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Why can people change their opinions or
behaviorse Social influence and Persuasion

From www.sociologyencyclopedia.com

social influence

Social influence, however, is the process by
which individuals make real/ changes to their

Lisa Rashotte

Social influence is defined as change in an indi
vidual’s thoughts, feelings, attitudes, or beha
viors that results from interaction with anothe

individual or a group. Social influence is distinct
from conformity. power. and authority. Confor-

feelings and behaviors as a result of interaction
with others who are perceived to be similar,

desirable, or expert. People adjust their beliefs
with respect to others to whom they feel similar
in accordance with psvchological principles

Current research on persuasion, broadly

defined as change in attitudes or beliefs based
on information received from others, focuses
on written or spoken messages sent from source 5

Persuasion




Framing the problem

» When a group of inter-related individuals discuss around a given
item, they are prone to change their initial opinions in order to get
like or dissimilar from other subjects in the group.

» This interpersonal dynamics leads to different consequences which
can be categorized either by consensus or coexistence of opinions.

» What are the mechanisms leading to the formation of these
collective statese



Sociological Theories

» |mitation (Akers et al, 1979): In situations of high uncertainty, it can be
rational for individuals to imitate the behavior and opinions of others
(Bikhchandani, Hirshleifer and Welch 1992).

» Social Pressure: In some situations, interactions partners may exert social
pressure to conform with each other (Festinger Schachter & Black 1950,
Homans 1951).

» Cognition theories (Festinger 1957, Heider 1967): imply that we want to be
like people we like to interact with. To achieve this, we can convince the
others or change ourselves

» Persuasive Arguments Theory (PAT): Interactions partners exchange

arguments and persuade each other that certain opinions are more
adequate (Myers 1982, Wood 2000).




ATTITUDE CHANGE: Persuasion and Social
Influence

Wendy Wood

Department of Psychology, Texas A&M University, College Station, Texas 77843;
e-mail: wiw@psyc tamu.edu

Key Words influence, motives, fear appeals, social identity

M Abstract This chapter reviews empirical and theoretical developments in
research on social influence and message-based persuasion. The review emphasizes
research published during the period from 1996-1998. Across these literatures, three
central motives have been identified that generate attitude change and resistance.
These involve concerns with the self, with others and the rewards/punishments they
can provide, and with a valid understanding of reality. The motives have implications
for information processing and for attitude change in public and private contexts.
Motives in persuasion also have been investigated in research on attitude functions
and cognitive dissonance theory. In addition, the chapter reviews the relatively unique
aspects of each literature: In persuasion, it considers the cognitive and affective mech-
anisms underlying attitude change, especially dual-mode processing models, recipi-
ents’ affective reactions, and biased processing. In social influence, the chapter
considers how attitudes are embedded in social relations, including social identity
theory and majority/minority group influence.
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Empirical Results also demonstrate the
iImportance of social influence.

Psychological experiments
consistently show that
subjects adjust their
opinions affter being
informed about the
opinions of another person
(Wood 2000)

When subject share some
attribute with that person,
they tend to decrease their
opinion distance (Berscheid
1966, van Kniooernberg
and Wilke 1988).



What would we like to know?

» Under what conditions does a group reach consensus or a given
opinion becomes predominant?

» Can we predict the final collective outcomes when different
mechanisms compete among each other, as for instance, when
some individuals tend to agree and others to disagree?




Theoretical & numerical models
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From Physics perspective

» How do the interactions between social agents create order out of an
INitial disordered situation?

» Orderis a translation in the language of physics of what js denoted in
social sciences as consensus, agreement, uniformity, while disorder stands
for fragmentation or disagreement.

® |f is reasonable to assume that without interactions, heterogeneity
dominates left alone, each agent would choose a personal response to
a political question.

» Still, it is common experience that shared opinions, cultures, and
languages do exist.

» The focus of the statistical physics approach to social dynamics is to
understand how this comes about.

» The key factor is that agents interact, and this generally tends to make
people more similar (or notl)

» Repeated interactions in time can lead (or no’r% to higher degrees of
homogeneity, which can be partial or complete depending on the
temporal or spatial scales.




