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What is a
complex system?

Two essential features distinguish a complex from a
merely complicated system:

 Emergence: the whole is greater that the sum of the
parts

e Self — organization: The systems tends spontaneously
towards some level of organization



Physics & emergence

The ability to reduce everything to simple fundamental laws does not imply the
ability to start from those law and reconstruct the universe.

4 August 1972, Volume 177, Number 4047
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SCIENCE

less relevance they seem to have to the
very real problems of the rest of sci-
ence, much less to those of society.

The constructionist hypothesis breaks
down when confronted with the twin
difficulties of scale and complexity. The
behavior of large and complex aggre-
gates of elementary particles, it turns
out, is not to be understood in terms
of a simple extrapolation of the prop-
erties of a few particles. Instead, at
each level of complexity entirely new
properties appear, and the understand-
ing of the new behaviors requires re-
search which I think is as fundamental
in its nature as any other. That is, it
seems to me that one may array the
sciences roughly linearly in a hierarchy,
according to the idea: The elementary
entities of science X obey the laws of
science Y.

The behavior of a large and complex aggregates of
elementary particles can not be understood in terms of
a simple extrapolation of properties of a few particles.

At each level of complexity, new properties
appear, and the understanding of the new
behavior requires research as fundamental in
its nature as any others



Physics & Complexity

The bigger picture

Tamas Vicsek

f a concept is not well defined, it can be
abused. This is particularly true of com-

plexity, an inherently interdisciplinary
concept that has penetrated a range of
intellectual fields from physics to linguistics,

understand reality through simplification
and analysis. Some important simple sys-
tems are successfulidealizations or primitive
models of particular real situations for
example, a perfect sphere rolling down an
absolutely smooth slope in a vacuum. Thisis
the world of newtonian mechanics, and it

concepts

Complexity

The laws that describe the
behaviour of a complex system are
qualitatively different from those that
govem its units.

and scaling (for example, power-law depen-

- Complexity is an inherent interdisciplinary concept that range from physics to linguistics
and with no underlying unified theory.

- News features emerge as one moves from one scale to another, so the science of
complexity deals with the principles that govern the way these new properties appear.

- The description of the entire system’s behavior requires a qualitatively new theory
because the laws that describe its behavior are qualitatively different from those that

govern its individual units.

TVicsek, Nature 418 (2002)



Physics & Complexity: 2 examples

Can we explain the behavior of the flock Can we explain the behavior of the

by merely extrapolating the behavior of Brain from the dynamics of a single neuron?
a single bird?



Starling flocks

-Starlings moves in coordinated flocks

-Flocks of different sizes have the same movement
pattern

-Each bird only sees those who are near

-How are they coordinated then?

Andrea Cavagna, Universidad de la Sapienza, Italia. “Starling Flocks”

“Scale-free correlations in starling flocks” A. Cavagna, Al. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, and M. Viale
PNAS June 29, 2010 107 (26) 11865-11870; https://doi.org/10.1073/pnas.1005766107




Brain Activity: Resting state networks

The human brain is intrinsically organized into
dynamic, anticorrelated functional networks

Michael D. Fox*', Abraham Z. Snyder**, Justin L. Vincent*, Maurizio Corbetta?*, David C. Van Essen$,
and Marcus E. Raichle**5"

During performance of attention-demanding cognitive tasks, cer-
tain regions of the brain routinely increase activity, whereas others
routinely decrease activity. In this study, we investigate the extent
to which this task-related dichotomy is represented intrinsically in
the resting human brain through examination of spontaneous
fluctuations in the functional MRI blood oxygen level-dependent
signal. We identify two diametrically opposed, widely distributed
- brain networks on the basis of both spontaneous correlations
,;,-Q : within each network and anticorrelations between networks. One
Y network consists of regions routinely exhibiting task-related acti-
vations and the other of regions routinely exhibiting task-related
deactivations. This intrinsic organization, featuring the presence of
anticorrelated networks in the absence of overt task performance,
provides a critical context in which to understand brain function.
We suggest that both task-driven neuronal responses and behavior
are reflections of this dynamic, ongoing, functional organization of
the brain.
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- B Biswal, FZ Yetkin, VM Haughton, JS Hyde. (1995).

