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discussed in [1], this picture of correlated grains motion

gives a way to link the different flow regimes observed

with granular materials: the slow quasistatic regimes

would correspond to strongly correlated motions whereas

the kinetic collisional regime would correspond to a

regime where spatial correlations vanish. To our knowl-

edge, no experimental evidence exists to support this

description.

Whereas correlations are studied in details in other

disordered systems like glasses [16,17] or foams [18–

20], only a few studies address the question of correlated

motions in granular flows. Most of them concern the slow

quasistatic regime where long range correlations have

been observed but no characteristic length has been evi-

denced [21,22]. In the dense flow regime, Bonamy et al.

[23] have investigated correlated motions in a rotating

drum. Their analysis shows that clusters of different sizes

exist but that no characteristic length scale emerges. The

purpose of this Letter is to experimentally study spatial

correlations in the inclined plane configuration and check

if the deposit thickness observed can indeed be inter-

preted as an indirect measure of the correlation length

as suggested in [12].

The experimental setup is presented in the inset of

Fig. 1 and is the same as the one used in [13]. A 2 m

long and 70 cm wide plane is made rough by gluing

particles on it and can be inclined from horizontal at an

angle . The material (glass beads 0.5 mm in diameter)

flows from a hopper, the flow rate being controlled by the

opening of the gate. The inclination and the thickness h
of the layer are the two control parameters. Steady uni-

form flows are obtained with this device in a finite range

of inclination and thickness as shown in Fig. 1. The flow

threshold delimited by the curve hstop has been deter-

mined by measuring the deposit thickness once the flow

stops. In order to study correlated motions, we have

chosen to precisely study the individual grain motion at

the free surface using a high speed video camera placed

above the plane. From movies recorded between 500 and

1000 frames per second, we measure the velocity of the

particles using a precise particle tracking algorithm. The

mean free surface velocity Us ~ex is computed by averaging

over 1 s of flow and over all the detected particles. It is

then subtracted to all individual particle velocities to get

the instantaneous fluctuating velocity field. For each time

t of our movie, we then have the position xi ; yi of

particle i , and its velocity relative to the mean free

surface motion ui
x; ui

y . Examples of fluctuating velocity

fields are presented in Figs. 2(a) and 2(b) for two differ-

ent inclinations. Figure 2(a) obtained at low inclination

clearly exhibits correlated motions. By contrast, the ve-

locity field is much more disordered with less correlations

at high inclination as shown in Fig. 2(b). Before studying

spatial correlations, we first analyze the amplitude of the

fluctuations by computing the mean fluctuating velocity

V hui
x

2 ui
y

2i 1=2 averaged over the particles and

over 1 s of flow. In Fig. 3, the dimensionless fluctuating

velocity amplitude V= gd
p

is plotted as a function of the

mean shear rate, i.e., Us=h g=d
p

. All the data obtained for

different inclinations and different flow thicknesses col-5 10 15 20 25 30
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submitted to compressive external forces F1 (along the x
axis on the figure) and F2 F1 (along the y axis). Stress

components s 11 F1 L2 and s 22 F2 L1 are kept

constant, equal to p , while the system lengths along direc-

tions 1 and 2 (L1 and L2) decrease. To produce a dense,

isostatic equilibrium state, we use the “lubricated granular

dynamics” method of Refs. [7,13]. Then, the initial,

reference configuration of the biaxial experiment is ready:

F2 p 1 q L
0
1 is gradually increased while F1 pL

0
2

stays constant; strain components are defined as the

relative decrease of lengths L i 1# i # 2, with reference to

their initial values L
0
i 1# i # 2 as ei i 2 DL i L

0
i . One also

defines the volumetric [14] strain as ey 2 e11 2 e22.

We use units such that p 1.

