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1 Motivation

Why is it interesting to think about light and weakly interacting particles? First of all, light and
weakly coupled with respect to what? Two possible answers: historical (draw coupling vs mass
plane) and say light with respect to the energy frontier 100 GeV, 1 − 0.1 couplings. Physical
answer: light and weakly coupled with respect to the best answers that we have to some of the
biggest problems in particle physics. The light and feeble frontier is interesting because it answers
big questions differently, without introducing any theoretical strain compared to more traditional
answers.

1. Dark Matter

2. A marginal operator that we do not understand

θGG̃ =
θ

2
εµνρσTr[GµνGρσ] =

θ

2
εµνρσ

8∑
a=1

Ga
µνG

a
ρσ (1.1)

[θ] = E0 can receive O(1) contributions from all energy scales. The answer might be at high
energy Λ, manifesting itself as small O(E/Λ)n effects at low energy (Appelquist-Carazzone).

3. Hierarchy problem (see appendix and Gilad’s lectures)

4. Top down motivation from string theory (mainly dark photons and axions)

5. Experiment (add compilation Figure or draw sketch). Message: there is a large parameter
space that we have not explored. Note that smaller mass = stronger constraints is not always
true. See next Section.

The first three are the three big questions in particle physics (ignoring the cosmological con-
stant).
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1.1 Are lighter Particles Easier to Detect?

By easier we mean that we can constrain smaller couplings. Naively one would immediately say
yes, since

σ ∼ g2

m2
. (1.2)

However g is hardly every truly independent of m. For example a scalar of mass m in a theory
valid up to a scale Λ naturally can have couplings only g . 4πm/Λ. This already shows that the
question is not as simple as it seemed. Let’s start with spin zero scalars.

1.1.1 Spin zero CP-even Scalars

For CP-even bosons the general answer is yes because lighter particles can give a coherent effect on
longer distances and generate longer range forces. Let’s start with the forces. Born approximation
to the scattering amplitude in NR quantum mechanics

〈p|iT |p′〉 = −iṼ (~p− ~p′)(2π)δ(Ep − Ep′) (1.3)

Yukawa interaction φqq̄

Ṽ (q) = − g2

|q|2 +m2
φ

. (1.4)

In position space

V (x) = −
∫

d3q

(2π)3

g2

|q|2 +m2
φ

eiq·x . (1.5)

Close contour above in the complex plane, catch q = imφ pole

V (x) ∼ e−mφr . (1.6)

Dimensional analysis

V (x) ∼ 1

r
e−mφr . (1.7)

For the actual integral see Peskin.
Let’s now look at coherent enahncements. A particle of momentum q = mv is localized over a

distance

∆x ' }
q
≡ λdB . (1.8)

When you compute the amplitude for its interaction with a material you have to sum over all the
particles within a sphere of radius λdB so you will have

M = NpMp , (1.9)
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where Mp is the single particle amplitude and Np ' ρλ3
dB the particles in the sphere. This gives

a huge enhancement in the cross section

σ ∼ N2
pσp . (1.10)

The interactions sum coherently, giving a N2 enhancement. If λdB is smaller than the inter-
particle spacing in the material, our particle can still cross a macroscopic slab, seeing on its path
Np particles (sketch), but in this case we have to sum probabilities, so

σI ∼ Npσp . (1.11)

This can be a huge difference for a solid where Np ' 1023 (Avogadro’s number).
Since we measure quantities with some finite absolute precision the variation of an observable

δO = g〈O〉 . δOexp (1.12)

due to a small coupling g is easier to see if the background value 〈O〉 is big. Summing 〈O〉
coherently over large distances gives an advantage. For instance φq̄q couples to mass 〈q̄q〉 ' Λ3

QCD

(in a nucleus). If we’re looking for a force 〈O〉 might be a distance and it’s enhanced by the first
argument. If we’re looking for other effects, the second argument might be the relevant one.

However this is not always true (important exceptions):

1. dark photons (see appendix)

2. Pseudo-scalars. If CP is not broken they can only couple to CP-odd bilinears

1.1.2 Spin zero CP-odd scalars

First of all we should ask why a CP-odd scalar might be light and the natural answer is Goldstone’s
theorem. So it makes sense to focus on pseudo-scalars with derivative couplings to the SM. For
example we can have interactions like

∂µa

fa
ψ̄γµγ5ψ . (1.13)

or integrating by parts

gaaψ̄γ
5ψ . (1.14)

At low energy

ūr(p′)γ5us(p)→ mξr†(~p− ~p′) · ~σξ2 . (1.15)

a is coupling to spin, so there’s no collective effects unless we can polarize the material! Exercise
Derive the NR limit of ψ̄γµγ5ψ.