-M.D. Fox, A.Z. Snyder, J.L. Vincent, M. Corbetta, D.C. van Essen, M.E. Raichle. (2005).



Opinion formation process

Last years research

v'Collective behavior:
Process of agreeing
v’ People in a group tend to change their
opinion
v'"What are the mechanisms?
e Social Pressure
* Imitation
e Adaptation to the environment
* Exchange of arguments




Common elements in complex systems

* |s a system composed of
many components which
may interact with each
other.

* No central authority

* Local Non-linear
interactions

* Emergent behavior

* “The action of the whole

is more than the sum of
its parts” (Holland 2014)

MACRO-LEVEL:
Global emergent
complex pattern

Emergence

MICRO-LEVEL:




Physics, Biologics, Technicals, Socials, etc

Pattern
formation
QO = matter

& anthill
O=ants

Biological
development

O=cell

Flocks shoal
O = starling O = fish AT
Brain & Cognicion
O = neuron
Internet & Web y ey Social Networks
O = host/webpage O O = people




Theoretica

framework

Agents Ensemble Behavior
* Opinion formation
Social Groups * Group I:fehavmr .
People Social Networks * Pedestrian Dynarr_ncs
Societies * Language Dyna'mlcs
* Culture dynamics
* Migration dynamics
*Thoughts
Neurons Brain *Actions
Brain regions «Movements
*Memory
Ipsects, birds, Colonies * Search for food
fishes * Collective movements
o . * Phase transitions
Molecules Gas / Liquids / Solids

* Estate equations
* New global properties



Modeling Complex systems

Physicist have learned how to build relatively
simple models that can produce complicated
behavior

Also, those who works on inherently very
complex systems (biologist, sociologist,
neuroscientist) are uncovering ways to interpret
their subjects in terms of interacting well defined
units (such as proteins)

We are witnessing a change of paradigm in our
attempts to understand the world. The laws of
the whole can not be deduced by digging deeper
into the details.

Computer have allowed a new way of learning:

By directly modeling a system made of many
units we can observe, manipulate and
understand the behavior of the whole system
much better than before.

The bigger picture

Tamas Vicsek

f a concept is not well defined, it can be
abused. This is particularly true of com-

plexity, an inherently interdisciplinary
concept that has penetrated a range of
intellectual fields from physics to linguistics,

understand reality through simplification
and analysis. Some important simple sys-
tems are successful idealizations or primitive
models of particular real situations — for
example, a perfect sphere rolling down an
absolutely smooth slope in a vacuum. This is
the world of newtonian mechanics, and it

concepts

Complexity

The laws that describe the
behaviour of a complex system are
qualitatively different from those that
govem its units.

and scaling (for example, power-law depen-




Complex systems: We are used to models!!!
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Maps are simplified models we use in our daily life.

v’ They leave out a lot of unnecessary details.

v’ They are useful simplifications that help us in many tasks.

Complex Adaptive Systems, J.H Miller & S.E.Page



Complex Systems Models

Social and economic systems have a multitude of factors
Include them all in a model is unattainable

Our understanding: Abstract, limited, idealized, description of reality that
still captures a specific phenomenon. Very limited number of variables

Models in this realm are not intended to reproduce reality but to shed
light on mechanisms behind specific observed phenomena




Complex Systems Models:

Three main features

* Finite in size & time:

o Some models are solvable in the limit N - oo, but finite size fluctuations could be relevant in the
observed behavior

o Social or biological process are frequently limited in time and the equilibrium hypothesis could be
misleading in many cases.