As our main result here, we obtained the e q curves in

the thermodynamic limit, as loading parameter q increases

monotonically, at constant p . Let us first describe the

GQSM procedure. One starts from an equilibrium state

in which the force-carrying structure is isostatic. This

means that the equilibrium conditions are sufficient to

compute all contact force values, on the one hand (the

structure is devoid of hyperstaticity, it is not “over-

braced” or “overconstrained” [10]), and that the force-

carrying structure is rigid (devoid of mechanisms or

“floppy modes” [12]), on the other hand. The first of these

two properties stems from the condition that two grains

need to be exactly in contact to transmit a force to one

another [11,12], and cannot interpenetrate. It entails that

force values, once equilibrium positions are known, are

geometrically determined, all material properties being

irrelevant in the limit of rigid grains. The second property

is satisfied, for stability reasons, because the grains are cir-

cular and contacts do not withstand tension [12]. It entails

that an assembly of rigid disks will not deform at all until

some initially active contact opens. This cannot occur as

long as contact forces are compressive, since this would

require the potential energy to increase from equilibrium.

As soon as one contact force vanishes, this contact will

open [12], because the resulting motion corresponds to an
instability. Hence, the following algorithm.

(i) At equilibrium, as q increases from its initial value

q0, the contact forces depend linearly on q (equilibrium

equations are linear). When q reaches some value q0 1
dq, the force vanishes in one contact, say l0.

(ii) Open l0, all other contacts being maintained. Be-

cause of isostaticity, this entirely determines the initial di-
rection of motion for the whole structure. Keep moving

the grains with the same prescription.

(iii) When another contact, say l1, closes, the new con-

tact structure (the old one, minus l0, plus l1) is isostatic and

may carry the load with geometrically determined contact
forces. If there is no traction, a new equilibrium state has

been found: go back to step (i). Otherwise, pick up the

largest traction, call the corresponding contact l0, and go

back to step (ii).

This procedure determines a series of equilibrium con-

figurations that are separated by rearrangements occurring

for discrete values of q. The strain versus stress curve is a

staircase (see Fig. 2). As long as the same contacts carry

the load, the system does not deform; as soon as a rearrang-

ing event occurs, strain variables jump to the values cor-

responding to the next equilibrium configuration. This

algorithm clearly involves, in steps (ii) and (iii), an ar-

bitrary ingredient: the prescription that contacts open one

by one. The main merit of GQSM, however, is that it does

not introduce parameters other than geometric ones.

We now focus on the rise of e22 with q, close to the

origin, and ask whether the staircase approaches a smooth

curve in the thermodynamic limit. (Its initial slope, if

finite, would be the effective compliance of the material.)

To do so, one studies the statistics of stress (dq) and strain

(de22, de11) steps.

Successive dq and de values are found to be inde-

pendent, and the width dq of a stability interval is not

correlated to the following strain steps. Throughout the

investigated q interval, the probability distributions of in-

crements dq, de22, and dW pdey 2 qde22, which is

the variation in potential energy corresponding to the cur-

rent load, do not appreciably change [15]. No significant

difference between samples is observed either.

Both q and e22 values reached at a given stage can thus

be regarded as sums of equidistributed independent ran-

dom increments. The distribution of stress increments dq
is displayed in Fig. 3. It decays exponentially for large

dq, and is shifted to smaller and smaller values as N in-

creases, so that the probability distribution of the rescaled

increment dqNa is size independent. We denote as dq0 its

average. The exponent can be estimated as a 1.16 6
0.04. Stability intervals shrink to zero as N increases: in

the thermodynamic limit, any macroscopic load variation

entails some motion of the grains. This property of pack-

ings of frictionless rigid grains, known as fragility [9,12],

is unambiguously established by our simulations. The

value of a should be related to the shape of the force

distribution for small values, and to the varying sensitivity

FIG. 2. “Axial” strain e22 versus deviator q in one sample with
N 4900.
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Figure 7: Sketch of the jamming t ransit ion for repulsive spheres and ellipses. (a,b,c,d) Both systems

transit ion from a fluid to a solid as the density passes some threshold, noted φS for spheres and φE for

ellipses. (e) For denser packings, the potent ial energy U becomes finite. (f ) The rat io N∆ / N between the

number of part icles in contact N∆ (corresponding to unsat isfied const raints) and the number of degrees of

freedom N jumps discont inuously to a finite value, which is unity for spheres but smaller for ellipses. (g,h)

This di↵ erence has dramat ic consequence on the energy landscape, in part icular on the spect rum of the

Hessian. In both cases, the spect rum becomes non-zero at jamming, but it displays a delta funct ion with

finite weight for ellipses (indicat ing st rict ly flat direct ions), followed by a gap with no eigenvalues, followed

by a cont inuous spectrum (h, full line). For spheres, there is no delta funct ion nor gap (g, full line). As one

enters the jammed phase, in both cases a characterist ic scale λ ⇠
p

U appears in the spect rum (g and h,

dot ted lines). From [8].

has many flat direct ions. It corresponds to the situat ions depicted in Fig.7A,C.