Representing opinions

The first decision to make in order to build opinion
formation models is to choose how o represent
opinions.

If we have a single topic of discusion, opinion will be
represented by a single variable that could be discrete
or continuous.

If we model opinions in several topics, we represent
them as vectors.




The Classical
discrete models




Voter Model

- Each agent can be in one of two states (pro, con) (black, white) (up, down)

- Initially solved in a 2D grid

- Follow an imitation dynamics (Akers 1979) which is the behavior followed in low
information environments.

- Agents can be considered as non-confidence in their own opinion.

- Bulk noise is absent so consensus (all agents in the same state) is an absorbing

ate (at least in finite systems)

Starting from a disordered initial condition, voter dynamics tends to increase the
order of the system, as in usual coarsening processes (Scheucher and Spohn,
1988).

- The question is whether full consensus is reached in a system of infinite size.

— Clifford, P., and A. Sudbury, 1973, Biometrika 60, 581.
- Holley, R., and T. Liggett, 1975, Ann. Probab. 3, 643.




Voter Model: Dynamical rules

1 — Pick a random agent
2 — Assume the state of a randomly selected neighbor
3 - Repeat 1 & 2 until consensus necessarily occurs in a finite system.

O
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O

— Clifford, P., and A. Sudbury, 1973, Biometrika 60, 581.
- Holley, R., and T. Liggett, 1975, Ann. Probab. 3, 643.




Voter Model evolution

i N

t=4 t=16 t=6 t=256

droplet initial condition:




Voter model main properties

- A very useful quantity to characterize the dynamics of the voter
model is the density of active links p:

- An active links is a link between two agents with different state (and
therefore able to change)

- In d-dimensional- grid, the density of active links behaves as:

(U2 g=1

. =2
P=13 In() d
d

la —bt7Z d>2

- Its mean that, in the thermodynamic limit, the system converge to

consensus if d < 2.

- For d>2 instead, it exhibits asymptoftically a finite density of
interfaces, i.e., N0 consensus is reached (in an infinite system) and
domains of opposite opinions coexist indefinitely in time

- In finite systems, the time to reach consensus Ty, depends on size N:

- Tn~ N2ford=1, Ty ~ N.In(N) for d=2 and Ty ~ N for d>2




Voter model in complex networks

PHYSICAL REVIEW E 72, 036132 (2005)

Voter model dynamics in complex networks: Role of dimensionality, disorder,
and degree distribution

Krzysztof Suchecki,* Victor M. Eguﬂuz,Jr and Maxi San Miguel]t
Instituto Mediterrdneo de Estudios Avanzados IMEDEA (CSIC-UIB), E07122 Palma de Mallorca, Spain
(Received 19 April 2005; revised manuscript received 20 July 2005; published 30 September 2005)

We analyze the ordering dynamics of the voter model in different classes of complex networks. We observe
that whether the voter dynamics orders the system depends on the effective dimensionality of the interaction
networks. We also find that when there is no ordering in the system, the average survival time of metastable
states in finite networks decreases with network disorder and degree heterogeneity. The existence of hubs, i.e.,
highly connected nodes, in the network modifies the linear system size scaling law of the survival time. The
size of an ordered domain is sensitive to the network disorder and the average degree, decreasing with both;
however, it seems not to depend on network size and on the heterogeneity of the degree distribution.

DOI: 10.1103/PhysRevE.72.036132 PACS number(s): 64.60.Cn, 89.75.—k, 87.23.Ge

Here, the authors analyze the dynamics of the voter model
when the connectivity is given by different complex networks

It is possible to derive master equations for voter model in networks?




The Voter model in uncorrelated
Nnetworks

Analytical solution of the voter model on
uncorrelated networks

Federico Vazquez! and Victor M Eguiluz

IFISC Instituto de Fisica Interdisicplinar y Sistemas Complejos (CSIC-UIB),
E-07122 Palma de Mallorca, Spain

E-mail: federico@ifisc.uib.es

New Journal of Physics 10 (2008) 063011 (19pp)
Received 14 March 2008

Published 9 June 2008

Online at http://www.njp.org/
doi:10.1088/1367-2630/10/6/063011




The Voter Model in uncorrelated networks

We will follow the developing of master equations for the evolution of
the voter model in uncorrelated networks as V&E perform in the paper.

