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1. Magnetised fluid with conformal symmetry

We start with the Gibbs free energy [1] 𝐺 = 𝐸 − 𝑇𝑆 = 𝐺(𝑇, 𝑉,B)

where 𝐸 = 𝑈 − 𝑉𝑀B : magnetic enthalpy , 𝑈: internal energy and 𝑀: magnetisation density

[1] R. L. Carlin, Magnetochemistry. Springer-Verlag Berlin Heidelberg, 1986
[2] M. M. Caldarelli, O. J. C. Dias, and D. Klemm, JHEP 03 (2009) 025, arXiv:0812.0801 [hep-th]

From conformal symmetry and extensivity 𝐺 = 𝑉 𝑇𝐷 𝑔(𝑏)

where 𝑏 = B/𝑇2 , B: magnetic field

Under a scaling transformation 𝑥′ = 𝜆−1𝑥 we obtain 𝐺′ 𝑇′, 𝑉′,B′ = 𝜆 𝐺 𝑇, 𝑉,B

where    𝑇′ = 𝜆 𝑇 ,  𝑉′ = 𝜆1−𝐷𝑉 ,  B′ = 𝜆2B

From these results we can obtain the equation of state [2] 𝐸 = 𝐷 − 1 𝑃𝑉 − 2 𝑉𝑀B

where 𝑃 = −𝜕𝐺/𝜕𝑉 = −𝐺/𝑉 is the thermodynamic pressure



When the volume is fixed we define the densities

G = 𝐺/𝑉 ,  F = 𝐹/𝑉 , 𝝆 = 𝐸/𝑉 ,  U= 𝑈/𝑉 , S = 𝑆/𝑉

For a magnetised conformal fluid in 𝐷 = 4 we obtain  G = 𝑇4𝑔 𝑏

and the following thermodynamic relations

𝝌 =
𝜕𝑀

𝜕B
= −𝑔′′(𝑏) ,      𝝃 =

𝜕𝑀

𝜕𝑇
= 2𝑇[𝑏𝑔′′ 𝑏 − 𝑔′ 𝑏 ]

F = G +𝑀B = 𝑇4 𝑔 𝑏 − 𝑏𝑔′ 𝑏 , U = F+ 𝑇S = 𝑇4 𝑏𝑔′ 𝑏 − 3 𝑏

𝝆 = G+ 𝑇S = 𝑇4[2𝑏𝑔′ 𝑏 − 3𝑔 𝑏 ]

From the derivatives of the magnetisation density we obtain

S = −
𝜕G
𝜕𝑇

= 𝑇3 2𝑏𝑔′ 𝑏 − 4𝑔 𝑏 ,      𝑀 = −
𝜕G
𝜕B

= −𝑇2𝑔′ 𝑏

𝝌: magnetic susceptibility  ,  𝝃: pyro-magnetic coefficient



and we also find the conformal identities

𝝆 = 3𝑃 − 2𝑀B

G = −𝑃 = −
1

4
𝑇S −

1

2
𝑀B

The equation of state takes the form

𝑀 = 𝝌B +
1

2
𝝃 𝑇

The specific heat at fixed 𝑉 and B is given by  

𝑐𝑉,𝐵 = 𝑇
𝜕𝑆

𝜕𝑇
=
𝜕𝜌

𝜕𝑇
= 𝑇3 −12𝑔 𝑏 + 10 𝑏 𝑔′ 𝑏 − 4𝑏2𝑔′′ 𝑏

The stress-energy of the magnetic conformal fluid can be written as [3]

𝑇𝜇𝜈 = 𝜌 + 𝑃 𝑢𝜇𝑢𝜈 + 𝑃 𝜂𝜇𝜈 −M𝜇𝜌F𝜌
𝜈

[3] S. A. Hartnoll, P. K. Kovtun, M. Muller and S. Sachdev, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215 [cond-mat]

where M𝜇𝜌 = −𝜕G/𝜕F𝜇𝜌 is the polarisation tensor

For a magnetic field in the z direction we have F12 = −F21 = B andM12 = −M21 = 𝑀



In the fluid rest frame the stress-energy takes the form

𝑇𝜇𝜈 = diag(𝜌, 𝑃𝑥 , 𝑃𝑥 , 𝑃𝑧)

where

𝝆 = G + 𝑇S =
3

4
𝑇S −

1

2
𝑀B 𝑃𝑥 = 𝑃 −𝑀𝐵 =

1

4
𝑇S−

1

2
𝑀B 𝑃𝑧 = 𝑃 =

1

4
𝑇S+

1

2
𝑀B

The trace of the stress-energy tensor vanishes, i.e. 𝑇𝜇
𝜇
= −𝝆 + 2𝑃𝑥 + 𝑃𝑧 = 0

Due to anisotropy, sound propagates in the 𝑥 and 𝑧 direction with different speeds