There are two universality classes for jamming, leading to dist inct propert ies for the curvature of the

landscape (i.e. the spect rum of the Hessian) [68–73], for the st ructure of the packing obtained [74–77]

and for the dynamical response to a perturbat ion [78, 79]. Spheres and ellipses fall in dist inct classes as

illust rated in Fig.7. More generally, the jamming transit ion occurs generically in sat isfiability problems

with cont inuous degrees of freedom (it can be defined with discrete degrees of freedom [80], but then di↵ ers

qualitat ively; in part icular, the present discussion does not apply to the discrete case). It occurs in the

percept ron [81–83] but also for deep nets [8,61].

We will recall below a geometric argument int roduced in [8] determining the universality class of the

jamming transit ion. For deep nets, jamming belongs to the universality class of ellipses [8,61]. The spect rum

of the loss near the jamming t ransit ion displays zero modes, a gap and a cont inuous part , as measured in

Fig8.C. Another implicat ion of this analogy is the number N∆ of data whose margin is smaller than unity

after learning, which contribute to the loss. These data are conceptually similar to the support vectors

cent ral to SVM algorithms. For part icles, N∆ corresponds the number of pairs of part icles st ill overlapping

after energy minimizat ion. As illust rated in Fig8.B, N∆ / N jumps from zero to a value st rict ly smaller than

one at jamming where the loss becomes posit ive, precisely as ellipses do.
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discussed in [1], this picture of correlated grains motion

gives a way to link the different flow regimes observed

with granular materials: the slow quasistatic regimes

would correspond to strongly correlated motions whereas

the kinetic collisional regime would correspond to a

regime where spatial correlations vanish. To our knowl-

edge, no experimental evidence exists to support this

description.

Whereas correlations are studied in details in other

disordered systems like glasses [16,17] or foams [18–

20], only a few studies address the question of correlated

motions in granular flows. Most of them concern the slow

quasistatic regime where long range correlations have

been observed but no characteristic length has been evi-

denced [21,22]. In the dense flow regime, Bonamy et al.

[23] have investigated correlated motions in a rotating

drum. Their analysis shows that clusters of different sizes

exist but that no characteristic length scale emerges. The

purpose of this Letter is to experimentally study spatial

correlations in the inclined plane configuration and check

if the deposit thickness observed can indeed be inter-

preted as an indirect measure of the correlation length

as suggested in [12].

The experimental setup is presented in the inset of

Fig. 1 and is the same as the one used in [13]. A 2 m

long and 70 cm wide plane is made rough by gluing

particles on it and can be inclined from horizontal at an

angle . The material (glass beads 0.5 mm in diameter)

flows from a hopper, the flow rate being controlled by the

opening of the gate. The inclination and the thickness h
of the layer are the two control parameters. Steady uni-