* Heterogeneity:
o Can crucially affect the observed properties of a given system and it should taken into account
* Interactions:

o Agents do not act in isolation but interact with others.

o The nature of interactions could dramatically change the global properties of the system.
o The structure of the interactions can be described via complex networks.



Complex Systems: The standing ovation problem

929665000

From https://www.gettyimages.com/



The standing ovation problem

* Though ostensibly simple, the social dynamics responsible for a standing
ovation are complex.

* As the performance ends, each audience member must decide whether to
stand. Of course, if the decision to stand is simply a personal choice based
on the individual’s own assessment of the worth of the performance, the
problem becomes trivial.

* However, people do not stand solely based upon their own impressions of
the performance. A seated audience member surrounded by people
standing might be tempted to stand, even if he hated the performance.

* This behavioral mimicry could be strategic (the agents wants to send the
right signal to the lecturer), informational (maybe the lecture was better
than he thought), or conformal (he stands to not feel awkward).

Complex Adaptative Systems: An introduction to computational models of social life, J. Miller & S. Page
Mircromotives & Macrobehaviors, Thomas Schelling 1978



Modeling the standing ovation problem

* Let’s assume an audience of N people.

* Each one receives a signal that depends on the quality of
the performance, q: s;(q) is the signal received by the
agent . ]

* We could also hypothesize a functional form for s;(q) even
adding some diversity to each signal by adding a white
noise term (C;) with zero mean and standard deviation G :

s{(a)=q+G.
* Dynamics: We hypothesize that each person “stands” if
and only if s(q) > T, where T is some critical threshold

above which people are so moved by the performance
that they stand up and applaud.

Complex Adaptative Systems: An introduction to computational models of social life, J. Miller & S. Page



Modeling the standing ovation problem
Model 1: The simplest model

* But people could not only respond (standing and applauding) because the
quality of the performance, but because other people do.

* Let’s add an additional parameter o that gives the percentage of people
who must stand in order to ignore the initial signal and decide to stand up.

* Qutcomes: If the initial group of standing people exceed a (N> ),
everyone stands and N,,=N. Otherwise, it remains in the initial group
standing (N ,= Ng < Q).

* Even though the model is simple and elegant, we know that real ovations
often exhibit gradual waves of participation and noticeable spatial patterns
across the auditorium.

Complex Adaptative Systems: An introduction to computational models of social life, J. Miller & S. Page



Modeling the standing ovation problem
Model 2: A more complex model

* The first step could be placing every person in a seat of the auditorium.

* Also people have connections with others. People use to arrive and sit in
the auditorium with acquaintances.

* |f the model allows people to sit in a space and locate near friends, the
driving forces begin to change. People seated in one part of the theater
(side of the aisle, for instance) receive different set ot signals than others.

* Locations may also reflects a priori preferences for the performance that is
about to begin.

* Also people may differentially weight the signals sent by their friends,
either because or peer pressure or friendships were initially forged on
common traits.

* Now, identical individuals can behave different depending on where, and
with whom they are seated.

Complex Adaptative Systems: An introduction to computational models of social life, J. Miller & S. Page



Modeling the standing ovation problem
Comparison between models

T heawre | Model1 (simplest Model 2 (richer)

Dynamics An initial decision to stand The first round of standing will
followed by a second decision induce others to stand, and this
based on how many people action will cause others to
stood initially react. The systems can display

cascades of behavior that may
not settle down anytime soon.

Size of standing people An initial group of Ny < o or Any size
everybody
Rounds of applause two Several cascades of behaviors
are possible
Social influence Everyone’s influence is equal Influence depends on

friendship or seat location

Complex Adaptative Systems: An introduction to computational models of social life, J. Miller & S. Page



Research questions for the Standing Ovation
problem

* Do performances that attract more groups lead to more ovations?

* How does changing the design of the theater by, say, adding
balconies, influence ovations?

* If you want to start an ovation, where should you place your shills?

