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Lattice CPA

=p +(1-p)

The CPA replaces a lattice with spring K, filled with probability p with an effective weaker
lattice with complex K, (w).

e Replaces random lattice, spring K w/probability p, with pure lattice w/complex K,(w)
e Includes self-consistent effects on all phonons q
e New bond is weaker by K,(w)/Ky = (p—h)/(1 — h), where

hw) = (1/2) / 4 Tt (Dg(w) Ga(w))

BZ

e Here 2 is the number of bonds per node, BZ is the Brillouin zone

e [ is the dynamical matrix of the particular lattice, and

® Gq = (Dq — I w2)_1 is the Greens function. FlOppy ngld

® ’

ORrp

e D, and G, depend on the weakened K (w), so this is solved self-consistently.
e K (w) is complex; imaginary part is damping.

e Energy is conserved: damping plane waves from disorder scattering.

Liarte, Lubensky, Mao



Continuum

N B
CPA

The lattice calculation is complicated, and deriving the scaling form is difficult due to the lattice
anisotropy and shape of the Brillouin zone. Jamming is isotropic. Why not do a CPA by

punching circular holes in a continuum elastic sheet? Two kinds of holes: one that zeros A, and
one that zeros .

We set a maximum wavevector |g| < gp that is circularly symmetric. The CPA dynamical matrix
is that of an isotropic elastic sheet, which we decompose into D* and D*, defining the two
integrals h , and h,, governing the self-consistent equations for the two moduli...

1 4D g

he = — d"q Tr (D¢

ca JO a7 ( 4 gq)

The dynamical matrix and the Greens function are given in terms of A(w) and u(w)/’
Thornton, Liarte



Reminder: universal scaling function for
mean-field Ising: finding universal parts

(0) Find mean-field theory as self-consistent equation:
6(h—l—mz)/T _ 6—(h—|—mz)/T

= o(htm2)/T 1 g—(htmz)/T

m

(1) Change variables to t = T.-T with T.=z.
(2) Substitute scaling variables and exponents: m/m, = t# ci¢; hihy = tF°H, g =%, 6= 3.
(3) Keep only the leading order in t. Derive scaling form m(t,h) = tAch(H) = t# Sh(h/tF):

[@(f =H-clr 3/% (Universal scaling function relation)




(0) Self-consistent equations: 3D

The integrals for h , can be done exactly. (Not yet in Mathematica.) In three dimensions,
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Universal scaling function for 3D Jamming

Pulling out the universal parts

Just as we did for the Curie-Weiss law for the mean-field Ising model, we
(1) Change coordinates to the distance dy, dgp from the critical point,

py=1—=05 p,=0rp+(2+9;)/2,

(2) Substitute the scaling variables and exponents

)\Z)\lA U= ‘5RP|/~01M W = ’5Rp‘ C_]D\/Zlulul/QZLQ ZM:24ZQ/|(5RP‘ ‘5Rp| :)\15J/,LL1W

(3) Keep only the leading order term in d RP.
This gives us self-consistent equations for the universal scaling functions:

Miq:Mi+QQ/4+ZQ3log<(ZQ—M)/(Z{HM))/&%W:O

Ay = (2My —32°Q7) | (2M+ + W — 32°Q0)

(Here 4+ indicates the sign of dgp — minus for floppy, plus for rigid.)



eading order scaling: 3D Jamming

Note that Z = z,|0rp| is an irrelevant variable. Ignoring it and setting W g = M(L2W0) [ ogp ]
Z =0, we can solve the equations: 1 - _Ti((':\ﬂ,li))
Mo, W,0) = (£1+ V1 -22) /2 M. \_,, —
AL(Q, W, 0) (il+\/1—92)/<Wil+\/1—92) 03 Z=01
0 Z=0
. A/ 2y = A(QW,0) [ S
At left we plot the imaginary part of M(£2,0) and A(£2, 0), -
together with M(£2Z) and A(£2, Z) with Z = 0.05. Even 7=0.1
though Z is irrelevant, it makes an important qualitative A+ 0.5 Z=0
change in the prediction — it gives our elastic constants an - W=10
Imaginary part at low frequency. Z is a dangerous
Irrelevant variable 0 05 1 15 2 25 3
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| eading order scaling: 3D RP

Close to rigidity percolation (i.e., as W — 00), we rescale our rescaled
A to be

As = (W/2) A = (63X/ 2 [0re]) (A X) = A0y /241 [orp]
Then taking W — +o00 one finds 1

1.5

M.(Q,+00,0) = (il+ﬂ)/2 M.
At (2, +00,0) <:|:1+ M) /W 0.5}

= A+ (Q, +00,0) = ML(Q, +00,0)

so the two are equal near rigidity percolation, and both have the same 0
dependence as the shear modulus p near jamming. The unstable Jam-
ming scaling function includes the RP critical behavior, just as for the
fracture roughness example.
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Predictions? Example: the Boson Peak

Glasses show a large extra
density of states at low
frequencies: this is often called
the ‘boson peak’. Jamming and
RP both show a huge extra
density of states at low
frequencies, extending down to a
frequency o* which vanishes at
jamming.

This is reflected nicely in the
CPA calculations, here the boson (a) Scaling function S(Q, <) for the correlation

peak leads to a peak In the function for undamped fluids, (b) power law regimes
correlation function. and boson peak (dashed line)




2D Jamming

2D Jamming solution at various Z. As Z goes to zero, omega* also goes to zero (very slowly).

Goodrich and Liu: log corrections seen in finite-size scaling for B, mu. Perhaps connection?