form flows are obtained with this device in a finite range

of inclination and thickness as shown in Fig. 1. The flow

threshold delimited by the curve hstop has been deter-

mined by measuring the deposit thickness once the flow

stops. In order to study correlated motions, we have

chosen to precisely study the individual grain motion at

the free surface using a high speed video camera placed

above the plane. From movies recorded between 500 and

1000 frames per second, we measure the velocity of the

particles using a precise particle tracking algorithm. The

mean free surface velocity Us ~ex is computed by averaging

over 1 s of flow and over all the detected particles. It is

then subtracted to all individual particle velocities to get

the instantaneous fluctuating velocity field. For each time

t of our movie, we then have the position xi ; yi of

particle i , and its velocity relative to the mean free

surface motion ui
x; ui

y . Examples of fluctuating velocity

fields are presented in Figs. 2(a) and 2(b) for two differ-

ent inclinations. Figure 2(a) obtained at low inclination

clearly exhibits correlated motions. By contrast, the ve-

locity field is much more disordered with less correlations

at high inclination as shown in Fig. 2(b). Before studying

spatial correlations, we first analyze the amplitude of the

fluctuations by computing the mean fluctuating velocity

V hui
x

2 ui
y

2i 1=2 averaged over the particles and

over 1 s of flow. In Fig. 3, the dimensionless fluctuating

velocity amplitude V= gd
p

is plotted as a function of the

mean shear rate, i.e., Us=h g=d
p

. All the data obtained for
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submitted to compressive external forces F1 (along the x
axis on the figure) and F2 F1 (along the y axis). Stress

components s 11 F1 L2 and s 22 F2 L1 are kept

constant, equal to p , while the system lengths along direc-

tions 1 and 2 (L1 and L2) decrease. To produce a dense,

isostatic equilibrium state, we use the “lubricated granular

dynamics” method of Refs. [7,13]. Then, the initial,

reference configuration of the biaxial experiment is ready:

F2 p 1 q L
0
1 is gradually increased while F1 pL

0
2

stays constant; strain components are defined as the

relative decrease of lengths L i 1# i # 2, with reference to

their initial values L
0
i 1# i # 2 as ei i 2 DL i L

0
i . One also

defines the volumetric [14] strain as ey 2 e11 2 e22.

We use units such that p 1.

As our main result here, we obtained the e q curves in

the thermodynamic limit, as loading parameter q increases

monotonically, at constant p . Let us first describe the

GQSM procedure. One starts from an equilibrium state

in which the force-carrying structure is isostatic. This

means that the equilibrium conditions are sufficient to

compute all contact force values, on the one hand (the

structure is devoid of hyperstaticity, it is not “over-

braced” or “overconstrained” [10]), and that the force-

carrying structure is rigid (devoid of mechanisms or

“floppy modes” [12]), on the other hand. The first of these

two properties stems from the condition that two grains

need to be exactly in contact to transmit a force to one

another [11,12], and cannot interpenetrate. It entails that

force values, once equilibrium positions are known, are

geometrically determined, all material properties being

irrelevant in the limit of rigid grains. The second property

is satisfied, for stability reasons, because the grains are cir-

cular and contacts do not withstand tension [12]. It entails

that an assembly of rigid disks will not deform at all until

some initially active contact opens. This cannot occur as

long as contact forces are compressive, since this would

require the potential energy to increase from equilibrium.

As soon as one contact force vanishes, this contact will

open [12], because the resulting motion corresponds to an
instability. Hence, the following algorithm.

(i) At equilibrium, as q increases from its initial value

q0, the contact forces depend linearly on q (equilibrium

equations are linear). When q reaches some value q0 1
dq, the force vanishes in one contact, say l0.

(ii) Open l0, all other contacts being maintained. Be-

cause of isostaticity, this entirely determines the initial di-
rection of motion for the whole structure. Keep moving

the grains with the same prescription.

(iii) When another contact, say l1, closes, the new con-

tact structure (the old one, minus l0, plus l1) is isostatic and

may carry the load with geometrically determined contact
forces. If there is no traction, a new equilibrium state has

been found: go back to step (i). Otherwise, pick up the

largest traction, call the corresponding contact l0, and go

back to step (ii).

This procedure determines a series of equilibrium con-

figurations that are separated by rearrangements occurring

for discrete values of q. The strain versus stress curve is a

staircase (see Fig. 2). As long as the same contacts carry

the load, the system does not deform; as soon as a rearrang-

ing event occurs, strain variables jump to the values cor-

responding to the next equilibrium configuration. This

algorithm clearly involves, in steps (ii) and (iii), an ar-

bitrary ingredient: the prescription that contacts open one

by one. The main merit of GQSM, however, is that it does

not introduce parameters other than geometric ones.

We now focus on the rise of e22 with q, close to the

origin, and ask whether the staircase approaches a smooth

curve in the thermodynamic limit. (Its initial slope, if

finite, would be the effective compliance of the material.)