This can be done in terms of two macroscopic variables:

p: density of acftive links What happen to p and m when a node of degree k
m: magnetization changes is state from s to =s¢
/ .
""" n active links k—n active links
—— k—n 1nert links n inert links
p o <k>
. UN
2(k—2n) # of links: —
prob Ap= ———— 2
UN
—2ks
Am= LN

m = s (k—n) m=-sn




The Voter Model in uncorrelated networks

Let’s formulate a Master Equation (ME) for the density of active links:

dp
E‘Z kdt z dp‘k

Where we use that di=1/N and dp) is the change in the density of acfive
links when a node of degre k is chosen.

ZB( 0 2(k — 2n)
v @\ ~ 4

Probability that n active links Probability of Change in p
are connected to a node of randomly choose due to a spin flip
degree k active link




The Voter Model in uncorrelated networks

The probability of having n active links among k ones will depend on the state s

of the node.
-During the evolution the density of opinions +/-, o, and o_ will change, we can
write:
B(n, k) = 2 6. B(n, k|s)
Then: S=%
dp 2 :
P n
S —2 P, z o z B(n, k|s) = (k — 21)
dt u k
k S=% n=0

Which can be written as:

% - %z P ) 05 [(W)ies - %<n2>k,s]

k S=+




The Voter Model in uncorrelated networks

Where we have used that: "

(s = XE_onBm,kls) (n?)s = z n‘ B(n, k|s)
n=0
Here, we use the hypotesis of uncorrelated networks: We assume that the

robability of having an active link depends only of the states of the two
connected nodes and is independent of the others neighboors.

Therefore, if we call p = P(—s|s) the probability that a neighbboor of node
“I'" be in a state Y-s” given that “i" is in state “s”, then B(n, k|s) becomes a
binomial distribution and:

(n) S — kp
Bn,kls) = () pri—pyn ana o)

(n®)xs = kp + k(k — 1)p?

p(”N/Z) p — # of active links conecting "s” wirh “—s"

Where p = P(—s|s) = =

UNog 203 —* | # of links connecting to a node with state *s”




The Voter Model in uncorrelated networks

Replacing p:
dp 2 2 (n) .
p Mks =5
ae = 0P ) o8 [ = | "2
K , ko k(k —1)p?
(n )k,S — 2 + 2
/ Og 4o
(k) =H=zkpk and Zpk =1
k k
dp 2p p ) ]
—=—|(u—-1)(1- —-1 1
dt U [(M ) ( 20,(1—o0y) )




Master equation for density of active links

p-=0

/

dp 2p p ) ]
—=—(u-1)(1- -1
dt u [(,u ) ( 20,(1—o0y) (1)
This equation has two stationary solutions:
(n—2)
or i 20.(1—0,) =4 o.(1—0y)
P (u—1) +( +) §(Way( +
. (1 —2)
Stable if u > 2

Stable if u < 2




Stationary state

The stationary solution of the voter model is a complete or a partially ordered
state depending on the value of the mean degree p = <k>

If u> 2, the solution is a partially ordered state with a fraction of active links
different from zero as long as o, or o. were also different from zero.

If N - oo, fluctuations goes to zero (in p and o) and a,(t) — ¢,.(0) and:

p* = 4{@.(0)(1 — 0+(0)) = cte

The system does not reach complete order in the thermodinamic limit.
However, in finite systems always exist a fluctuation that leads to all

nodes have the same opinion and therefore p = 0.




Master equation for density of active links

| | |
0 10 000 20 000 30 000
Time

Hands on: Reproduce this figure of New Journal of Physics 10 (2008) 063011




Let’s infroduce link magnetization

Although p is useful to find the absorbing state, it does not provide
which of the two states is reached: all + or all -. Let’'s define:

p++ . density of links connecting two nodes with opinions +1
p__ . density of links connecting two nodes with opinions -1

Then, m = p; + - p+ + . Let’s write the relation between m and p:

First, we will write pg : in terms of o

1. # of total links from a node with opinion *s”: aguN
2. # of total links from *s” to *“-s": p(%v)

3. # of total links from *“s” to “s” : pgsuUN

Then, (1) = (2) + (3) and pgs= a5 — P/, , leadingto: m = p., —p__ =20, -1

Using that p = 40, (1 — 0,) we obtain:
p=§(1—m?)