Nonetheless a pseudo-scalar can still couple coherently to large EM fields

aF F̃ = 4aE ·B . (1.16)

Note that this is still a derivative coupling (i.e. FF̃ is a total derivative). The bottom line is that
there is no general intuition and one should check case by case.
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1.1.3 Dark Photons

We will consider a sub-component of dark matter to be millicharged, with effective charge qeff � 1.
If electric charge is quantised, as expected if the electromagnetic U(1)em originates in a grand
unified theory, the simplest realisation of millicharged particles is to invoke kinetic mixing between
U(1)em and a dark sector U(1)′. The Lagrangian of the theory is then

L = LmCP,kin. −
1

4
(F ′µνF

′µν + FµνF
µν − 2εF ′µνF

µν) +
m2
A′

2
A′µA

′µ − eAµJµ − e′A′µJ
µ
mCP . (1.17)

The kinetic mixing parameter is ε, while the usual electromagnetic coupling is e, and the mCP
gauge coupling is e′. For now we do not specify the mCP spin, and leave their kinetic term
LmCP,kin. and current JµmCP implicit. To leading order in ε, the transformation

Aµ → Aµ + εA′µ,

A′µ → A′µ , (1.18)

brings the gauge bosons kinetic terms in canonical form. The dark photon A′ now couples not
only to the mCP current JµmCP, but also with a strength suppressed by ε to the SM current Jµ,

L = LmCP,kin. −
1

4
(F ′µνF

′µν + FµνF
µν) +

m2
A′

2
A′µA

′µ − e(Aµ + εA′µ)Jµ − e′A′µJ
µ
mCP . (1.19)

As a result, any SM current used to source a visible electromagnetic field is also sourcing an ε-
suppressed dark field, which can couple to the mCPs. When the dark photon mass is very small,
this leads to the “effectively millicharged” limit, where the range of the dark photon is so long
that for experimental purposes, one can treat the mCPs as coupling directly to the visible photon.
This leads to a natural definition of the millicharge or effective charge of the dark sector particles

qeff ≡ ε
e′

e
. (1.20)

The exactly massless limit deserves special attention. In this limit, after the shift in Eq. (1.18)
the quadratic part of the Lagrangian is simply

L ⊃ LmCP,kin. −
1

4
(F ′µνF

′µν + FµνF
µν) , (1.21)

and any orthogonal transformation that mixes A and A′ leaves it invariant. In particular we can
perform the O(ε) rotation

Aµ → Aµ − εA′µ,
A′µ → A′µ + εAµ , (1.22)

and obtain

L = LmCP,kin. −
1

4
(F ′µνF

′µν + FµνF
µν)− eAµJµ − e′(A′µ + εAµ)JµmCP . (1.23)
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Therefore in the massless dark photon limit, we get true mCPs. The visible photon Aµ couples
directly to the mCP current JµmCP with strength qeff = εe′/e relative to its coupling strength to Jµ.
We could have seen this also by directly performing the rotation Aµ → Aµ, A

′
µ → A′µ + εAµ in

the original Lagrangian. However, we went through the trouble of adding one more step, because
it is useful to think about the problem in terms of the (A,A′) plane and the SO(3) symmetry of
the kinetic terms.

When e′ = mA′ = 0 the coupling to Jµ identifies a preferred direction in the (A,A′) plane,
but the rest of the Lagrangian is SO(3) symmetric so there is no physical meaning to this specific
direction. We can rotate it at will without changing the rest of the Lagrangian. An observer will
call “photon” anything that couples to Jµ regardless of its composition in terms of A and A′. This
makes the dark photon in practice unobservable.

In this language it is easy to see that turning on either mA′ or e′ makes the dark photon
observable. Now we have at least two vectors in the (A,A′) plane. One is still given by the field
coupling to Jµ, the other either by the massive field or the field coupled to JµmCP. A rotation in
this plane does not change the scalar product between the two vectors, so regardless of the basis
that we choose we can ask physical questions: How much does the massive photon overlap with
the photon coupled to SM charges? Or how much does the photon coupled to SM charges couple
to dark currents?

So if either e′ 6= 0 or mA′ 6= 0 we can perform measurements that reveal the existence of a
second vector in the (A,A′) plane and thus of the plane itself. In other words the dark photon is
observable. On the contrary, if e′ = mA′ = 0 we have access to a single vector and we will never
know if it is embedded in a plane or not.

This discussion explains all the standard results expected for massless and massive dark pho-
tons. However it is useful to come back to the massless limit and be more explicit. The massless
limit of a theory with millicharges has an important difference with respect to traditional dark
photon searches that do not postulate the existence of these particles. In the absence of mil-
licharges (e′ = 0) we can repeat the steps above Eq. (1.23) and get a completely decoupled dark
photon,

L = LmCP,kin. −
1

4
(F ′µνF

′µν + FµνF
µν)− eAµJµ . (1.24)

as expected from our general geometric argument. The standard intuition of a decoupled dark
photon in the mA′ = 0 limit holds only in absence of charged dark sector states. Parametrically
this means that in absence of millicharges all physical signals go to zero with mA′ . In our theories
that do contain mCPs we will have signals that are not proportional to mA′ as in the standard
case.

The difference is also geometric (in the physical space of the experiment). A dark photon
without a charged dark sector can not produce only transverse signals, because in the massless
limit it is decoupled from the SM. It was shown that its longitudinal signals are dominant, when
mA′ is small compared to the characteristic frequencies of the experiment []. On the contrary our
dark photon coupled to millicharges can give an experimental signal also when it is massless and
purely transverse.