𝑐𝑠,𝑥
2 =

𝜕𝑃𝑥
𝜕𝜌

𝐵

=
𝑆 − 𝜉𝐵

𝐶𝑉,𝐵
𝑐𝑠,𝑧
2 =

𝜕𝑃𝑧
𝜕𝜌

𝐵

=
𝑆

𝐶𝑉,𝐵

Note that we identify the hydrodynamic pressures 𝑃𝑥 and 𝑃𝑧 with  −G and −F respectively 



2. The AdS/CFT correspondence and the magnetic black brane

Weakly coupled 𝑆𝑈(𝑁𝑐)N = 4 Super Yang-Mills theory in 
4d arises from the low energy  limit of open strings attached 
to the stack of 𝑁𝑐 D3-branes

Type IIB supergravity in 𝐴𝑑𝑆5 × 𝑆5 arises from the low energy  limit 
of  closed strings  sourced by the stack of 𝑁𝑐 D3-branes

Maldacena conjecture [5]: Type IIB supergravity in 𝐴𝑑𝑆5 × 𝑆5 is dual to the 
strongly coupled regime of 𝑆𝑈(𝑁𝑐)N = 4 Super Yang-Mills theory in 4d 

𝑅1,3

𝐴𝑑𝑆5 × 𝑆5

Dp-branes [4] are non-perturbative objects in string theory that  allow for dual 
descriptions in terms of open strings or closed strings

[4] Polchinski, Joseph. 1995. Phys. Rev.Lett., 75, 4724–4727
[5] Maldacena, Juan Martin. 1998. Adv. Theor. Math. Phys., 2, 231–252



AdS/CFT dictionary:
𝑔𝑌𝑀
2 = 4𝜋𝑔𝑠 𝐿4 = 𝑔𝑌𝑀

2 𝑁𝐶ℓ𝑠
4

𝑔𝑠: open string coupling ,  ℓ𝑠: string fundamental length,  𝐿: radius of 𝐴𝑑𝑆5 spacetime 

Finite temperature:

[6] Witten, Edward. 1998. Adv. Theor. Math. Phys., 2, 253–291.  
[7] Gubser, S. S., Klebanov, Igor R., and Polyakov, Alexander M. 1998. Phys. Lett., B428, 105–114
[8] Witten, Edward. 1998. Adv. Theor. Math. Phys., 2, 505–532 

Isometry group of 𝐴𝑑𝑆5 maps to the conformal group 𝑆𝑂(2,4) of the 4d conformal field theory

Isometry group of 𝑆5 maps to the R-symmetry group of the N = 4 Super Yang-Mills theory 

Fields 𝜙… in 𝐴𝑑𝑆5 × 𝑆5 map to operators 𝑂…. in the 4d CFT 

Correlation functions of the 4d CFT are obtained from the holographic dictionary [6,7]

𝑊𝐶𝐹𝑇 𝜙…
0 = 𝑆𝑆𝑢𝑔𝑟𝑎[𝜙…]

where 𝜙0 arises from the asymptotic expansion of 𝜙… near the boundary 

The thermal state of the 4d CFT maps to a 5d black brane that is asymptotically 𝐴𝑑𝑆5 [8]



The magnetic black brane

Consider Einstein-Maxwell theory in 5d with negative cosmological constant

𝑆 = 𝜎∫ 𝑑5𝑥 −𝑔 𝑅 + 12 − 𝐹𝑚𝑛
2

where 𝜎 = 1/(16𝜋𝐺5) = 𝑁𝑐
2/(8𝜋2)

The Einstein-Maxwell equations are

𝑅𝑚𝑛 −
𝑅

2
𝑔𝑚𝑛 − 6 𝑔𝑚𝑛 = 2𝑇𝑚𝑛 ,   ∇𝑚𝐹

𝑚𝑛 = 0

where 𝑇𝑚𝑛 = 𝐹𝑚𝑝𝐹𝑛
𝑝
−
1

4
𝑔𝑚𝑛𝐹𝑝𝑞𝐹

𝑝𝑞
(5d stress-energy tensor)

Contracting the Einstein equations with 𝑔𝑚𝑛 we obtain

𝑅 = −20 −
4

3
𝑇 = −20 +

1

3
𝐹𝑝𝑞𝐹

𝑝𝑞



Ansatz for the metric and field strength [9] 

𝑑𝑠2 = −𝑈 𝑟 𝑑𝑡2 +
𝑑𝑟2

𝑈 𝑟
+ 𝑒2𝑉 𝑟 𝑑𝑥2 + 𝑑𝑦2 + 𝑒2𝑊 𝑟 𝑑𝑧2 ,   𝐹 = 𝐵 𝑑𝑥 ∧ 𝑑𝑦

where 𝐵 = B/ 3

[9] E. D’Hoker and P. Kraus, JHEP 10 (2009) 088, arXiv:0908.3875 [hep-th].

