Avalanche Litany Jumping between minima in materials

An avalanche

- Is a jump between two metastable states in a disordered system.
- Starts from a weak spot, that triggers the weaker of its neighbors in a cascade that finally terminates.
- Often is fractal in time and space Avalanches come in all sizes (are scale invariant)
- Near the onset of flow or failure (POC)
- In cases 'self organized' to the onset of flow (SOC)
- In some entire phases (Generic scale invariance)

Fractal avalanche in 3D RFIM. Colors indicate time sequence.

Pandemic Outbreaks & the Random Field Ising Model

Pandemic

Infected +1, Not yet -1; Each sick person infects R_0 healthy neighbors Critical point $R_c = 1$.

Mean field RFIM Spins start -1. External field *H* triggers weakest spin, which triggers R_0 spins at random. Critical point H_c when $R_0=1$.

Lattice					
1	2	3	4	5	
6	7	8	9	10	
11	12	13	14	15	
16	17	18	19	20	
21	22	23	24	25	

Avalanche in 2D RFIM 13 weak spot, triggers shells of neighbors, temporal shape $V(t) = \{1, 3, 5, 4\}$ Size distribution P(S,R)

$$r = (R_c - R_0)/R_0$$

Universal exponents $\tau = 3/2, \ \sigma = \frac{1}{2}$

Scaling form $P(S,R) = S^{-\tau} \boxtimes (S^{\sigma} r)$

Universal scaling function $\mathfrak{R}(X) = \exp(-X^2/2)$

Avalanches in mean-field Ising expts

Avalanche temporal shape V(t|T) for fixed duration T predicted to scale as $\langle V \rangle (t/T, r) \sim T^{1-(1/\sigma vz)} \Im(t/T, r/T^w)$

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro R

Brazil! Papanikolaou, Bohn, Sommer, Durin, Zapperi

Singular corrections to scaling*

What happens farther from the critical point?

Scaling collapses are supposed to make the curves lie atop one another. Far from the critical point, they stop overlapping! Can we find a universal scaling prediction for these 'subdominant' corrections to scaling?

Shekhawat, Zapperi

Singular Corrections to Scaling: Irrelevant Variables Matter Too

Consider z(x, y, u) with x, y relevant (growing under coarse-graining), and u irrelevant (shrinking). (L and S shrink under coarse graining: x = 1/S and y = 1/L are relevant.) • RG flow equations:

$$dx/d\ell = ax$$
 $dy/d\ell = by$ $dz/d\ell = cz$ $du/d\ell = -du$.

• Invariant scaling combinations:

$$Y = y/x^{\beta\delta} = yx^{-b/a} \quad U = ux^{\omega} = ux^{d/a}.$$

- New universal critical exponent ω .
- Universal scaling function

$$z(x, y, u) = x^{\beta} \mathcal{Z}(Y, U) = x^{\beta} \mathcal{Z}(y/x^{\beta\delta}, u x^{\omega}),$$

• Because U becomes small as $x \to 0$, if $\mathcal{Z}(Y, U)$ is differentiable at U = 0, we can expand $z(x, y, u) \approx x^{\beta} \mathcal{Z}(Y, 0) + x^{\beta} U \mathcal{Z}^{[0,1]}(Y, 0) = x^{\beta} \mathcal{Z}(y/x^{\beta\delta}, 0) + x^{\beta+\omega} u \mathcal{Z}^{[0,1]}(y/x^{\beta\delta}, 0).$

• New term is subdominant as $x \to 0$. It is a universal correction to scaling, $u\mathcal{Z}^{[0,1]}$ with nonuniversal amplitude u.

Example: Crackling Fracture

Power-law fracture precursors

Fuse model for fracture

(Black) clusters of weak bonds break early, with a power law size distribution. Microfractures happen in bone, seashells; toughens

Shekhawat, Zapperi

Example: Crackling Fracture

Power-law fracture precursors

Leonardo DaVinci Larger is weaker:

- longer wires fail at smaller force
- thicker wires fail at smaller stress
- weakest portion dominates
- infinite system breaks at zero stress
- no precursor avalanches Precursors are a finite size effect: *finite size criticality*

Shekhawat, Zapperi

Crackling Fracture and irrelevant variables*

Shekhawat: Power-law fracture precursors

Percolation controls scaling New relevant perturbation β

2nd moment of avalanche sizes

These curves don't overlap! They depend on $U = u L^{-\Delta/\nu}$. They converge to $\mathcal{F}(\beta L^{1/\nu}, S L^{-1/\sigma\nu}, 0)$ as L diverges, with corrections (lines through data) $u S^{-\tau} L^{-\Delta/\nu} \mathcal{F}^{[0,0,1]}(\beta L^{1/\nu}, S L^{-1/\sigma\nu}, 0).$ Shekhawat, Zapperi

Dangerous Irrelevant Variables*

Suppose we have $z(x, y, u) = x^{\beta} \mathcal{Z}(Y, U) = x^{\beta} \mathcal{Z}(y/x^{\beta\delta}, u x^{\omega})$, with x and y relevant. u is irrelevant, but dangerous: $\mathcal{Z}(Y, U)$ is singular as $U \to 0$.