* If people are seated based on their preferences for the performance,
say, left or right side of the aisle or more expensive seats up front, do

you see different patterns of ovations?



Hands on: proposal 1

* Implement the model 2 with spatial structure and location based
infuence.

* Implement the model 2 with spatial structure, location based and
acquaintances infuences.

* Implement a version of model 3 where some of the previous
research questions could be addressed



Tools to describe Complex Systems
(among others)

* How to simplify but keeping the complexity?

* How to model a complex system?

1 — Agent Based Models (ABM)
2 — Complex networks (You will see this with Prof. Semeshenko)
- Describing the backbone of the interactions among agents

- Could be used to describe emergent behavior (functional networks)




Agents (person, voter, institutions, neuron, brain

Agent Based Models
region,etc). Each one could be defined by a given

. [
¢, & ' /' state or an individual dynamics
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, ., c Interactions between agents
O ¢ o —
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e c . (l' : " | Global emergent behavior
o T X
shutterstock.com = 507791317 Methodology:
- Make assumptions about agents and their
Goal: interactions.
To Investigate how large-scale effects arise - Use computer simulations to observe
from the microscopic processes of agent consequences of those assumptions
interactions. (experiment).




Granovetter (1978)
How to model collective behavior?

Mark Granovetter

Joan Butler Ford Professor and Chair of Sociology
Joan Butler Ford Professor in the School of Humanities and Sciences

A.B. Princeton University 1965 Modern History
Ph.D. Harvard Unversity 1970 Sociology

Download CV

STANFORD DIRECTORY »

About

Mark Granovetter's main interest is in the way people, social networks and social institutions
interact and shape one another. He has written extensively on this subject, including his two most
widely cited articles "The Strength of Weak Ties" (1973) and "Economic Action and Social Structure: The Problem of Embeddedness" (1985). In recent
years, his focus has been on the social foundations of the economy, and he is working on a book entitled Society and Economy , to be published by
Harvard University Press in two volumes. The first volume wil be broadly theoretical, treating the role in the economy of social networks, norms,
values, culture, "institutional logics", trust, power and the intersection of social institutions. The second volume will use this framework to illuminate
the study of such important topics as corruption, corporate governance, organizational form and the emergence of new industries such as the
American electricity industry and the high-tech industry of Silicon Valley.




Collective Behavior of Crowds

Sociological theories in ‘70:

*Norms
*Preferences
*Motives

* Beliefs

.
£

v
Emphasis
on the
individual

Theories assume a group
relationship too simple

——




Collective Behavior of Crowds

*Norms
*Preferences
*Motives

* Beliefs

Emphasis
on the
individual

Sociological theories in ‘70:

\%

Theories assume a group
relationship too simple

——
—

Granovetter

Theory of Collective Behaviors

* Interrelation:

Interrelated behaviors of agents Collective Behaviors
* Variability or heterogeneity: Contrary t? !Dreferences
Individuals

Different individuals




Question

How to study collective behaviors in situations where subjects have two alternatives and the cost /
benefit of choosing one of them depends on how many others make the same decision? Example: A
Riot

Model

Threshold: the proportion of the group he would
must see join before he would do so.

Leader!!

Radicals: W ' éﬁ\ Conservatives

Lower threshold (higher thresholds)

Granovetter M (1978) Threshold models of collective behavior. American Journal of Sociology 83: 1420-1443 doi: 10.1086/226707




There is a riot or not?

Situation: milling around in a square (a potential riot situation).

Starting Point: The instigator engages in riot behavior (i.e., breaks a window)
Question: Do we have a riot or not?

Goal of the threshold model:

Given an initial threshold distribution—> Can we predict the outcome?

Casel - Result: Bandwagon effect!!

Green (Thr=0) - Start the riot

Light Blue (Thr=1) = join to the riot because green.
Red (Thr=2)-> Also join because....

-Uniform threshold distribution (Thr)
one w/ Thr=0; other with Thr=1, another con
Thr=2,...