Field rescaling 

𝑈 𝑟 = 𝑟ℎ
2 ෩𝑈(𝑟) ,  𝑒𝑉 𝑟 , 𝑒𝑊 𝑟 = 𝑟ℎ(𝑒

෩𝑉 𝑟 , 𝑒 ෩𝑊 𝑟 ) ,  𝐵 = 𝑟ℎ
2 ෨𝐵 ,  𝑥𝜇 = 𝑟ℎ

−1 ෤𝑥𝜇

The Einstein-Maxwell equations reduce to

෩𝑈 ෨𝑉′′ − ෩𝑊′′ + ෩𝑈′ + ෩𝑈 2 ෨𝑉′ + ෩𝑊′ ෨𝑉′ − ෩𝑊′ = −2 ෨𝐵2𝑒−4෩𝑉

2 ෨𝑉′′ + ෩𝑊′′ + 2෨𝑉′2 + ෩𝑊′2 = 0
1

2
෩𝑈′′ +

1

2
෩𝑈′ 2 ෨𝑉′ + ෩𝑊′ = 4 +

2

3
෨𝐵2𝑒−4෩𝑉

2෩𝑈′ ෨𝑉′ + ෩𝑈′ ෩𝑊′ + 2෩𝑈 ෨𝑉′2 + 4෩𝑈 ෨𝑉′ ෩𝑊′ = 12 − 2 ෨𝐵2𝑒−4෩𝑉

The first three equations are dynamical (2nd order) and the last equation is a constraint (1st order)



Asymptotic solution near the horizon

Asymptotic solution near the boundary

෩𝑈 𝑟 = ෩𝑈ℎ,1 ෤𝑟 − 1 +
5

3

෨𝐵2

෤𝑣ℎ,0
4 − 2 ෤𝑟 − 1 2 +⋯

𝑒෩𝑉 𝑟

෤𝑣ℎ,0
= 1 −

4

3

෨𝐵2 − 3෤𝑣ℎ,0
4

෩𝑈ℎ,1 ෤𝑣ℎ,0
4

෤𝑟 − 1 +⋯
𝑒 ෩𝑊 𝑟

෥𝑤ℎ,0
= 1 +

2

3

෨𝐵2 + 6෤𝑣ℎ,0
4

෩𝑈ℎ,1 ෤𝑣ℎ,0
4 ෤𝑟 − 1 +⋯

෩𝑈 𝑟

෤𝑟2
= 1 + ෩𝑈∞,1 ෤𝑟

−1 +
෩𝑈∞,1
2

4
෤𝑟−2 −

2

3
෨𝐵2 ෤𝑟−4 ln ෤𝑟 + ෩𝑈∞,4 ෤𝑟

−4 +⋯

𝑒෩𝑉( ǁ𝑟)

෤𝑟
= 1 +

෩𝑈∞,1

2
෤𝑟−1 +

1

6
෨𝐵2 ෤𝑟−4 ln ෤𝑟 + 𝑣∞,4 ෤𝑟

−4 +⋯

𝑒 ෩𝑊( ǁ𝑟)

෤𝑟
= 1 +

෩𝑈∞,1

2
෤𝑟−1 −

1

3
෨𝐵2 ෤𝑟−4 ln ෤𝑟 − 2𝑣∞,4 ෤𝑟

−4 +⋯

The UV parameters ෩𝑈∞,1 , ෩𝑈∞,4 and ෤𝑣∞,4 are obtained numerically

We can choose ෤𝑣ℎ,0 = 1 whist  the parameters ෩𝑈ℎ,1 and  ෥𝑤ℎ,0 are obtained numerically 



Temperature, entropy density and the physical magnetic field

𝑇 =
𝑈′ 𝑟ℎ
4𝜋

=
𝑟ℎ
4𝜋

෩𝑈ℎ,1 (absence of conical singularity)

S =
𝑆

𝑉3
=

𝐴ℎ
4𝐺5𝑉3

= 4𝜋𝜎 𝑒2𝑉 𝑟ℎ 𝑒𝑊(𝑟ℎ) = 4𝜋𝜎 𝑟ℎ
3 ෤𝑣ℎ,0

2 ෥𝑤ℎ,0 (Bekenstein-Hawking formula)