We give particular emphasis to this limit because we will see that standard searches always out-
perform searches for the millicharged signal when mA′ is parametrically important, so in practice
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the massless or effectively massless dark photon limit will be the most relevant for our setups.

2 Dark Matter

What do we know?

1. DM has gravitational interactions

2. It has a lifetime comparable to that of the Universe. At least O(t0 − tEQ) ' 13.9 × 109

years. It could be much longer if DM decays in certain energy ranges that can be detected
by satellites now in orbit.

3. Removing DM completely is a disaster for the CMB (draw CMB peaks)

4. DM is dark: σ(χγ → χγ) . 10−33 cm2(m/GeV). For reference σ(e−γ → e−γ) ' 0.5 ×
10−24 cm2 ' 1012 σ(χγ → χγ) (last equality valid for m ' me, electron cross section
computed at Eγ ' Ee ' me).

5. DM does not form disks of the same thickness as those of baryons. We can have only
approximately 3%÷ 5% of it in structures of this type.

6. 10−21 eV . m . 1048 GeV. Lower bound: dwarf galaxies

λDM = 1/(mvDM) ' kpc(10−22 eV/m). (2.1)

Upper bound from lensing (plus other constraints at higher masses: disruption of binaries,
friction in halos, CMB [gravitational waves from mergers induce distortions], LSS structure
do not form earlier than observed, https://arxiv.org/pdf/2110.02821.pdf).

7. Self-interactions σ/m . cm2/g ' 10/GeV3. αSI & 10−100 (gravity).

8. DM is cold or warm λFS . Mpc

9. Pauli exclusion principle + density of dwarf galaxies (escape velocity) gives m & keV for
fermions

vF (r) =

(
2π2ρ(r)

m4

)1/3

< vesc (2.2)

write above Eq ”Quantum Mechanics” and ”Newtonian Gravity” as in the colloquium.

10. Model dependent bounds on SM couplings O(10−66) . αSM . 4π. Lower bound from
gravity. Upper bound can be geometric.

Conclude with usual discussion on huge parameter space. We need theory motivation! A priori
this is not telling us that DM has to be light or weakly coupled, but while searching for the most
theoretically motivated parameter space, we’ll find that light, weakly coupled particles are very
good candidates.
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3 Thermal History of the Universe

We know that

1. On scales > 100 Mpc the Universe is 1) Homogeneous (translational invariant) 2) isotropic
(rotational invariant). Below this scale there are galaxies.

2. It is expanding |vA − vB| = H(t)dAB, H(t0) ' 70km/(Mpc× s).

3. When it was 103 smaller than now and about 13 Gy younger than now ∆ρ/ρ ' 10−5.

You need something that starts very homogeneous and isotropic, but has the possibility to
evolve in time to become more anisotropic and accommodate Hubble expansion. FRW metric:

ds2 = −dt2 + a(t)2

[
dr2

1− kr2
+ r2dΩ2

(2)

]
, dΩ2

(2) = dθ2 + sin2 θdφ2 . (3.1)

Hubble expansion |vA − vB| = dABȧ = dABH, H = ȧ/a. The metric is describing in polar
coordinates

x = rcθsφ, y = rsθsφ, z = rcφ . (3.2)

a 3D manifold that is translationally and rotationally invariant. If we were in 4D we would write
this manifold as

x2 + y2 + z2 + u2 = ~x · ~x = a2 . (3.3)

The length element is

dl2 = dx2 + dy2 + dz2 + du2 = dr2 + r2dΩ2
(2) + du2 , (3.4)

but

du2 = (du)2 = (d
√
a2 − x2 − y2 − z2)2 =

(xdx+ ydy + zdz)2

a2 − r2
=

(rdr)2

a2 − r2
(3.5)

Then in polar coordinates

dl2 = dr2 + r2dΩ2
(2) +

(rdr)2

a2 − r2
= r2dΩ2

(2) +
a2dr2

a2 − r2
= r2dΩ2

(2) +
dr2

1− r2/a2
(3.6)

Then r → r × |a|2 (large coord. freedom of GR) gives us the FRW metric with k = +1,−1, 0.
How do we compute a(t)? From Einstein’s equations

Gµν = Rµν − gµν
(
R

2
− Λ

)
= 8πGNTµν . (3.7)

How does Tµν look like in our Universe?
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For one particle we have

Tµν =
pµpν
p0

δ3(~x− ~xp(t)) (3.8)

Excercise Derive the above Tµν from the single particle action

S = −m
∫
dτ = −m

∫
γdt . (3.9)

End Excercise N particles

Tµν =
∑
k

pkµp
k
ν

pk0
δ3(~x− ~xkp(t)) (3.10)

In the limit of a large number of particles per unit volume we can take the continuum limit

Tµν '
∫
d3p n(|~p|)pµpν

p0

. (3.11)

where n(|~p|) is the number of particles with magnitude of the three-momentum |~p| per unit volume.
If the Universe is homogeneous and isotropic, n depends only on the magnitude of the three-
momentum. Obviously n(|~p|) is an even function of each of the components of ~p, so all off-diagonal
terms vanish

