Scaling functions In disordered
elastic materials (Jim Sethna)

P. W. Anderson, 1978, Les Houches school on Ill Condensed Matter

New paradigm
“How do disordered systems differ from regular systems?”
« Today: Avalanches and emergent scale invariance (Dahmen, Myers, Perkovi¢, Kuntz, ...)
« Tomorrow: Scaling and avalanches (Hayden, Raju, Shekhawat, Chen, Zapperi, Rosso,
Wyart)
Old paradigm
“How may they be reduced to them?”
« Thursday: Materials properties near rigidity transitions
(Liarte, Thornton; Liarte, Mao, Lubensky)

* Friday: Mean-field theory for jamming and rigidity percolation (Thornton, Liarte)

Everywhere, | will focus on universal scaling functions...






How do disordered systems agree with/differ from
gases, liguids and crystals?

Systems

Granular materials
(sands and powders)

Colloidal suspensions
(milk, cornstarch)

Foams, emulsions
(heads of beer)

Glasses
(window glass,
hard candy /

doce duro)

~

Fluid/Floppy state

Flows like liquid or gas when
dilute, sheared, or agitated
(shaken powders, beer bubbles
and wet foams, glass melts);
viscosities

Complex, multiscale, jerky
flow as particles move and
avold one another when
density increases (non-
Newtonian fluids, diverging

viscosities) y

Elastic/Rigid state

Supports shear when
dense and weakly
disturbed (handful of dry
suds, glasses); sound
waves, elastic constants

Complex “non-affine”
deformation under small
shears; avalanches on all
scales, crackling noise



Earthquakes
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(b) Magnitude http://simscience.org/crackling/ Advanced/Earthquakes/EarthquakeSimulation.html



Foams Magnets

Solar Flares

Fracture

Size distribution P(s)

pLA)
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A [Vs]

Crackling noise W% .

Discrete crackles
span enormous
range of sizes.

Should be
comprehensible;
scaling theory.
Analogy with
hydrodynamics:
Molecules don’t matter for
Navier-Stokes fluid flow

Microscopics won’t matter
for crackling
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Avalanches at criticality (RFIM)

Ising spins each with random field,
variance R and external field H. Avalanche
starts when net field

H + neighbors
changes sign. System tuned to critical
disorder R,

* Avalanches of all scales

« Early small avalanches, growing in size
* “Infinite” (red) avalanche, large jump in
magnetization near H,

« Small final avalanches fill in gaps

« Emergent scale invariance at R, H,

* ‘Self-organized’ when integrated over
field H

Dahmen, Perkovi¢, Pelkie



Universality: Shared Critical Behavior
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Self-Similarity Iin Space
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Random Walks

Magnify portion by factor
of two: statistically similar

on all scales (until ‘lattice
cutoff’).

Random walks — generic
scale invariance.

Hysteresis model: Emergent
scale invariance at critical
point R..
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Hysteresis Model at R,



Velocity V(t)

Self-similar in Time

Big avalanches made of little ones
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Time t

Avalanche almost halts many times: pieces look like whole



Coarse
Graining

 ‘Continuum limit" — average
over details in small regions, get
effective laws for coarser system
« Example: majority-rule block-
spin transformation (3x3 blocks)
» Renormalization group: find
effective block-spin free energy:
new interactions from old by
tracing over microscopic
variables




The Renormalization Group

Coarse Graining in the Space of All Systems

Ken Wilson’s
amazing abstraction
Space of all possible

systems
(experiment or theory)

Coarse laws give
new point in
system space.

Many coarsenings?
Stops changing at S*
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Theory describes experiment if both
coarsen to same S*.

Universality:
Many different
systems go to same S*

Dimensionality of stable and
unstable manifolds

Dahmen, Myers



Universality

Universal Power Laws: The Fractal Dimension

Avalanche fractal dimension: length L, mass/volume/size L% . uni-
versal d:

S/Sy ~ (L/Ly)". (1)
Derive from RG: coarse grain a small factor (1 4 d/f):
L'=L/(1+dl)~L—Ldl dL/dl=(L'—L)/dl =—L.
avalanches rescale by a different factor 1/(1 + adf)
dS/dt = —aS dS/dL = (dS/dl)/(dL/dl) = aS/L.
Check that this is satisfied by Eq. [I|
dS/dL = d(Sy(L/Lo)" JdL = SyLy (d; L)
— dySo(L/Lo)" /L = dsS/L,

so dy = a is the universal critical exponent.

