Avalanche Litany
Jumping between minima in materials

An avalanche

 Is a jump between two metastable states in a
disordered system.

« Starts from a weak spot, that triggers the weaker of
Its neighbors in a cascade that finally terminates.

« Often is fractal in time and space

Avalanches come in all sizes (are scale invariant)

* Near the onset of flow or failure (POC)

* In cases ‘self organized’ to the onset of flow (SOC)

 In some entire phases (Generic scale invariance)

Fractal avalanche in 3D RFIM.
Colors indicate time sequence.



Pandemic Outbreaks &
the Random Field Ising Model

Pandemic
Infected +1, Not yet -1;
Each sick person infects R,
healthy neighbors
Critical point R, = 1.

Mean field RFIM
Spins start -1. External field
H triggers weakest spin,
which triggers R, spins at
random. Critical point H,
when Ry=1.

Lattice
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Avalanche in 2D RFIM
13 weak spot, triggers
shells of neighbors,
temporal shape
V(t)={1, 3,5, 4}

Size distribution P(S,R)
I = (Rc o RO)/RO

Universal exponents
=32, o=

Scaling form
P(S,R) =S7 &(S°r)

Universal scaling function
(X) = exp(-X?/2)

Kuntz



Avalanches In mean-field Ising expts

Avalanche temporal shape V(t|T) for fixed duration T predicted to scale as
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Singular corrections to scaling™

What happens farther from the critical point?
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Scaling collapses are supposed to make the curves lie atop one another. Far from the critical point, they stop
overlapping! Can we find a universal scaling prediction for these ‘subdominant’ corrections to scaling?

Shekhawat, Zapperi



Singular Corrections to Scaling:
Irrelevant Variables Matter Too

Consider z(x,y,u) with x, y relevant (growing under coarse-graining), and u irrelevant
(shrinking). (L and S shrink under coarse graining: x = 1/S and y = 1/L are relevant.)
e RG flow equations:

dr/dl =ax dy/dl =by dz/dl =cz du/dl = —du.
e Invariant scaling combinations:
Y =y/2% =y U =uz® = ua¥

e New universal critical exponent w.
e Universal scaling function

2z, y,u) = 2P Z(Y,U) = 2P Z(y /2", uz*),
e Because U becomes small as x — 0, if Z(Y,U) is differentiable at U = 0, we can expand
2(z,y,u) = 2P Z(Y,0) + 2P U Z0N(Y,0) = 2° Z(y /27, 0) + 2w 20 (/27 0).

e New term is subdominant as x — 0. It is a universal correction to scaling, ©.Z%! with
nonuniversal amplitude w.






Example: Crackling Fracture

Power-law fracture precursors
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(Black) clusters of weak
bonds break early, with a
power law size distribution.

e 3=0.03
e 3=0.5
— 3=3.0

- 1, =5/2 |

106 N

10° 10
S

Microfractures happen in
toughens
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bone, seashells:

Shekhawat, Zapperi



Example: Crackling Fracture

Power-law fracture precursors

| eonardo DaVinci

Larger Is weaker:

* longer wires fail at smaller force

* thicker wires fail at smaller stress

* Wweakest portion dominates

* Infinite system breaks at zero stress
* No precursor avalanches

Precursors are a finite size effect:
finite size criticality

Shekhawat, Zapperi



Crackling Fracture and Irrelevant variables*

Shekhawat: Power-law fracture precursors

/ Percolation controls scaling
New relevant perturbation g
Q. 2nd moment of avalanche sizes
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Large disorder: ‘avalanches’ sizes S=1 ,
small disorder: bi | h These curves don’t overlap! They depend on U = u L4,
Universal crossover as L diverges, with corrections (lines through data)
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Shekhawat, Zapperi



Dangerous Irrelevant Variables™

Suppose we have z(z,y,u) = 2’ Z(Y,U) = 2° Z(y/2”°,u2*), with 2 and y relevant. u is
irrelevant, but dangerous: Z(Y,U) is singular as U — 0.