To do so, one studies the statistics of stress (dq) and strain

(de22, de11) steps.

Successive dq and de values are found to be inde-

pendent, and the width dq of a stability interval is not

correlated to the following strain steps. Throughout the

investigated q interval, the probability distributions of in-

crements dq, de22, and dW pdey 2 qde22, which is

the variation in potential energy corresponding to the cur-

rent load, do not appreciably change [15]. No significant

difference between samples is observed either.

Both q and e22 values reached at a given stage can thus

be regarded as sums of equidistributed independent ran-

dom increments. The distribution of stress increments dq
is displayed in Fig. 3. It decays exponentially for large

dq, and is shifted to smaller and smaller values as N in-

creases, so that the probability distribution of the rescaled

increment dqNa is size independent. We denote as dq0 its

average. The exponent can be estimated as a 1.16 6
0.04. Stability intervals shrink to zero as N increases: in

the thermodynamic limit, any macroscopic load variation

entails some motion of the grains. This property of pack-

ings of frictionless rigid grains, known as fragility [9,12],

is unambiguously established by our simulations. The

value of a should be related to the shape of the force

distribution for small values, and to the varying sensitivity

FIG. 2. “Axial” strain e22 versus deviator q in one sample with
N 4900.

3629

µ

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 7: Sketch of the jamming t ransit ion for repulsive spheres and ellipses. (a,b,c,d) Both systems

transit ion from a fluid to a solid as the density passes some threshold, noted φS for spheres and φE for

ellipses. (e) For denser packings, the potent ial energy U becomes finite. (f ) The rat io N∆ / N between the

number of part icles in contact N∆ (corresponding to unsat isfied const raints) and the number of degrees of

freedom N jumps discont inuously to a finite value, which is unity for spheres but smaller for ellipses. (g,h)

This di↵ erence has dramat ic consequence on the energy landscape, in part icular on the spect rum of the

Hessian. In both cases, the spect rum becomes non-zero at jamming, but it displays a delta funct ion with

finite weight for ellipses (indicat ing st rict ly flat direct ions), followed by a gap with no eigenvalues, followed

by a cont inuous spectrum (h, full line). For spheres, there is no delta funct ion nor gap (g, full line). As one

enters the jammed phase, in both cases a characterist ic scale λ ⇠
p

U appears in the spect rum (g and h,

dot ted lines). From [8].

has many flat direct ions. It corresponds to the situat ions depicted in Fig.7A,C.

There are two universality classes for jamming, leading to dist inct propert ies for the curvature of the

landscape (i.e. the spect rum of the Hessian) [68–73], for the st ructure of the packing obtained [74–77]

and for the dynamical response to a perturbat ion [78, 79]. Spheres and ellipses fall in dist inct classes as

illust rated in Fig.7. More generally, the jamming transit ion occurs generically in sat isfiability problems

with cont inuous degrees of freedom (it can be defined with discrete degrees of freedom [80], but then di↵ ers

qualitat ively; in part icular, the present discussion does not apply to the discrete case). It occurs in the

percept ron [81–83] but also for deep nets [8,61].

We will recall below a geometric argument int roduced in [8] determining the universality class of the

jamming transit ion. For deep nets, jamming belongs to the universality class of ellipses [8,61]. The spect rum

of the loss near the jamming t ransit ion displays zero modes, a gap and a cont inuous part , as measured in

Fig8.C. Another implicat ion of this analogy is the number N∆ of data whose margin is smaller than unity

after learning, which cont ribute to the loss. These data are conceptually similar to the support vectors

cent ral to SVM algorithms. For part icles, N∆ corresponds the number of pairs of part icles st ill overlapping

after energy minimizat ion. As illust rated in Fig8.B, N∆ / N jumps from zero to a value st rict ly smaller than

one at jamming where the loss becomes posit ive, precisely as ellipses do.
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discussed in [1], this picture of correlated grains motion

gives a way to link the different flow regimes observed

with granular materials: the slow quasistatic regimes
would correspond to strongly correlated motions whereas

the kinetic collisional regime would correspond to a

regime where spatial correlations vanish. To our knowl-

edge, no experimental evidence exists to support this

description.

