡ ' 93MeV. The resulting axion potential can
be described by V (✓) = �m

2
⇡
(✓)f2

⇡
to leading order [1].

Due to the ✓-dependent potential, the axion relaxes to
the CP conserving vacuum, thereby solving the strong
CP problem dynamically [2–9].
Axion oscillation around its minimum may comprise

dark matter (DM) in the present universe [10–12]. If so,
the pion mass develops a subdominant oscillatory com-
ponent, given by

�m
2
⇡

m2
⇡

= �
mumd

2(mu +md)2
✓
2
. (2)

Other nuclear quantities such as hadron masses and mag-
netic moments consist of similar oscillating contributions,
all induced by the e↵ective quadratic coupling between
the axion and the matter fields. It results in a correspond-
ing time-variation of the atomic energy levels, which can
be probed by monitoring transition frequencies of stable
frequency standards. This method was suggested by Ar-
vanitaki et al. [13] for dilaton/scalar DM searches (or a

⇤ hyungjin.kim@desy.de
† gilad.perez@weizmann.ac.il

relaxion DM [14]), where the DM field naturally couples
to the field strength of the strong and electromagnetic
interactions as well as fermion masses (see also [15, 16]).
Various experimental techniques have been used to search
for such scalar-SM interactions [17–29]. See Refs. [30, 31]
for recent reviews.

The goal of this work is to assess the possibility of
whether the axion-gluon coupling can be probed by the
same method, i.e. by monitoring atomic energy levels
of stable frequency standards. We claim that the same
principle can be applied to probe the coupling (1). We
show the current constraints and projections of future
experiments as well as other constraints in Figure 1. We
explain the main idea below.

For the purpose of demonstration, we consider the
ground state hyperfine transition in the hydrogen atom.
The hyperfine structure arises due to the interaction be-
tween the electron magnetic moment and the magnetic
field generated by the proton magnetic moment. The
transition frequency of the ground state hydrogen hyper-
fine structure is

fH =
2

3⇡

gpm
2
e
↵
4

mp

' 1420MHz,

where gp = 5.586 is the proton g-factor. In the presence
of axion dark matter and the axion-gluon coupling, the
proton g-factor and proton mass develop a small oscil-
lating component, and so does transition frequency fH .
The fractional variation of hyperfine transition frequency
can be written as

�fH

fH
=

�gp

gp
�

�mp

mp

=


@ ln gp
@ lnm2

⇡

�
@ lnmp

@ lnm2
⇡

�
�m

2
⇡

m2
⇡

' 10�15
⇥

cos(2mt)

m
2
15f

2
10

(3)

where we have defined m15 = m/10�15 eV and f10 =
f/1010 GeV, and used @ ln gp/@ lnm2

⇡
' �0.17 and
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FIG. 1. Constraints and future projections on the axion-
gluon coupling are summarized as follows: Rb/Cs clock
comparison (blue) [19], H/Si comparison (red) [24], Iodine
molecular spectroscopy (brown) [28], GEO 600 gravitational
wave detector (orange) [22], 229Th nuclear isomer transition
(red dashed) [13, 32], and strontium monohydroxide (green
dashed) [33]. The gray dotted line is f = Mpl. The diag-
onal grey line is allowed parameter space for the QCD ax-
ion, m2f2 ⇠ m2

⇡f
2
⇡ . Other bounds, such as oscillating neu-

tron EDM (purple) [34], supernova 1987A [35] (light cyan),
co-magnetometer and NASDUCK [36, 37] (gray), and axion
superradiance [38] (cyan), are also included for the compar-
ison. Projections of axion-nucleon interaction searches, such
as CASPEr-electric (blue dashed) [39] and NASDUCK (gray
dashed) [37], are also included. Spectroscopy bounds above
the green solid line must be taken carefully as the axion could
develop a static profile around the earth [40]. If such a static
profile exists, it a↵ects the propagation of DM axion, but this
parameter space is already excluded by static neutron EDM
experiments. See the main text for details.

@ lnmp/@ lnm2
⇡
' 0.06. For now, we take m and f as

independent parameters to investigate the reach of spec-
troscopy experiments for axion-gluon coupling search.
Axion DM background does not change fine structure
constant and electron mass to the leading order, so the
variation of those quantities is ignored. The dependence
of gp and mp on the pion mass is computed by using
chiral perturbation theory at the chiral order O(p3) and
compared with lattice computations. See Appendix A for
details. We have used ✓

2(t) = (⇢DM/m
2
f
2)[1+cos(2mt)]

with ⇢DM ' 0.4GeV/cm3. A constant o↵set is ignored as
it is unobservable. Equation (3) suggests that the axion-
gluon coupling strength might be probed by looking for
a harmonic signal in �fH/fH at the frequency ! = 2m.

The above discussion is more than an academic ex-
ercise. A recent experiment performed by Kennedy et
al [24] monitored hydrogen maser frequency (fH) to-
gether with silicon optical cavity resonance frequency
(fSi) to probe scalar DM interactions to electromagnetic
field strength and electron mass. Since the silicon optical
cavity resonance frequency has a rather weak dependence
on proton mass, the fractional variation of frequencies is

dominated by that of hydrogen maser,

�(fH/fSi)

(fH/fSi)
'

�fH

fH
.