The physical magnetic field can be obtained from the dimensionless ratio

𝑏 =
B

𝑇2
= 16 3𝜋2

෨𝐵

෩𝑈ℎ,1
2

Using these results we obtain the dimensionless ratio S

𝑇3
= 4𝜋 4𝜎

෤𝑣ℎ,0
2 ෥𝑤ℎ,0

෩𝑈ℎ,1
3

The horizon parameter ෤𝑣ℎ,0 was set to 1 whilst the horizon parameters ෩𝑈ℎ,1 and ෥𝑤ℎ,0 are obtained 

numerically as function of ෨𝐵



Some numerical results

Left panel: Horizon parameters ෩𝑈ℎ,1 and ෥𝑤ℎ,0 as functions of ෨𝐵

Right panel: dimensionless ratio 𝑏 = B/𝑇2 as a function of ෨𝐵



3. Thermodynamics of the magnetic black brane

The Euclidean on-shell action and holographic renormalisation

𝑆𝑜𝑛−𝑠ℎ𝑒𝑙𝑙 = 𝑆𝑀 + 𝑆𝜕𝑀

𝑆𝑀 = −𝜎 න
𝑀

𝑑5𝑥 𝑔 (𝑅 + 12 − 𝐹𝑚𝑛
2 )where (Einstein-Maxwell term)

𝑆𝜕𝑀 = −2𝜎 න
𝜕𝑀

𝑑4𝑥 𝛾 𝐾 (Gibbons-Hawking-York boundary term)

Evaluating both terms, the on-shell action becomes a sum of surface terms

𝑆𝑀 + 𝑆𝜕𝑀 = −𝜎 𝑉3 𝛽 𝑟ℎ
4 2 ෩𝑈 𝑒2෩𝑉+ ෩𝑊

′

ǁ𝑟= ǁ𝑟0
+ 𝑒2෩𝑉+ ෩𝑊 ෩𝑈′

ǁ𝑟=1

Plugging the asymptotic behaviour of the fields ෩𝑈 , ෨𝑉 and ෩𝑊 we obtain

𝑆𝑀 + 𝑆𝜕𝑀

= −𝜎 𝑉3 𝛽 𝑟ℎ
4 6 ǁ𝑟0

4 + 12 ෩𝑈∞,1 ǁ𝑟0
3 + 9෩𝑈∞,1

2 ǁ𝑟0
2 + 3෩𝑈∞,1

3 ǁ𝑟0 − 4 ෨𝐵2 ln ǁ𝑟0 +
3

8
෩𝑈∞,1
4 + 6෩𝑈∞,4 + ෩𝑈ℎ,1 ෤𝑣ℎ,0෥𝑤ℎ,0



Diffeomorphism invariant counter-term

𝑆𝑐𝑡 = 𝜎 න
𝜕𝑀

𝑑4𝑥 𝛾 [𝑎1 + 𝑎2𝐹𝜇𝜈𝐹
𝜇𝜈 ln 𝐹𝜇𝜈𝐹

𝜇𝜈 + 𝑎3 𝐹𝜇𝜈𝐹
𝜇𝜈]

UV divergences are cancelled choosing 𝑎1 = 6 , 𝑎2 = 1/4 and we obtain 

𝑆𝑟 = −𝜎𝑉3𝛽 𝑟ℎ
4 [3෩𝑈∞,4 + ෩𝑈ℎ,1 ෤𝑣ℎ,0

2 ෥𝑤ℎ,0 − ෨𝐵2 ln ෨𝐵 − 2𝑎3 +
1

2
ln 2 ෨𝐵2]

Gibbs free energy density

G =
𝑇𝑆𝑟
𝑉3

= −𝜎 𝑟ℎ
4 [3෩𝑈∞,4 + ෩𝑈ℎ,1 ෤𝑣ℎ,0

2 ෥𝑤ℎ,0 − ෨𝐵2 ln ෨𝐵 − 2𝑎3 +
1

2
ln 2 ෨𝐵2]

Magnetic enthalpy density

𝝆 = −𝜎 𝑟ℎ
4 [3෩𝑈∞,4 − ෨𝐵2 ln ෨𝐵 − 2𝑎3 +

1

2
ln 2 ෨𝐵2]