Universal Scaling Function
Consider the scaling relation z(x,y) between z, x, and y (say, M,
T —T,, and H). Check that the RG predicts the universal scaling

form near x = 0:
2w, y)/20 = (x/20)  Z((y/yo)/ (w/w0)") = 2" Z(y/2™).  (2)
(1) Check that Y = /2% is a constant under the RG.
If de/dl = ax, dy/dl = by, and dz/dl = cz, then
dY /dl = d(yz="*) /dt = (dy/d0)x"" + y(=b/a)z=" Y (dx/dl)
= (by)a™"" — y(b/a)a™"1"" (ax) = 0.
Y is invariant with 86 = b/a.
(2) Check the scaling form, Eq. [2]
cz =dz/dl = Bz Ndx /dO)Z(Y) + 27 2/ (Y )dYAdt
= Bz’ Nax)Z(Y) = aBa’Z(Y) = afz.
Thus ¢ = af, so B =c/a, d =b/c, and Z(Y) is universal.






Universal power laws:
Avalanche Size Distribution

Probability A(S,R) that a site isin 107z
an avalanche of size S for = 102 S
disorder R, for various ff;
r = (R-R./R, < 1073
» Straight lines are power laws. 5§
* Power law A~S7at R.. ‘é +0
* Four decades of scaling to get & 10-5
correct power law e
« Dotted lines are fit to = O
universal scaling function = 10-7
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Universal scaling function:
Avalanche Size Distribution

0.3{ — r=0.04
Scaling collapse of the avalanche r=0.17
size distribution A(S,R). The dark = — r=0.325
line is a fit to the universal 0 — r=0.46
scaling function < 0.2y — Fit

I

A(S7r) = STTAGS,R) L | Hnear
Note that the function nearly -
vanishes at zero. This is why o 01
systems far from the critical <
point showed a ‘wrong’ power
law (green dotted line).
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Upper and lower critical dimensions: Thermodynamic
critical points and mean-field theory

The renormalization group was
Invented to study phase
transitions as a function of
temperature in pure systems.
Below the lower critical
dimension (LCD), the transitions
were at zero temperature. Above
the upper critical dimension
(UCD), the properties near the
transition are described by mean
field theory.

Dimension D
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Mean field theories

There are many kinds of mean-field theories.
» Curie-Weiss type (bounding free energy)
« Bethe lattice (branching tree)
 [Infinite-range models (hypertetrahedron)
 [Infinite dimensions: Replica theory

« EMT, CPA, Mode Coupling Theory

They give the correct critical behavior above

the upper critical dimension, which can be

« Higher (six for random-field Ising models)

* Or lower, for long-range interactions (d=3
for elastic interactions in earthquakes and
fracture)

« D=2 appears to be both LCD and UCD for
jamming, and for slip bands formed
during yielding.

Infinite Range




Mean field theory: why universal scaling fcts?

Mean field theories can be solved for the entire behavior. Why bother with extracting a
universal scaling function that is only valid near the transition?

« Mean-field theories do have universal scaling functions
Z(X,y) = X & (y/xP) + higher order
near the critical point, with & a universal scaling function (even when there is no RG).

« Mean-field theories make predictions both near and far from the critical point, but not all

the behavior is predicted correctly.
 Only the universal exponents and universal scaling functions apply quantitatively for

finite dimensions, or for experiments.
Extracting the universal predictions is thus an important task, even for a solvable model.



Mean field theory for the Ising model

(0) Derive mean-field theory. Curie-\Weiss, z neighbors, self-consistent equation: spin feels

field h + mz from neighbors. (htm2) /T _ = (h+m2)/T

e(h+mz)/T + e—(h+mz)/T

m = (self-consistent theory)

(1) Change to t = T.-T with T.=z.

(2) Substitute m/m, = t# ¢, h/hy = tF°H, =%, 6= 3.

(3) Assume t going to zero. Derive an equation for m(t,h) = tAci(H) = t# SA(h/tFo):
[@W: H - @(f?’/}B (Universal scaling function relation)

The Curie-Weiss theory gives a reasonable behavior, but it just approximates, say, the 5D
Ising behavior. The universal scaling part specifies what the theory guarantees to be true.