Link magnetization and density of active links

0.5

0.4

P03
0.2

0.1

Figure 3. Trajectory of the system in a single realization plotted on the active
links density-link magnetization (o — m) plane, for a DR random graph of size
N = 10* and degree u = 4. Insets: time evolution of m (left) and p (right) for
the same realization. We note that p and m are not independent but fluctuate
in coupled manner, following a parabolic trajectory described by p = %(1 — m?)
from equation (9) (solid line).

Hands on: Reproduce this figure of  New Journal of Physics 10 (2008) 063011




Master equation for the link magnetization

P(m,t + 6t) = 2 Pk{Wm+8k -m P(m + O, t) + Wn-6k >m P(m — O, t) + W -m P(m, t)}
k \ \

¥
\ Probability of going fromm m-8k to m. \

Probability of going from m+8k to m. Probability of not changing m.

here P(m,1) is the probability of having magnetization m at time t.

e can write down the probabilities of the possible changes in m, due to the selection of a
node of degree kin :

- A node with spin s and degree k, change its state with probability: asP(—s|s) = ?/,,

producing a change in magnetiation Am = s§;, with 6, = pZ,TI\(/ .

- The same node remains in the same state with probability: a5[1 — P(=s|s)] = a5(1 = /5, ).

With P(=sls) = -=, as before

4
O¢




Master equation for the link magnetization

Using that p = (1 — m?) we can write the transition probabilities as:

Wnom+sk = g(l —m?) and W, = (1—p)=[1-¢&1 — m?)]

P(m,t +68t) = ) Py g |1 — (m + 8§,)%| P(m + §;,¢) + ;[1 — (m— 8§ )?%|P(m - 6§, t) + [1 - &1 —m?)|P(m, t)}

ow, we go to the continuous limit by expanding P at first order in t and second order in m:

dP

At ot

P(m,t + 6t) = P(m,t) +

JdP 10°P
P(m+ A,t) = P(m, t)+EA+55m2 A? with A= 168, = iZ_k




Master equation for the link magnetization

After a while:

N(Stap—zgzkzP 2p—4am 2 4 (1 Z)OZP
or w2l M om ) am?

Now, if we identify u, = ¥, k?P, as the second moment of the degree

distribution and we define a caracteristic time 7 = ;;:’ ,we take t' = t/;
2
and the limit §t =1/, - 0 as N — oo:
0P(m,t") 02 (2)
= 1 —m4)P(m,t’'
o = = [(1 —m)P(m, t")]
The general solution of (2) is:
P(m,t") = z A1C13/2 (m)e~ D+ (3)
1=0

\

C3/2(x): Gegembauer polynomials




Average dynamics of density of active links

Having P(m,t') we can calculate the time evolution of <p>(t):

+1
() = E(1 — m2(t)) = j dm(1 — m2)P(m,¢")
-1

Replacing P(m,t’) from (3) and finding the coefficients with
an initial condition m, = §(1 — m3) then:

(p(t)) = &(1 —m§)e2"
And replacing back 1" and & we have:

(u—2)

N T
2(/1—1)(1 mo)e

(p(1)) =




Temporal evolution & different networks

T T (b) 100 T T T T T T T

T

@) 10’

Table 1. Node degree distribution P, its second moment ., and the decay time
constant of the average density of active links 7, for different networks.
Network P, 753 t(u, N)
(w—1)
2
- e g (=2
k
M u(p—1)
ER e TH— +1 —_—
x wle+ D) W DE=-2)
2e 2k 5 4(p—1)
EN exp|-—=— “u?
w P ( u ) i S(n—2)
BA w(pn+2) pw(pn+2) (u(u+2)3N) 4pu(u— DN/ (u* —4)
0 0.5 1 1.5 2 0 50 100 150 2k(k+1)(k+2) 4 (n+4)* In ( w2 N)
t/N 1[N/t (N)] Gt
CG SeN—1 (N —1)? N

Figure 4. Time evolution of the average density of active links (po(¢)) for
(a) DR, (b) ER, (c) EN and (d) BA networks with average degree u = 8. The
open symbols correspond to networks of different sizes: N = 1000 (circles),
N = 5000 (squares) and N = 10000 (diamonds). Solid lines are the analytical
predictions from equation (17). The average was taken over 1000 independent
realizations, starting from a uniform distribution with magnetization m, = 0.