Scheme-independent quantities: Gr = G − G𝑇=0 , 𝝆𝒓 = 𝝆 − 𝝆𝑇=0



Holographic stress-energy tensor
< 𝑇𝑟

𝜇𝜈
>=< 𝑇𝑟𝑒𝑔

𝜇𝜈
>+< 𝑇𝑐𝑡

𝜇𝜈
>

where

< 𝑇𝑟𝑒𝑔
𝜇𝜈
>=

2 𝑟0
6

−𝛾

𝛿 𝑆𝑀 + 𝑆𝜕𝑀
𝛿𝛾𝜇𝜈

= −2𝜎 𝐾𝜇𝜈 − 𝐾𝛾𝜇𝜈 < 𝑇𝑐𝑡
𝜇𝜈
>= −

2𝑟0
6

−𝛾

𝛿𝑆𝑐𝑡
𝛿𝛾𝜇𝜈

Result: < 𝑇𝑟
𝜇𝜈
>= diag(𝝆𝑟 , 𝑃𝑥,𝑟 , 𝑃𝑥,𝑟 , 𝑃𝑧,𝑟)

where
𝝆𝒓 = −

3𝑁𝑐
2

8𝜋2
𝑟ℎ
4 ෩𝑈∞,4 −

෨𝐵2

6
2෩𝑈∞,4 3 + ln

෨𝐵2

3

𝑃𝑥,𝑟 = −
𝑁𝑐
2

8𝜋2
𝑟ℎ
4 ෩𝑈∞,4 − 8෤𝑣∞,4 −

෨𝐵2

2
2෩𝑈∞,4 3 + ln

෨𝐵2

3

𝑃𝑧,𝑟 = −
𝑁𝑐
2

8𝜋2
𝑟ℎ
4 ෩𝑈∞,4 + 16 ෤𝑣∞,4 +

෨𝐵2

2
2෩𝑈∞,4 3 + ln

෨𝐵2

3

The trace of the stress-energy tensor vanishes, as expected for a conformal fluid
A non-diffeomorphism invariant counter-term can lead to a 𝑇 independent trace anomaly that 
disappears when subtracting the 𝑇 = 0 result



Numerical results

Gibbs free energy density

Blue curves represent the full numerical results
Orange and red curves represent analytical results at small 𝑏 or large 𝑏

Entropy density



Magnetisation Susceptibility Pyro-magnetic coefficient

Blue curves represent the full numerical results
Orange and red curves represent analytical results at small 𝑏 or large 𝑏



Specific heat Speeds of sound

Important conclusion: The behaviour of all the thermodynamic quantities at large 𝑏 is 
consistent with 𝟑 + 𝟏 → 𝟏 + 𝟏 dimensional reduction in the magnetised conformal plasma

The analytical result at large 𝑏 is consistent with the 𝑩𝑻𝒁 × 𝑹𝟐 where the BTZ black brane [10] is
the gravity dual of a 2d CFT at finite temperature

Blue curves represent the full numerical results
Orange and red curves represent analytical results at small 𝑏 or large 𝑏

[10]M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett. 69 (1992) 1849–1851, arXiv:hep-th/9204099



Phenomenological comparison to lattice QCD results

[11] G. S. Bali, F. Bruckmann, G. Endrödi, S. D. Katz, and A. Schäfer, JHEP 08 (2014) 177, arXiv:1406.0269 [hep-lat]

In this case we fix 𝜎 = 𝑁𝑐
2/(45𝜋2) in order to match the Stefan-Boltzmann result for a free 

Yang-Mills plasma in the large 𝑁𝑐 limit. We compare against the lattice QCD results of [11]

Left panel: Red, blue and green correspond to 𝑇 = 0.15GeV , 𝑇 = 0.25GeV and 𝑇 = 0.3GeV

Right panel: Red, blue, green and grey correspond to B = 0GeV2 ,B = 0.2GeV2 , B = 0.3GeV2

and B = 0.4GeV2



4. Conclusions

- We used the AdS/CFT correspondence to investigate the strongly coupled regime of a N = 4
Super Yang-Mills plasma in the presence of a finite magnetic field

- We obtained a Gibbs free energy density and a stress-energy tensor consistent with a 
magnetised fluid with conformal symmetry

- The behaviour of the thermodynamic quantities at large magnetic fields is compatible with a 
3 + 1 → 1 + 1 dimensional reduction of the CFT

- We found that the anisotropy between the pressures in the magnetised conformal fluid
increases with the magnetic field in a qualitatively similar way than  the quark-gluon plasma

- Possible future directions: incorporate confinement and chiral symmetry breaking in order to 
describe magnetic catalysis and inverse magnetic catalysis, describe perturbations of the 
magnetic black brane and compare with magnetohydrodynamics. 
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