Whereas correlations are studied in details in other

disordered systems like glasses [16,17] or foams [18–

20], only a few studies address the question of correlated

motions in granular flows. Most of them concern the slow

quasistatic regime where long range correlations have

been observed but no characteristic length has been evi-

denced [21,22]. In the dense flow regime, Bonamy et al.

[23] have investigated correlated motions in a rotating

drum. Their analysis shows that clusters of different sizes

exist but that no characteristic length scale emerges. The

purpose of this Letter is to experimentally study spatial

correlations in the inclined plane configuration and check

if the deposit thickness observed can indeed be inter-

preted as an indirect measure of the correlation length

as suggested in [12].

The experimental setup is presented in the inset of

Fig. 1 and is the same as the one used in [13]. A 2 m

long and 70 cm wide plane is made rough by gluing

particles on it and can be inclined from horizontal at an

angle . The material (glass beads 0.5 mm in diameter)

flows from a hopper, the flow rate being controlled by the

opening of the gate. The inclination and the thickness h
of the layer are the two control parameters. Steady uni-

form flows are obtained with this device in a finite range

of inclination and thickness as shown in Fig. 1. The flow

threshold delimited by the curve hstop has been deter-

mined by measuring the deposit thickness once the flow

stops. In order to study correlated motions, we have

chosen to precisely study the individual grain motion at

the free surface using a high speed video camera placed

above the plane. From movies recorded between 500 and

1000 frames per second, we measure the velocity of the

particles using a precise particle tracking algorithm. The

mean free surface velocity Us ~ex is computed by averaging

over 1 s of flow and over all the detected particles. It is

then subtracted to all individual particle velocities to get

the instantaneous fluctuating velocity field. For each time

t of our movie, we then have the position xi ; yi of

particle i , and its velocity relative to the mean free

surface motion ui
x; ui

y . Examples of fluctuating velocity

fields are presented in Figs. 2(a) and 2(b) for two differ-

ent inclinations. Figure 2(a) obtained at low inclination

clearly exhibits correlated motions. By contrast, the ve-

locity field is much more disordered with less correlations

at high inclination as shown in Fig. 2(b). Before studying

spatial correlations, we first analyze the amplitude of the

fluctuations by computing the mean fluctuating velocity

V hui
x

2 ui
y

2i 1=2 averaged over the particles and

over 1 s of flow. In Fig. 3, the dimensionless fluctuating

velocity amplitude V= gd
p

is plotted as a function of the

mean shear rate, i.e., Us=h g=d
p

. All the data obtained for

different inclinations and different flow thicknesses col-5 10 15 20 25 30
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gives a way to link the different flow regimes observed

with granular materials: the slow quasistatic regimes

would correspond to strongly correlated motions whereas

the kinetic collisional regime would correspond to a

regime where spatial correlations vanish. To our knowl-

edge, no experimental evidence exists to support this

description.

Whereas correlations are studied in details in other

disordered systems like glasses [16,17] or foams [18–

20], only a few studies address the question of correlated

motions in granular flows. Most of them concern the slow

quasistatic regime where long range correlations have

been observed but no characteristic length has been evi-

denced [21,22]. In the dense flow regime, Bonamy et al.

[23] have investigated correlated motions in a rotating

drum. Their analysis shows that clusters of different sizes

exist but that no characteristic length scale emerges. The

purpose of this Letter is to experimentally study spatial

correlations in the inclined plane configuration and check

if the deposit thickness observed can indeed be inter-

preted as an indirect measure of the correlation length

as suggested in [12].