Tij =

∫
d3p n(|~p|)pipj

p0

. (3.12)

because where integrating the even function n(|~p|)/p0 times the odd function pi over a symmetric
interval. How do we interpret the diagonal elements? T00 is obviously the energy density

T00 =

∫
d3p n(|~p|)p0 ∼

E

V
≡ ρ . (3.13)

To understand Tii imagine a cube of size L and a particle travelling in the i direction that bounces
off one of its walls elastically. Then the momentum exchange is ∆pi = 2mvi and the force exerted
on the wall

∆Fi =
∆pi
∆t

=
mvivi
L

(3.14)

Note that the particle travelled a distance 2L between to successive bounces. The pressure is

p =
∆Fi
L2

=
pivi
L3

=
pimγvi
L3p0

=
p2
i

L3p0

(3.15)

This is precisely what our Tii looks like for a single particle. We are in a homogeneous and
isotropic Universe so all three directions must be equivalent. So finally for a perfect fluid Tµν =
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diag(ρ, p, p, p). Note that in general ρ and p are related. For instance for a NR particle p ' 0,
ρ ' mtot/V . For a relativistic particle p = (1/3)~p · ~p/E = (1/3)ρ.

For a perfect fluid Einstein’s equations become

H2 =
8πGNρ

3
− k

a2
+

Λ

3

Ḣ +H2 =
ä

a
= −8πGN

6
(ρ+ 3p) +

Λ

3
. (3.16)

What are ρ and p? We know experimentally that the Universe was in thermal equilibrium with
T ' MeV and almost only SM particles when it was ' 106 times smaller than today. We know
this by measuring light elements’ abundances He4, Li, D, ... in areas poor of stars and comparing
it with the thermal eq. calculation in the SM. We can take this as a starting point and see how
quantities evolve from then (going both in the past or in the future according to what we care
about). First of all we have then to understand what ρ and p look like in equilibrium.

pα = probability of state α. Entropy

S = −
∑
α

pα log pα , (3.17)

The maximum is

Smax = log Γ Γ = Ns (3.18)

where Ns is the total number of states, meaning that all states are equiprobable pα = 1/Ns for
all α. If we define ∆Nε to be the number of particles in the energy interval [ε, ε+ ∆ε] and ∆gε as
the. number of microstates in the one particle phase space. This means

∆gε = g

∫ ε+∆ε

ε

d3pd3x

(2π})3
, (3.19)

this is because of the uncertainty principle ∆p∆x ≥ h so states in a phase space cell < (2π})3

are indistinguishable. Here g are the internal degrees of freedom. Then the total number of
microstates for bose particles corresponds to how many ways you have of putting ∆Nε particles
in ∆gε cells, i.e.

∆Gε =
(∆Nε + ∆gε − 1)!

∆Nε!(∆gε − 1)!
(3.20)

The total number of states is then

Γ =
∏
ε

∆Gε (3.21)

Explanation: The ∆Nε particles between [ε, ε+ ∆ε] can be in any one of their ∆Gε states. The
same is true for the ∆Nε′ particles between [ε′, ε′ + ∆ε] and so on. So the total number of states
for the whole system is the product in the above equation. Then

Smax =
∑
ε

log ∆Gε . (3.22)
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For bose particles we can assume ∆Nε,∆gε � 1 and expand

logN ! =
N∑
n=1

logN '
∫ N

1

dx log x+
logN

2
' (N + 1/2) logN −N (3.23)

Finally

Smax =
∑
ε

[(nε + 1) log(nε + 1)− nε log nε] ∆gε, nε ≡
∆Nε

∆gε
. (3.24)

nε are called occupation numbers, they characterize the average number of particles per microstate
of a single particle. Let us maximize S keeping energy and number of particles fixed

E =
∑
ε

ε∆Nε =
∑
ε

εnε∆gε

N =
∑
ε

∆Nε =
∑
ε

nε∆gε

(3.25)

We can use Lagrange multipliers

S + λ1E + λ2N (3.26)

Taking derivatives (wrt nε) we get

nε =
1

e−λ1ε−λ2 − 1
=

1

e
ε−µ
T − 1

(3.27)

One can then measure nε and find that the two Lagrangian parameters are temperature and
chemical potential. Note that to obtain this equation we have minimized

−S − λ1E − λ2N (3.28)

So it’s useful to think of this quantity as if it was a potential determining the equilibrium state of
the system. Indeed

F

T
= S +

E

T
+
µN

T
(3.29)

is the free energy (a thermodynamic potential) we are saying that µ = 0 means that we can change
N for free (we’re not affecting the potential). Similarly we are saying that when T →∞ there is
no penalty in changing the energy of the system, which is a bit crazy, but quite intutitive. If we
take into account that two Fermi particles can’t occupy the same microstate we get

Smax =
∑
ε

[(nε − 1) log(nε − 1)− nε log nε] ∆gε (3.30)
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and

nε =
1

e−λ1ε−λ2 + 1
=

1

e
ε−µ
T + 1

. (3.31)

The beauty of this derivation is that used only the thermodynamic principle of maximum entropy
and the counting of states. It’s valid in any geometry!