Claimed short-term stability of transition frequency is
⇠ 3 ⇥ 10�13

/
p
Hz. Using Eq. (3) and 33 days of experi-

mental results obtained in Ref. [24], we place a constraint
on axion-gluon coupling, shown as a red line in Figure 1.

Hydrogen maser is one example of many frequency
standards based on hyperfine structure. An earlier at-
tempt to probe scalar DM based on hyperfine transitions
was made by Hees et al [19], where they used measure-
ment of rubidium (87Rb) and cesium (133Cs) hyperfine
transitions. For the hyperfine structure of heavier atoms,
the parametric dependence of transition frequency is sim-
ilar,

f / gm
2
e
↵
4
/mp,

but the g-factor is replaced by that of the nucleus. The
nuclear g-factor can be written as a function of nucleon
g-factor and the spin expectation value of valence and
core nucleons. Using the result of Ref. [41] together with
the nucleon g-factor computed in the chiral perturbation
theory, we find

@ ln g

@ lnm2
⇡

=

(
�0.024 87Rb,

+0.011 133Cs,
(4)

See Appendix A for details. The fractional frequency
variation is therefore

�(fA/fB)

(fA/fB)
' �0.04

�m
2
⇡

m2
⇡

' �10�16 cos(2mt)

m
2
15f

2
10

(5)

where A = 87Rb and B = 133Cs. Using the experimental
result of Rb/Cs fountain clock [19], we obtain a constraint
on axion-gluon coupling constant, which is shown as blue
line in Figure 1. It is similar to the constraint from the
H/Si comparison test, but Rb/Cs constraint extends to a
much lower mass range due to its long experimental time
scale.

We have only considered hyperfine transitions so far.
In principle, any stable frequency standards can be used
for axion DM search as long as the transition frequency
depends on g-factor and/or nucleon mass. Another ex-
ample is a vibrational molecular excitation. Since the

vibrational energy level depends on fvib / m
�1/2
p , we

find

�fvib

fvib
= �

1

2

�mp

mp

' �10�16
⇥

cos(2mt)

m
2
15f

2
10

. (6)

A recent experiment performed by Oswald et al [28] used
molecular transitions in molecular iodine (I2) to probe
the variation of fundamental constants. We use their re-
sult to place a constraint on axion-gluon coupling, which
is shown as brown in the summary figure. The constraint
is relevant for the relatively high mass end of the shown
parameter space.

5

the purpose of order of magnitude estimation, we use
Eqs. (A5)–(A6).

The nuclear g-factor can be written as a function of nu-
cleon g-factor as well as spin expectation value of valence
and core nucleons. Following Ref. [41], one finds

�g

g
=


Kn

@ ln gn
@ lnm2

⇡

+Kp

@ ln gp
@ lnm2

⇡

� 0.17Kb

�
�m

2
⇡

m2
⇡

With values of Kn,p,b given in [41], we find �g/g =
�0.02(�m2

⇡
/m

2
⇡
) for 87Rb and �g/g = 0.01(�m2

⇡
/m

2
⇡
) for

133Cs.

The variation of nuclear clock transition in 299Th is

estimated in Refs. [45, 46].

�fTh

fTh

' 1.3⇥ 105
✓
�12

�mN

mN

+ 10
�m�

m�
+ 6

�m⇡

m⇡

� 43
�mV

mV

◆

' 2⇥ 105
�m

2
⇡

m2
⇡

, (A7)

where m� and mV are the masses of �-baryon and vec-
tor meson. Among contributions from di↵erent mesons
and hadrons, the pion contribution dominates all. It is
straightforward to check that

�mN

mN

' 0.13
�m⇡

m⇡

(A8)

�m�

m�
' 0.03

�m⇡

m⇡

(A9)

�mV

mV

' 0.04
�m⇡

m⇡

(A10)

where the variance of � baryon can be obtained directly
from Eq. (62) in [76] or from �⇡� = m

2
⇡
@m�/@m

2
⇡

=
20.6MeV. The variation of vector meson mass is obtained
in [45, 77].
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the purpose of order of magnitude estimation, we use
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The nuclear g-factor can be written as a function of nu-
cleon g-factor as well as spin expectation value of valence
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5

the purpose of order of magnitude estimation, we use
Eqs. (A5)–(A6).

The nuclear g-factor can be written as a function of nu-
cleon g-factor as well as spin expectation value of valence
and core nucleons. Following Ref. [41], one finds
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With values of Kn,p,b given in [41], we find �g/g =
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) for 87Rb and �g/g = 0.01(�m2
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) for

133Cs.

The variation of nuclear clock transition in 299Th is

estimated in Refs. [45, 46].
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, (A7)

where m� and mV are the masses of �-baryon and vec-
tor meson. Among contributions from di↵erent mesons
and hadrons, the pion contribution dominates all. It is
straightforward to check that
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where the variance of � baryon can be obtained directly
from Eq. (62) in [76] or from �⇡� = m

2
⇡
@m�/@m

2
⇡

=
20.6MeV. The variation of vector meson mass is obtained
in [45, 77].
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Summary

Parodaxalic state of particle physics, observation vs vast predictive range 

2 soft principles to assist, naturalness & quality 

Inspired by Weinberg solution to the CC: new approaches emerges to address the hierarchy 

problem, they are all questionable … 

New paradigms come with radically different pheno 

Exciting window is now opening because of technological boom of quantum science  