• Ising model (D > 4). The magnetization M(t, h, g) minimizes a quartic potential $V(m, t) = (t/2)m^2 + (g/4!)m^4$.

g is irrelevant, but dangerous: setting it to zero for $t = T - T_c < 0$ would force $M \to \pm \infty$. Thus $M(t, h, g) \sim t^{\beta} \mathcal{M}(H, G) = t^{\beta} \mathcal{M}(h/t^{\beta\delta}, gt^{\omega})$ is singular as $G \to 0$.

- Zero temperature fixed point. Glasses and disordered systems will have exponentially diverging time scales as they freeze if temperature is irrelevant: as one coarse grains, the effective barriers stay constant while the effective temperature decreases, leading to barrier crossing times which diverge as $\exp(A/(T - T_c)^{\theta\nu})$.
- Jamming. We shall see on Friday that jamming and rigidity percolation has an elastic lifetime at low frequencies that diverges when an irrelevant variable vanishes.

Fracture Roughness and Crossover Scaling*

The height-height correlation function that measures the roughness of a crack surface has two distinct universality classes, each with their own powerlaw growth $r^{2\zeta}$ with distance. The short-distance Larkin class is unstable to the long-distance depinning class, relevant variable λ :

 $C(r,\lambda) \sim r^{2\zeta_{lark}} \mathcal{O}_{lark}(r/\lambda^{-\phi})$ The long-distance depinning behavior is recapitulated as part of the universal function \mathcal{O}_{lark} of the unstable fixed point: $\mathcal{O}_{lark}(X) \sim X^{2(\zeta_{depin} - \zeta_{lark})}$

Chen, Zapperi

Normal forms, universality families, and *corrections to scaling*

Physical SystemNormal Form (hyperbolic)

Nature uses different coordinates than your model does.
Analytic corrections to scaling: changing variables gives rapid convergence
Normal form theory (dynamical systems applied to RG flow)
Depends on which bifurcation (hyperbolic, transcritical, pitchfork, ...)
Traditional power law scaling = hyperbolic bifurcation (includes singular corrections to scaling)
Lower critical dimensions, upper critical dimensions, 2D Ising, 2D RFIM, ...

Raju, Hayden, Liarte

Normal forms explain logs in UCD, exponentials in LCD, ...

Universality family	Systems	Normal form	Invariant scaling combinations	
Hyperbolic	3D Ising Model (t)	dt/dl = (1/ u)t	$Lt^{ u}$	
	3D RFIM(w)			
Pitchfork	6D Potts model (q)	$dw/dl = w^3 + Bw^5$	$Le^{1/(2w^2)}(1/w^2+B)^{-B/2}$	
Transcritical	4D Ising model (u, t) 2D NERFIM $(-w, S)$ 1D Ising model $(-t, h)$	$du/dl = -u^2 + Du^3$ $dt/dl = 2t - Atu$	$Le^{1/u-D} [1/(Du) - 1]^{D} = Ly^{D}$ $tL^{2} [W(yL^{1/D})/(1/(Du) - 1)]^{-A}$	
Resonance	2D Ising model	$df/dl=2f{-}t^2{-}L^{-2}$ $dt/dl=t{+}AL^{-1}$	$tL{+}A\log L$	
Higher Codimension	2D XY model	$dx/dl = -y^{2}[1+xf(x^{2})]$ $dy/dl = -xy$	$\begin{vmatrix} y^2 - 2\int_0^x s/[1 + sf(s^2)] ds \\ = y^2 - x^2 + [2f(0)/3] x^3 - [f(0)^2/2] x^4 + \mathcal{O}(x^5) \end{vmatrix}$	

Hayden, Raju

Normal form prediction for 2D RFIM avalanches

2D RFIM: disorder $w = (R - R_c)/R$ flow has no linear term:

 $dw/d\ell = w^2 + B_1 w^3 + B_2 w^4 + \dots$

We can change variables $w = \tilde{w} + b_1 \tilde{w}_2 + b_2 \tilde{w}_3 + b_3 \tilde{w}_4 + \dots$ to make

$$d\widetilde{w}/d\ell = \widetilde{w}^2 + B_1\widetilde{w}^3 + (B_1b_1 + b_1^2 + B_2 - b_2)\widetilde{w}^4 + \dots$$

We can make \widetilde{w}^n vanish for n > 3, but $B_1 \equiv B$ is fixed and universal. The avalanche size S has a linear term, but one nonlinear term involving w cannot be removed, so our transcritical normal form is

$$dw/d\ell = w^2 + Bw^3$$
 $dS/d\ell = -d_f S - CSw.$

The invariant scaling combination $\mathcal{S}(S, w) \neq Sw^{1/\sigma}$ is no longer a ratio of power laws!

$$\mathcal{S}(S,w) = S/\Sigma(w) = S\left((B+1/w)^{Bd_f-C}\exp(-d_f/w)\right).$$

Hayden, Raju

Avalanches and normal forms in 2D *Invariant scaling variable* for avalanche size cutoff *S*(*w*)

Avalanche size cutoff in lower critical dimension $\Sigma(w) \neq w^{-1/\sigma}$ $= \left((B+1/w)^{-Bd_f+C} \exp(d_f/w) \right)$

One decade in disorder, four decades in size!

Hayden, Raju