In QFT N is not conserved. For instance e+e− → γγ. However if the reactions

A+B ↔ C +D (3.32)

are in equilibrium then

µA + µB = µC + µD (3.33)

So we have to work out case by case the chemical potentials. Note that for relativistic particles
(for instance SM photons) µ = 0, physically this means that you can always produce for free a
zero energy photon, so there’s no constraint on the total number of photons. So when the previous
process is in equilibrium µe+ = −µe− (related to charge conservation).

This can be derived explicitly from the equation of state of a relativistic ideal gas

pV = E/3 (3.34)

The relation above comes from our relativistic stress energy tensor. Plus the fact that we’ll derive
below that E = T 4 × const. Exercise Do this derivation using thermodynamic potentials or look
up the solution.

We set off to compute ρ and p so let’s do it

ρ =
E

V
=

∑
ε εnε∆gε
V

' g

(2π)3V

∫
d3pd3x

1

e
ε−µ
T ± 1

=
g

(2π)3

∫
d3p

1

e
ε−µ
T ± 1

=
g

2π2

∫ ∞
m

√
ε2 −m2ε2dε

e
ε−µ
T ± 1

(3.35)

The number of particles per unit volume is then

n ≡ N

V
=

g

2π2

∫ ∞
m

√
ε2 −m2εdε

e
ε−µ
T ± 1

(3.36)

One can show (see Mukhanov or Kolb and Turner) that

p =
ρ

3
− g2mn

6π2
. (3.37)

Finally

s ≡ S

V
=
ε+ p− µn

T
. (3.38)
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Useful expansions (numbers valid for bosons

T � m,µ→ n ' ζ(3)

π2
T 3, ρ ' gπ2

30
T 4, p ' ρ/3, s ' 2π2

45
gT 3 . (3.39)

for fermions

ρ = (7/8)ρb, n = (3/4)nb, s = (7/8)sb . (3.40)

Other expansion

T � m,
m− µ
T

� 1 , n = g

(
mT

2π2

)2/3

e−
m−µ
T , ρ = mn s =

m− µ
T

n .

If µ . m they all scale as ∼ e−m/T . This means that ρtot is dominated by the species that are
lighter than T

ρtot =
∑

i∈all particles

ρi '
∑

i∈all particles with m<T

giπ
2

30
T 4 +O(e−m/T ) (3.41)

In our Universe k ' 0 and Λ is comparable to T only today. So for most of the history of the
Universe

H2 =
8πGN

3
ρ =

8π3

90
g∗(T )

T 4

M2
Pl

(3.42)

g∗(T ) =
∑

i∈bosons

gi

(
Ti
T

)4

+
7

8

∑
i∈fermions

gi

(
Ti
T

)4

(3.43)

Another very important quantity is entropy density because it allows us to keep track of the
expansion of the universe

l(t1) = a(t1)l→ l(t2) =
a(t2)

a(t1)
l(t1) ≡ (1 + z)l(t1) (3.44)

so we care about quantities like

a(t2)

a(t1)
(3.45)

because for instance if the total number of DM particles is conserved

n1 = n2
V2

V1

= n2

(
a(t2)

a(t1)

)3

. (3.46)

However we know that mostly the universe is in equilibrium so entropy is constant

S1 = S2 → s1a(t1)3 = s2a(t2)3 (3.47)
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so finally

a(t2)

a(t1)
=

(
s1

s2

)1/3

' T1

T2

. (3.48)

If you want to be more precise

s =
2π2

45
g∗S(T )T 3 ,

∑
i∈bosons

gi

(
Ti
T

)3

+
7

8

∑
i∈fermions

gi

(
Ti
T

)3

. (3.49)

Add sketch of g∗ and g∗S.

3.1 Boltzmann Equation

We have assumed equilibrium, but a Universe in equilibrium is extremely boring.

Exercise Derive the continuity equation from thermodynamics

dE = −pdV (3.50)

Solution

dE = d(ρV ) = V0a(t)3dρ+ 3a2V0ρda

→ dE

dt
= V0a(t)3dρ

dt
+ 3a3V0ρH → −p

dV

dt
= −p3a3V0pH (3.51)

so finally

dρ

dt
= −3H(ρ+ p), w ≡ p/ρ

d(log ρ)/dt = −3(1 + w)d(log a)/dt

ρ ∼ a−3(1+w) (3.52)

End of Solution
For w ≥ −1, ρ decreases with a(t). If we plug back into the first Friedmann equation

ȧ2 =
8πGNρ0a

−3(1+w)+1

3
(3.53)

and

a(t) ∼ t
2

3(1+w) (3.54)

a(t) always increases for w ≥ −1. We thus would end up with an empty univerese because

T ∼ 1/a(t) (3.55)
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and eventually we are left with only photons because of the exponential suppression of particle
number densities seen above.