e Ising model (D > 4). The magnetization M(t, h, g) minimizes a quartic potential
V(m,t) = (t/2)m* + (g/4)m*.
g is irrelevant, but dangerous: setting it to zero for t = T — 1, < 0 would force
M — +oo. Thus M(t, h,g) ~ t° M(H,G) = t° M(h/t7°, gt*) is singular as G — 0.

e Zero temperature fixed point. Glasses and disordered systems will have exponen-
tially diverging time scales as they freeze if temperature is irrelevant: as one coarse
grains, the effective barriers stay constant while the effective temperature decreases,
leading to barrier crossing times which diverge as exp(A/(T — T.)%).

e Jamming. We shall see on Friday that jamming and rigidity percolation has an elastic
lifetime at low frequencies that diverges when an irrelevant variable vanishes.



Fracture Roughness and Crossover Scaling*

The height-height correlation function
that measures the roughness of a crack
surface has two distinct universality
classes, each with their own power-
law growth r2¢ with distance. The
short-distance Larkin class is unstable
to the long-distance depinning class,
relevant variable A:

C(r,A)~ re ik G (/A7)
The long-distance depinning behavior
IS recapitulated as part of the universal
function &, of the unstable fixed
point: G, (X)~X3(& depin-lark )
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Normal forms,

O . . -
“*‘%\>/[ / universality families, and
27 corrections to scaling

/'///'/\v

g |
Physical System Normal Form (hyperbolic) | /—'\\

Nature uses different coordinates than your model does. /s
Analytic corrections to scaling: changing variables gives rapid convergence /=
Normal form theory (dynamical systems applied to RG flow) D

Depends on which bifurcation (hyperbolic, transcritical, pitchfork, ...)
Traditional power law scaling = hyperbolic bifurcation (includes singular corrections to scaling)

Lower critical dimensions, upper critical dimensions, 2D Ising, 2D RFIM, ...

Raju, Hayden, Liarte



Normal forms explain logs in UCD,
exponentials in LCD,

Universality family Systems Normal form Invariant scaling combinations
: 3D Ising Model (%) B y
Hyperbolic 3D RETM (w) dt/dl = (1/v)t Lt
: 2D RFIM (w) _ .3 5 1/(2w?) 2 ~B/2
Pitchfork 6D Potts model (q) dw/dl = w” + Bw Le (1/w*+B)
Transcritical 42]?) INSEJI]?{gF;rl\I/?((iel v ,)t) du/dl = —u” + Du’ Lel/u_D[l/(Du) —1] U =Ly”
_ o4 2 1/D 1\ -
ID Ising model (—t, ) dt/dl = 2t— Atu tL*[W(yL"/~)/(1/(Du) — 1)]
. df /dl = 2f —t"—L "~
Resonance 2D Ising model dt/dl = t+ AL~ tL+Alog L
Higher de/dl = —y*[1+axf(27)] y =2 [ s/[1+sf(s7)] ds
Codimension 2D XY model dy/dl = —xy =y? — 22+[2£(0)/3]z® — [ f(0)?/2]z* + O(2®




Normal form prediction for 2D RFIM avalanches

2D RFIM: disorder w = (R — R.)/R) flow has no linear term:
dw/dl = w* + Byw® + Bow®* + . ..
We can change variables w = w 4 bywy + byws + bswy + ... to make
dw/dl = w* + Biw° + (Biby + b + By — by)w* + . ..
We can make w™ vanish for n > 3, but By = B is fixed and universal. The avalanche size S

has a linear term, but one nonlinear term involving w cannot be removed, so our transcritical
normal form is

dw/dl = w* + Bw? dS/dl = —d;S — CSw.

The invariant scaling combination S(S,w) # Sw'/? is no longer a ratio of power laws!

S(S,w) = S/S(w) =S5 ((B+ 1/w)"¥ = exp(—ds/w)) .






Avalanches and normal forms in 2D
Invariant scaling variable for avalanche size c

Avalanche Size Distribution 3 ! AR Sage
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Avalanche size cutoff in lower critical dimension

S(w) # w /e R
= One decade in disorder, four decades in size!
= ((B+ 1/w) P¥*% exp(dy/w))

Hayden, Raju