The experimental setup is presented in the inset of

Fig. 1 and is the same as the one used in [13]. A 2 m

long and 70 cm wide plane is made rough by gluing

particles on it and can be inclined from horizontal at an

angle . The material (glass beads 0.5 mm in diameter)

flows from a hopper, the flow rate being controlled by the

opening of the gate. The inclination and the thickness h
of the layer are the two control parameters. Steady uni-

form flows are obtained with this device in a finite range

of inclination and thickness as shown in Fig. 1. The flow

threshold delimited by the curve hstop has been deter-

mined by measuring the deposit thickness once the flow

stops. In order to study correlated motions, we have

chosen to precisely study the individual grain motion at

the free surface using a high speed video camera placed

above the plane. From movies recorded between 500 and

1000 frames per second, we measure the velocity of the

particles using a precise particle tracking algorithm. The

mean free surface velocity Us ~ex is computed by averaging

over 1 s of flow and over all the detected particles. It is

then subtracted to all individual particle velocities to get

the instantaneous fluctuating velocity field. For each time

t of our movie, we then have the position xi ; yi of

particle i , and its velocity relative to the mean free

surface motion ui
x; ui

y . Examples of fluctuating velocity

fields are presented in Figs. 2(a) and 2(b) for two differ-

ent inclinations. Figure 2(a) obtained at low inclination

clearly exhibits correlated motions. By contrast, the ve-

locity field is much more disordered with less correlations

at high inclination as shown in Fig. 2(b). Before studying

spatial correlations, we first analyze the amplitude of the

fluctuations by computing the mean fluctuating velocity

V hui
x

2 ui
y

2i 1=2 averaged over the particles and

over 1 s of flow. In Fig. 3, the dimensionless fluctuating

velocity amplitude V= gd
p
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mean shear rate, i.e., Us=h g=d
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Lattice CPA

Liarte, Lubensky, Mao

= p +(1−p)



Continuum 
CPA

The lattice calculation is complicated, and deriving the scaling form is difficult due to the lattice 

anisotropy and shape of the Brillouin zone. Jamming is isotropic. Why not do a CPA by 

punching circular holes in a continuum elastic sheet? Two kinds of holes: one that zeros l, and 

one that zeros m.

We set a maximum wavevector |q| < qD that is circularly symmetric. The CPA dynamical matrix 

is that of an isotropic elastic sheet, which we decompose into Dq
l and Dq

m, defining the two 

integrals hm and hl, governing the self-consistent equations for the two moduli…

Thornton, Liarte

= p +(1−p)

The dynamical matrix and the Greens function are given in terms of l(w) and m(w)



Reminder: universal scaling function for 
mean-field Ising: finding universal parts

Thornton, Liarte

(0) Find mean-field theory as self-consistent equation:

(1) Change variables to t = Tc-T with Tc=z.

(2) Substitute scaling variables and exponents: m/m0 = tb M, h/h0 = tbd H, b = ½, d = 3.

(3) Keep only the leading order in t. Derive scaling form m(t,h) = tbM(H) = tb M(h/tbd):

M = H – M 3/3 (Universal scaling function relation)



(0) Self-consistent equations: 3D
The integrals for ha can be done exactly. (Not yet in Mathematica.) In three dimensions, 

Thornton, Liarte



Universal scaling function for 3D Jamming

Thornton, Liarte

Pulling out the universal parts
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Leading order scaling: 3D Jamming

At left we plot the imaginary part of M(W,0) and L(W, 0), 
together with M(W,Z) and L(W, Z) with Z = 0.05. Even 

though Z is irrelevant, it makes an important qualitative 

change in the prediction – it gives our elastic constants an 

imaginary part at low frequency. Z is a dangerous

irrelevant variable.

Thornton, Liarte

m/ m1 = M(W,W,0) |dRP|
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Leading order scaling: 3D RP

Thornton, Liarte

l ~ m ~ M(W) |dRP|
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Predictions? Example: the Boson Peak
Glasses show a large extra 

density of states at low 

frequencies: this is often called 

the ‘boson peak’. Jamming and 

RP both show a huge extra 

density of states at low 

frequencies, extending down to a 

frequency w* which vanishes at 

jamming.

This is reflected nicely in the 

CPA calculations, here the boson 

peak leads to a peak in the 

correlation function.

Thornton, Liarte

(a) Scaling function S(Q,W) for the correlation 

function for undamped fluids, (b) power law regimes 

and boson peak (dashed line)
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2D Jamming
2D Jamming solution at various Z. As Z goes to zero, omega* also goes to zero (very slowly).

Goodrich and Liu: log corrections seen in finite-size scaling for B, mu. Perhaps connection?

Thornton, Liarte