How do we describe departures from equilibrium? In equilibrium

n = g

∫
d3p

(2π)3
f(|~p|, t) (3.56)

but in general one might have

n(x) = g

∫
d3pd3xf(~p, ~x, t) (3.57)

However homogeneity means n(x) = n,∀x and isotropy that f(~p) = f(|~p|). So we have to consider
just the simpler case

n = g

∫
d3p

(2π)3
f(|~p|, t) (3.58)

We want to compute the Liouville operator (Exercise)

df

dτ
=
∂f

∂t
+
dε

dt

∂f

∂ε
=
∂f

∂t
−H |~p|

2

ε

∂f

∂ε
≡ L[f ] . (3.59)

Solution The derivation is as follows. In a gravitational field (we write m0 to show explicitly
the absence of other γ factors)

dpσ

dτ
= −Γσµν

pµpν

m0

. (3.60)

For the FRW metric the relevant symbols are

Γ0
ij =

ȧ

a
gij (3.61)

so (the physical magnitude of the 3-momentum is gijp
ipj)

dε

dτ
= −H|~p|

2

m0

(3.62)

Finally

u0 = m0
dt

dτ
→ dε

dτ
=
dε

dt

dt

dτ
=
dε

dt
u0 → dε

dt
= −H|~p|

2

m0u0
= −H|~p|

2

ε
(3.63)

End of Solution
Boltzmann equation (without proof)

C[f ] = L[f ] (3.64)
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C[f ] = collision operator. With the simplifying assumptions that we will make it is convenient to
compute the integrated BE

Exercise Show that

g1

∫
d3p

(2π)3
L[f1] = ṅ1 + 3Hn1 (3.65)

Solution (in the first equality we use dε/d|~p| = |~p|/ε, then we integrate by parts)

g

∫
d3p

(2π)3
L[f ] = ṅ−Hg

∫
d3p

(2π)3

|~p|2

ε

∂f

∂ε
= ṅ−Hg

∫
d3p

(2π)3
|~p| ∂f
∂|~p|

= ṅ−Hg
∫

d3p

(2π)3

(
∂(|~p|f)

∂|~p|
− f

)
= ṅ+Hn− gH

∫
d3p

(2π)3

∂(|~p|f)

∂|~p|

= ṅ+Hn− gH
∫
dΩ|~p|2d|~p|

(2π)3

∂(|~p|f)

∂|~p|

= ṅ+Hn− gH
∫
dΩd|~p|
(2π)3

(
∂(|~p|3f)

∂|~p|
− 2|~p|2f

)
= ṅ+ 3Hn− gH

2π2
|~p|3f

∣∣∞
0

= ṅ+ 3Hn

(3.66)

End of Solution For a 2 to 2 process with particles 1 and 2 in the initial state the collision
operator reads

g

∫
d3p

(2π)3
C[f ] = −

∑
spins

∫
d3p1

2ε1(2π)3

d3p2

2ε2(2π)3

d3p3

2ε3(2π)3

d3p4

2ε4(2π)3
(2π)4δ(p1 + p2 − p3 − p4)×

×
[
|M12→34|2f1f2(1± f3)(1± f4)− |M34→12|2f3f4(1± f1)(1± f2)

]
(3.67)

First Assumption: Let us imagine that we start with particles 3 and 4 in equilibrium (they
could be SM particles). Both chemical µ = 0 and kinetic T = Tγ. If E & T , f eq = 1/(eE/T ± 1) '
e−E/T � 1. Furthermore if the 2 to 2 process is in equilibrium

f eq1 f
eq
2 = f eq3 f

eq
4 (3.68)

so

g

∫
d3p

(2π)3
C[f ] = −

∑
spins

∫
d3p1

2ε1(2π)3

d3p2

2ε2(2π)3

d3p3

2ε3(2π)3

d3p4

2ε4(2π)3
(2π)4δ(p1 + p2 − p3 − p4)×

×
[
|M12→34|2f1f2 − |M34→12|2f eq1 f

eq
2

]
(3.69)

unitarity implies ∑
spins

∫
d3p3

2ε3(2π)3

d3p4

2ε4(2π)3
(2π)4δ(p1 + p2 − p3 − p4)|M12→34|2 =

∑
spins

∫
d3p3

2ε3(2π)3

d3p4

2ε4(2π)3
(2π)4δ(p1 + p2 − p3 − p4)|M34→12|2 = 4Fg1g2σ12→34 . (3.70)
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So we have

g

∫
d3p

(2π)3
C[f ] = −4g1g2

∫
d3p1

2ε1(2π)3

d3p2

2ε2(2π)3
[Fσ12→34] [f1f2 − f eq1 f

eq
2 ] (3.71)

If we define the thermally averaged cross section

vMol ≡
F

ε2ε1

〈σv〉 ≡
g1g2

∫
d3p1
(2π)3

d3p2
(2π)3

σvMolf
eq
1 f

eq
2

neq1 n
eq
2

(3.72)

Second Assumption: kinetic equilibrium. If this is the case f1 = kf eq1 , with k constant. Then

− 4g1g2

∫
d3p1

2ε1(2π)3

d3p2

2ε2(2π)3
Fσ12→34f1f2 = −4g1g2k

2

∫
d3p1

2ε1(2π)3

d3p2

2ε2(2π)3
Fσ12→34f

eq
1 f

eq
2

= 〈σv〉k2neq1 n
eq
2 = 〈σv〉n1n2 (3.73)

