
Avalanche Litany
Jumping between minima in materials

An avalanche

• Is a jump between two metastable states in a 

disordered system.

• Starts from a weak spot, that triggers the weaker of 

its neighbors in a cascade that finally terminates.

• Often is fractal in time and space

Avalanches come in all sizes (are scale invariant)

• Near the onset of flow or failure (POC)

• In cases ‘self organized’ to the onset of flow (SOC)

• In some entire phases (Generic scale invariance)

Fractal avalanche in 3D RFIM. 

Colors indicate time sequence.



Pandemic Outbreaks & 
the Random Field Ising Model

Pandemic

Infected +1, Not yet -1; 

Each sick person infects R0

healthy neighbors

Critical point Rc = 1.

Mean field RFIM

Spins start -1. External field 

H triggers weakest spin, 

which triggers R0 spins at 

random. Critical point Hc

when R0=1.

Avalanche in 2D RFIM

13 weak spot, triggers

shells of neighbors, 

temporal shape

V(t) = {1, 3, 5, 4}

Kuntz

Size distribution P(S,R)

r = (Rc – R0)/R0

Universal exponents

t = 3/2, s = ½

Scaling form

P(S,R) = S-t P(Ss r)

Universal scaling function 

P(X) = exp(-X2/2)



Avalanches in mean-field Ising expts
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Avalanche temporal shape V(t|T) for fixed duration T predicted to scale as

<V>(t|T,r) ~ T1-(1/snz) V(t/T, r/T-w) 

Brazil! Papanikolaou, Bohn, Sommer, Durin, ZapperiCentro Brasileiro de Pesquisas Físicas, Rio de Janeiro R 



Singular corrections to scaling*
What happens farther from the critical point?

Shekhawat, Zapperi

Scaling collapses are supposed to make the curves lie atop one another. Far from the critical point, they stop 

overlapping! Can we find a universal scaling prediction for these ‘subdominant’ corrections to scaling?

Avalanche Size 

Distribution Scaling 

Collapse

Fracture 

Precursors



Singular Corrections to Scaling:
Irrelevant Variables Matter Too





Example: Crackling Fracture
Power-law fracture precursors

Fuse model for fracture

Microfractures happen in bone, seashells; 
toughens 

(Black) clusters of weak 
bonds break early, with a 
power law size distribution. 

Shekhawat, Zapperi



Example: Crackling Fracture
Power-law fracture precursors

Leonardo DaVinci
Larger is weaker:
• longer wires fail at smaller force
• thicker wires fail at smaller stress
• weakest portion dominates
• infinite system breaks at zero stress
• no precursor avalanches
Precursors are a finite size effect: 
finite size criticality

Shekhawat, Zapperi

Some Remarks on the History of Fracture Mechanics 197

a cb

Fig. 3 a) Leonardo da Vinci, b) Leonardo’s fracture test setup, reprinted from [21], c)

Leonardo’s sketch on bending, Codex Madrid page 84 verso [34]

Evidence of a scientific consideration of fracture can be found in the early Re-

naissance. It is well known that many inventions were anticipated by Leonardo da

Vinci (1452–1519). In Mechanics, for example, he stated scaling laws for the bend-

ing strength and columns. Long before Jacob Bernoulli (1655–1705) but without

any formulas he had a correct picture about the deformation kinematics of beams

[25], Fig. 3. He also was the first who described a fracture test for metal wires in

his notes. In the Codex Atlanticus, folio 222, a sketch of the test with a detailed

description can be found which is worth to be quoted (for the translation see [21]

or [32]): The object of this test is to find the load an iron wire can carry. Attach an

iron wire 2 braccia long (remark: 1 braccia = approx. 60 cm) to something that will

firmly support it, then attach a basket or any similar container to the wire and feed

into the basket some fine sand through a small hole placed at the end of a hopper.

A spring is fixed so that it will close the hole as soon as the wire breaks. The basket

is not upset while falling, since it falls through a very short distance. The weight

of the sand and the location of of fracture of the wire are to be recorded. The test

is repeated several times to check the results. Then a wire of one-half the previous

length is tested and the additional weight it carries is recorded; the a wire of one-

fourth length is tested and so forth, noting each time the ultimate strength and the

location of the fracture. It is interesting to note that Leonardo knew that the strength

of a metal wire increases with decreasing length. This size effect is the result of

the decreasing number of defects (e.g. deviations of the cross section) which were

clearly visible in metal wires at that time.

Next, Galileo Galilei (1564–1642) must be mentioned. He is regarded not only

as the founder of modern Mechanics as we understand it but he also established a

seminal way of scientific thinking. He delivered many contributions to mechanics:

well known is the so-called Dialog [7] which led to the famous court case of the

Roman Catholic Church. More interesting regarding fracture are the Discorsi [6]

which Galilei has written during his house arrest in Arcetri. On the “second day”



Crackling Fracture and irrelevant variables*
Shekhawat: Power-law fracture precursors

Percolation controls scaling

New relevant perturbation b

Avalanches

Percolation
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Large disorder: ‘avalanches’ sizes S=1

Small disorder: one big avalanche

Universal crossover

P(S) ~ S-t F (b L1/n, S L-1/sn, u L-D/n)

These curves don’t overlap! They depend on U = u L-D/n. 

They converge to F (b L1/n, S L-1/sn, 0)
as L diverges, with corrections (lines through data)

u S-t L-D/n F [0,0,1](b L1/n, S L-1/sn, 0).

2nd moment of avalanche sizes

Shekhawat, Zapperi



Dangerous Irrelevant Variables*



Fracture Roughness and Crossover Scaling*
The height-height correlation function 

that measures the roughness of a crack 

surface has two distinct universality 

classes, each with their own power-

law growth r2z with distance. The 

short-distance Larkin class is unstable 

to the long-distance depinning class, 

relevant variable l:

C(r,l)~ r2z lark Clark(r/l-f)

The long-distance depinning behavior 

is recapitulated as part of the universal 

function Clark of the unstable fixed 

point: Clark(X)~X2(z depin -z lark )

Chen, Zapperi
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Normal forms, 
universality families, and 

corrections to scaling

Nature uses different coordinates than your model does.

Analytic corrections to scaling: changing variables gives rapid convergence

Normal form theory (dynamical systems applied to RG flow)

Depends on which bifurcation (hyperbolic, transcritical, pitchfork, …)

Traditional power law scaling = hyperbolic bifurcation (includes singular corrections to scaling)

Lower critical dimensions, upper critical dimensions, 2D Ising, 2D RFIM, …

Physical System Normal Form (hyperbolic)
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Normal forms explain logs in UCD, 
exponentials in LCD, …

Hayden, Raju



Normal form prediction for 2D RFIM avalanches

Hayden, Raju





Avalanches and normal forms in 2D 
Invariant scaling variable for avalanche size cutoff S(w)

One decade in disorder, four decades in size!

Transcritical

Avalanche Size Distribution

Avalanche size cutoff in lower critical dimension

Hayden, Raju