All the people join the riot!!
Instigator Equilibrium situation: r=All!




There is a riot or not?

Let's perturb slightly the previous distribution
How will the final solution change?

Case 2

Result:
- Green (Thr=0) - Start the riot
- Light blue or red (Thr=2) - He/She would join if at
least were two but...
iiAbsolut failure!!

- Almost uniform threshold distribution (Thr)
One w/ Thr=0; Nobody with Thr=1,
two with thr=2,...

Instigator Nobody join to he riot!
Equilibrium solution: r =1



There is a riot or not?

The day after news

LB e I I b Rl

What does this simple-minded example suggest?
it is hazardous to infer individual dispositions from aggregate outcomes

v Two almost identical crowds produce radically different collective behaviors

v' The differences between both results comes from the aggregation process
(in particular from the gap in the frequency distribution in the case 2 )




¢How to describe mathematically?

* f(x)= Threshold distribution (how many people has threshold equal to x)
* F(x) = Cumulated threshold distribution(how many people has threshold
less or equal to x)

45°1ine: F(x)=x

* r(t) =Fraction on individuals joined /
to the riot at time “t”. o
* The evolution of the systems SO
is given by: r(t+1)=F(r(t)) Gistriution -~
thresholds /
F[r(t)

Equilibrium point: o

; 100%

>~
T

x-~thresholds

How many people finally
join the riot (r,=2>r(t+1)=r(t))

r(t) r(t+l) .

F16. 1.—Graphical method of finding the equilibrium point of a threshold distribution.
r(t) = proportion having rioted by timef.

Starting from a single rioter



The Initial truncated normal distribution case
Why?

100 * There is no obvious sociological way

- : to explain why a slight perturbation
S | of the normal distribution around
s | the critical standard deviation
| should have a wholly discontinuous,
l striking qualitative effect
50 g
l
I
| * This example shows again how
| two crowds whose average
) L._/Jl preferences are nearly identical
Ger2, 2 B ocrisitess could generate entirely different
deviation results.

F16. 2.—~Equilibrium number of rioters plotted against standard deviation of normal
distributions of thresholds with mean = 25, N = 100,

Starting from a single rioter
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The Initial truncated Normal Distribution case

Truncated Normal Distributions N(u,c). 6=0.4, varyng u
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The Initial truncated Normal Distribution case

Truncated Normal Distributions N(u,c). 6=0.4, varyng u
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The Uniform Initial Condition

Equilibrium Condition: r = F(r)

U[0,1] : Multiple equilibriums state U[O0,1] : Multiple equilibriums state
Uniform Uniform
1.0 1 —— Threshold distribution | 10001 \dentity function
Identity function '
0.8 1 800 1
0.6 N 600
(V2]
o
0.4 400
0.2
200 -
0.0 1 0
00 02 04 06 08 1.0 0 200 400 600 800 1000
Active agents Initial number of active agents

Figures from S. Pinto



The Normal truncated Initial Condition

Equilibrium Condition: r = F(r)

N(0.5;0.083): A single state equilibrium state
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Figures from S. Pinto

N(0.5;0.083): A single state equilibrium state
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0 200 400 600 800 1000

Initial number of active agents



What this example show us?

* This example shows again how two crowds whose average
preferences
are nearly identical could generate entirely different results.

* Threshold models take the two elements of collective behavior
which are central to explain the results:
- substantial heterogeneity of preferences.
- interdependence of decisions over time.



More ingredients to be considered

Social structure

It is not the same if a stranger joined one or ’ ‘ .

several friends.
How to weigh the friendship? i ’ ‘
Formalize the concept of "Perceived Q

Threshold" = Weighted social matrix b ___ /

Temporal and spatial effects ‘
Not everyone is connected to everyone(as ‘

assumed in the first version)

Include a time dependent connectivity
network between agents.