We finally have

g

∫
d3p

(2π)3
C[f ] = −〈σv〉(n1n2 − neq1 n

eq
2 ) = ṅ1 + 3Hn1 (3.74)

3.2 WIMP Miracle

Consider χχ → SMSM. The theory is invariant under χ → −χ so this is the leading diagram.
The BE for this process is

ṅχ + 3Hnχ = −〈σv〉(n2
χ − (neqχ )2) (3.75)

If 3Hnχ � −〈σv〉n2
χ we can solve

ṅχ + 3Hnχ ' 0→ ṅχ
nχ

= 3
ȧ

a
(3.76)

So

nχ(t) = n∗χ

(
a∗
a(t)

)3

∼ 1

a3
. (3.77)

If 3Hnχ � −〈σv〉n2
χ interactions are fast, we are in equilibrium with

2µχ = 2µSM = 2µγ = 0 (3.78)

Therefore

nχ(t) =
1

e−
ε

T (t) ± 1
. (3.79)
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Draw picture of Yχ ≡ nχ/s. Therefore everything happens at freezout

3Hf ' −〈σv〉fnχ,f
Tf . mχ → 〈σv〉f ' σ0 + σ2v

2
χ + ...

nχ,f '
T 2
f

MPlσ0

(3.80)

Today

ρχ = mχnχ = mχnχ,f

(
af
a0

)3

= mχnχ,f
s0

sf
' mχ

T 2
f

MPlσ0

(
T0

Tf

)3

' T 3
0

MPlσ0

(3.81)

How does this compare to DM?

ρDM(tEQ) ' ργ(tEQ) ' (eV)4 (3.82)

Therefore

ρDM(t0) ' eVT 3
0 . (3.83)

So finally today

ρχ
ρDM

' 1

MPleVσ0

→ σ0 '
1

(10 TeV)2
(3.84)

The miracle is that

1

(10 TeV)2
' α2

W

m2
W

(3.85)

A 100 GeV particle with weak interactions to the SM could be dark matter!

3.3 A few selected variations on the WIMP

To get the WIMP miracle at some point we used unitarity on the collision operator C[f ]∑
s

∫
dΠF |MF→I |2 =

∑
s

∫
dΠF |MI→F |2

dΠF = δ4(...)
∏
i∈F

d3pi
2εi(2π)3

. (3.86)

However we don’t have to. Consider again χχ→ SM SM for simplicity. Instead of using unitarity
we can do the following

f 2
χ

∑
s

∫
dΠSM |Mχ→SM |2 = 4Fg2

χσχ→SMf
2
χ

f 2
SM

∑
s

∫
dΠχ|MSM→χ|2 = 4Fg2

SMσSM→χf
2
SM (3.87)
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Then the BE becomes

ṅχ + 3Hnχ = −〈σχ→SMv〉n2
χ + 〈σSM→χv〉n2

SM (3.88)

Other than more intuitive this equation is telling us what happens if we relax some of the hidden
assumptions in the WIMP calculation. Let’s say that mSM > mχ. Then SMSM → χχ is allowed
also at zero temperature and we can use the usual expansion of the cross section

〈σSM→χv〉 ' σ0 + σ2v
2 + ... . (3.89)

However we have no idea of the value of 〈σχ→SMv〉. In equilibrium

−〈σχ→SMv〉(neqχ )2 + 〈σSM→χv〉(neqSM)2 = 0 . (3.90)

This means

〈σχ→SMv〉 = 〈σSM→χv〉
(neqSM)2

(neqχ )2
∼ σ0e

−2
mSM−mχ

T (3.91)

So now

ρχ
ρDM

'
(
ρχ
ρDM

)
e

2
mSM−mχ

Tf . (3.92)

You need σ0 exponentially larger than that of a WIMP!

σ0 '
α2
χ

m2
χ

. (3.93)

So either much lighter or much more strongly coupled DM! This is known as forbidden dark matter
(Griest and Seckel ’89, RTD and Rudermann ’15).

Exercise Show the relation between Tf of forbidden DM and that of a WIMP. Let’s define
for convenience x ≡ m/T , where m is the DM mass and we dropped the subscript f of freeze-out
for convenience. For a WIMP at freeze-out

nχ = gχm
3

(
1

2π2x

)3/2

e−x =
H(x)

σ0

=
2π
√

2π√
90

√
g∗(m/x)

m2

x2MPlσ0

xWIMP ' log
π3/2
√

90gχmMPlσ0√
x
√
g∗(m/x)

(3.94)

For forbidden the calculation is identical with σ0 → σ0e
−2∆x, where ∆ = (mSM − m)/m, so

since log(1/
√
x
√
g∗(m/x)) gives only a small additive correction (verify) we can conclude that

approximately

xF ' xWIMP

1 + 2∆
(3.95)

End of Exercise
Other hidden assumptions
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1. Kinematics [Forbidden]
Griest and Seckel ’89, RTD and Ruderman ’15

2. Dynamics [SIMP]
Hochberg, Kuflik, Volansky, Wacker, ’14

3. Thermal History [Cannibal]
Carlson, Machacheck, Hall ’92
Pappadopulo, Ruderman, Trevisan ’16

4. Single χ hypothesis [Coannihilation]
Griest and Seckel ’89, RTD, Mondino, Ruderman, Wang ’15

5. O(αW ) couplings [Freeze-In, WIMPless]
Hall, Jedamzik, March-Russell, West, ’09
Feng, Kumar, ’09

6. Kinetic Equilibrium [Coscattering]
RTD, Pappadopulo, Ruderman, ’16

Freeze-In Tiny coupling between DM and SM no kinetic and no chemical equilirbium. As-
sumption: initially nχ ' 0.

