Scaling functions at ri\gidity transitions
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Jamming, theory and experiment (Pouliguen)
Bulk modulus jumps, shear modulus grows from zero
Expt: Complex, multiscale, jerky flow near onset
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LInear response

Correlations, fluctuations, dissipation

a Expand about equilibrium\

* How things wiggle:
Correlations C(x-x’, t-t°), S(Q,
)

* How things evolve:

Greens function G(q, o)

« How things move when
kicked: Susceptibility #(q, )

o Moduli and yielding from

2= Rely]

o Dissipation, viscosity from

= Im[y]
e ime y

Deep relationships

e Onsager regression hypothesis:
C(k,t) =Gk, t)C(k,0)
C(x,t)= [dx'G(x — x/,t)C(x/,0)
e Susceptibility
X(k,w)
e Power dissipated:
plw) = @I /2X" ()

e Fluctuation-response theorem, static susceptibility:

Yo(k) = 8C(k,0)

- X,<k7 w) + iX”<k7 w)

e Fluctuation-response theorem, uniform susceptibility:

<<S>§pace> - kBT%0(0>/V
[sing model x o< (M?) — (M)?
~ specific heat ¢, = (1/NkgT?)((E?) —
e Fluctuation-dissipation theorem
X'(w) = (Bw/2)C(w)
e Kramers—Kronig relations (from Caubahty)
X(w) = (2/) Jy" x!(w )( ’/( —w?)) dw’
X' (w) = QW/W I x w? — w?) dw’
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Materials Experiments

« Structure from elastic
scattering: X-rays, neutron,
acoustic, optical

* Dissipation, time
dependence from inelastic
scattering

* Pulse-probe experiments
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What Is an elastic material?
Deforming X’ = X + u(x)

Continuum elastic potential energy Dynamics
e Gradient expansion: small g e Described by Greens function G
e Translations u — u + ug: depends on Vu = d;u; e Long time scales: low frequency w
e Rotations u — R - u, depends on e If energy conserved,

Ez'j = (1/2) (ﬁzu] -+ 5’]uz) gq = (Dq — ]1w2>_1
e Dynamical matrix: (1/2) Y D;ju€;j€ e [f overdamped (colloids in water), drag -,
e Homogeneous, isotropic Gy = (Dy — i *yw]l)_l
2
l? = (A+2u)€; + peijei; o [f damped springs (momentum conserved):
Df{ = (A + 2#)(]2@@ + ,Uq2(5ij — 4iq;) Kelvin damping, Maxwell damping . ..

e Bulk B=\A+2u/D, shear G = p



What will our theory predict?

Example: Longitudinal Y Y _137
susceptibility near B f=y—2v  B=(0L7/0Q)/(2Q)
jamming Cl=m=7—2+2p Z=(1/0)In|B]
S 2+z2v—v S = (1/Q) Im[P]
XL _ q/q w/wo 5J/5o)
— =0 VL ) )
X0 s <\5RP!” [OrP[**" |ORP|?
where (for no damping) v = 1, 22: 1, ¢ =1, and 1 Basically all linear
@ 2] ) response guantities are
L(Q,Q W)= — ()
@ ) [1 +W/(V1—-Q2£1) related

The bulk modulus B, the viscosity (, the density response
II, and the correlation function S, are given in the table.
For example, the correlation function

S/SO — ‘5RP’(2+Z)V_78(Q7 Qa W)



Emergent continuum rigidity

It seems possible that any uniform isotropic elastic medium must be de-
scribable using frequency-dependent elastic moduli A(w) and p(w) at long
wavelengths and low frequencies. Symmetries, gradient expansions, and low
frequency approximations would tell us that the emergent theory should have
the same form for the dynamical matrix
A+ 2p)e; + pe = (A + 200G + pg’ (65 — 4idy)-

It so, a glasse, gel, foam, or sandpile may have local fluctuations on many
time and length scales, but above their correlation length and time scales we
can describe them just with A\(w) and p(w).

Just because there is a continuum theory doesn’t mean that it is a mean-
field theory! Our calculation makes sense because jamming is above its upper
critical dimension (D = 2): there are fluctuations on all scales, but they are
too weak to change the mean-field behavior.



Are we describing glasses?

Our particular calculations of A(w) and p(w) do not describe the glass tran-
sition.

e Melted glasses resist compression, and our floppy states do not.

e Our states have viscosities ( ~ (p — p.)*, while glasses diverge roughly like
C~exp(A/(T —T,)).

e Mode coupling theory for glasses predicts properties similar to ours, but
need to be replaced near the transition with Gardiner transitions, ...

But many properties of glasses are nicely described by the jamming tran-
sition (like the Boson peak). The attractive interactions between atoms are
not big enough to wipe out these features except near the transition.