Hands on, proposal 2: implement a new version of the trheshold model
with some of these ingredients

R



Formalizing the threshold model

Let N agents in the system. Each one can adopt a binary state ”s”:
- s=1 (engaged, interested,etc)
- s=0 (not engaged, not interested,etc)

The collective state of the system will be described in terms of the
fraction of engaged / interested agents:
N

p = zsi/jv

=1

Interactions: The agents are also described by a threshold 71;,
which represents the fraction of engaged / interested people to
induce engagement / interest on agent “/”:

-Sip=>2T1; - os5i(t+1)=1

-Sip<T; o 5;(t+1)=0

(Thresholds are random variables between 0 and 1 from a probability density f(t))



Master Equations for the threshold model

Let g(p,,t) the probability that the fraction of interested agents at time t be p,/N.
Then, the master equation for g(p,,t) is:

LD = Q(1]pr-1)a@r-1,) + Q(O]Prsr) i1, ©) - Q(Llpi)a @i, ©) - Q0P a P, ©) (1)

Where Q(1|pk) and Q(O|pk) are the transitions probabilities that a given agent
become engaged / interested or disengaged / not-interested given py,:

-Q(1|pr) = (1 — py) S(pr)
-Q(0|px) = pr 11 — S(px)]

Where S(py) = fopkf(r)dr, is the cumulative distribution function of f(t) and therefore :
S(px) = P(1 < py) is the fraction of agents whose thresholds are below py .



Master Equations for the threshold model

In the limit of infinite agents (N = o),p, = p (p € [0,1]), we take the following approximations:

Pr+1 PP EA

dq(p,t)
q(pr+1,t) = q(p, t) + o

dS(p)

S(Pr+1) = S(p) £ WA

With A=1/N. Replacing these expresions in master equation (1) and neglecting terms of A2 order:

A

dq(p)
ot

9
=% [(-p+S®)q@,D]a  (2)

For a well defined initial condition, g(p,0) = §(p — py) and rescaling t — Nt the solution of equation (2) is:

d_lz = —p+S(p)| Which stationary solution is: p.=S(p.) as we have seen before




Hands on: proposal 3

e Can you add an external field to the Granovetter model?
* Read the following manuscript and see how to:

Reconstructing social sensitivity from evolution of
content volume in Twitter

Sebastidn Pinto,'»2* Marcos A Trevisan,’»2? and Pablo Balenzuela® 2

! Departamento de Fisica, FCEN, Universidad de Buenos Aires. Pabellén 1,
Ciudad Universitaria, 1428EGA, Buenos Aires, Argentina.

2 Instituto de Fisica de Buenos Aires, CONICET. Ciudad Universitaria, 1428EGA, Buenos Aires, Argentina.
(Dated: May 10, 2022)

The consumption of news produces uneven social reactions. In most cases, people share informa-
tion and discuss their opinions; public interest remains therefore bounded to the field of debate. A
few cases, in contrast, fuel up the collective sensibility and give rise to social movements. To explain
the dynamics that underlie the emergence of these reactive states, we set up a simple mathematical
model for public interest in terms of media coverage and social interactions. We test the model on
a series of events related to violence in the US during 2020. The volume of tweets and retweets
is used as a proxy of public interest, and the volume of news as a proxy of media coverage. We
show that the model succesfully fits the data and allows inferring a measure of social engagement
that correlates with human mobility data. Our findings suggest that this low-dimensional model
captures the basic ingredients that regulate social responses capable of ignite social mobilizations.

https://arxiv.org/abs/2112.11644



Summary

* Complex systems approach to social systems it to capture
mechanisms behind emergent phenomena. It is not about detailed
description of reality

* Social systems have a multitude of details that render their complete
description an unattainable task.

* However, stylized models can capture mechanisms behind some of
their observed properties.

* When these mechanisms are at work the microscopic details become
unimportant to have a qualitative understanding.

* For quantitative understanding complementary tools are needed.



See you in next class