ṅχ + 3Hnχ ' 〈σSM→χv〉n2
SM (3.96)

Interactions stop being relevant when

nχ,f '
〈σSM→χv〉fn2

SM,f

Hf

' σ0MPlT
4
f (3.97)

so finally

ρχ
ρDM

' mχσ0MPlTf
eV

'
α2
χMPl

eV
→ αχ ' 10−14 . (3.98)

We have seen two examples where DM can be either much lighter or much more weakly coupled
than a WIMP and there are many more in the references listed above.

4 Ultralight Scalar Dark Matter

We saw that we can get pretty small couplings and masses from the thermal models that we
discussed. What is the limit? Experimentally as we know we can go all the way down to m '
10−21 eV (for bosons) and in principle to gravitational couplings. Are there models that can do
it?

In principle you could say: let me just do the same calculation of the WIMP, but in a dark
sector with tiny couplings, then I’m gonna get a tiny mass as well. If the dark sector is sufficiently
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cold its contribution to Hubble can be hidden from our probes of the expansion of the Universe
(BBN and CMB). In reality it is not quite so simple. If dark matter has any thermal origin it
will have some velocity distribution. After decoupling from radiation it will move randomly in the
Universe (free-streaming). On average this will reduce the primordial over- and under-densities
that give birth to galaxies, today we should see less structure on scales over which DM could
propagate.

A DM particle will propagate over a distance

λFS = a0

[∫ tNR

tkeq

c

a(t)
dt+

∫ tEQ

tNR

v(t)

a(t)
dt

]
. (4.1)

The best case is tkeq � tNR so the DM free-streams only for a short time while being non-
relativistic. Then

λbest
FS = a0a(tNR)c

∫ tEQ

tkeq

1

a(t)2
dt ' 0.1 Mpc

√
g∗(keV)

g∗(mDM)

keV

mDM

log
Tkeq

eV
. (4.2)

So no galaxies if mDM . keV.
What did we assume? That DM has some initial velocity ∼ c. What if there was a way to

produce DM (non-thermally) with zero velocity? It turns out that there is!
Consider

Sφ =

∫
d4x
√
−g
[
gµν

2
∂µφ∂νφ−

m2
φ

2
φ2

]
, (4.3)

let’s say that we want a φ with mφ . eV to be DM. We know that

ρDM ' eV × T 3
0 ' eV × (0.1 meV)3

nDM =
ρDM

mφ

pDM = mφ

√
〈v2

DM〉 (4.4)

So in the smallest indistinguishable phase space cell (2π})3 we have potentially lots of particles!

(2π})3

p3
DM

nDM =
(2π})3

p3
DMV

NDM '
eV4

m4
φ

(4.5)

This means that for mφ � eV we can use a classical description!
Since we are always in an approximately homogenous Universe we can write the equation of

motion for φ(~x, t) = φ(t) verify as an exercise that the result is

φ̈+ 3Hφ̇+
∂V (φ)

∂φ
= φ̈+ 3Hφ̇+m2

φφ = 0 (4.6)

When H � mφ then the scalar is effectively stuck. In a Hubble time Hφ̇ ' H2φ� m2
φφ so

φ̈+ 3Hφ̇ ' 0→ φ̇ ' 0→ φ ' φ0 . (4.7)
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As the universe cools down and expands, H decreases (H ∼ T 2 ∼ 1/a2) eventually H ' mφ and
we can solve the full damped harmonic oscillator equation

φ̈+ 3Hφ̇+m2
φφ = 0→ φ(t) =

1

a(t)3/2
[C1 cos(mφt) + C2 sin(mφt)] . (4.8)

The energy density is

ρφ = T00 =
φ̇2

2
+
m2
φφ

2

2
. (4.9)

If we average over multiple oscillations we get

〈φ̇2〉 = 〈φ2〉 (4.10)

and

〈ρφ〉 = m2
φ〈φ2〉 (4.11)

from now on I will mean this to be the energy density of φ. So can φ be DM? It depends on initial
conditions, let’s take φ(t0) = φ0, at times t0 sufficiently early on that φ is stuck φ̇(t0) = 0. Then

〈ρφ〉 =
m2
φφ

2
0

2a(t)3
. (4.12)

We notice that the energy density redshifts like matter! Numerically we need

〈ρφ〉
ρDM

'
m2
φφ

2
0

eV × T 3
osc

' 1 (4.13)

where H(Tosc) ' mφ. There’s no problem with free-streaming because ∂xφ ' 0. Nightmare
scenario! No coupling to the SM. Simple mechanism to get the relic density.
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