Hands on: Reproduce this figure of  New Journal of Physics 10 (2008) 063011




Beyond the classical voter model

Not only the node’states can change in fime. Also the contact network
can evolve and the final states depend on the interplay between both

dynamics




Co-evolutionary voter model in complex networks

/

k endi
PRL 100, 108702 (2008) PHYSICAL REVIEW LETTERS 14 MARCH 2008

Generic Absorbing Transition in Coevolution Dynamics

Federico Vazquez,® Victor M. Eguiluz, and Maxi San Miguel
IFISC, Instituto de Fisica Interdisciplinar y Sistemas Complejos (CSIC-UIB), E-07122 Palma de Mallorca, Spain
(Received 22 October 2007; published 14 March 2008)

We study a coevolution voter model on a complex network. A mean-field approximation reveals a
absorbing transition from an active to a frozen phase at a critical value p, = ﬁ that only depends on th

----- n active links n—1 active links

average degree u of the network. In finite-size systems, the active and frozen phases correspond to k_f inert links k-n+1 inert links
connected and a fragmented network, respectively. The transition can be seen as the sudden change in th m = (k-n) m=s (k-n+1)
trajectory of an equivalent random walk at the critical point, resulting in an approach to the final froze Ap= =2 A =28
state whose time scale diverges as 7 ~ |p, — p|~! near p,. UN uN
DOI: 10.1103/PhysRevLett.100.108702 PACS numbers: 89.75.Fb, 05.40.—a, 05.65.+b, 89.75.H N
k—n active links
n inert links
m=-Sn
2(k—2n)
Ap= ———
p N
-2sk
Am= N

FIG. 1. Update events and the associated changes in the den-
sity of active links p and the link magnetization m = p, ., —
p—— when two neighbors i and j with states §; = sand §; = —s
are chosen (s = *1).



How they look like?

2(k — 2n) 2
Zl/N ankk[a—p) p#—N}

=D P E[(l — p)kinY — 2n2)) — plnyd. (D)
k

dp _

dt

= ;[(1 - —-1DA-2p) -1 2

/
Summary and conclusions.—In summary, the coevolu-

tion mechanism on the voter model induces a fragmenta-
tion transition that is a consequence of the competition
between the copying and the rewiring dynamics. In the
connected active phase, the system falls in a dynamical
steady state with a finite fraction of active links. The slow
and permanent rewiring of these links keeps the network
evolving and connected until by a finite-size fluctuation the
system reaches the fully ordered state (all nodes in the
same state) and freezes in a single component. In the frozen
phase, the fast rewiring dynamics quickly leads to the
fragmentation of the network into two components, before
the system becomes fully ordered.

Co-evolving voter model in complex networks

0.5

1/2p,

FROZEN
PHASE

FIG. 2. Stationary density of active links p, and the two types
of inert links p,4 and p__ vs the rewiring probability p as
described by the mean-field theory for a network with average
degree u = 4. The critical point p_. separates an active from a
frozen phase.



Co-evolving nonlinear voter model

'Fragmentation transitions in a
coevolving nonlinear voter model

Byungjoon Min & Maxi San Miguel

. Westudya coevolving nonlinear voter model describing the coupled evolution of the states of the

. nodes and the network topology. Nonlinearity of the interaction is measured by a parameter q. The

. network topology changes by rewiring links at a rate p. By analytical and numerical analysis we obtain

. aphase diagram in p,q parameter space with three different phases: Dynamically active coexistence

. phase in asingle component network, absorbing consensus phase in a single component network,

. and absorbing phase in a fragmented network. For finite systems the active phase has a lifetime that

- grows exponentially with system size, at variance with the similar phase for the linear voter model that
. has a lifetime proportional to system size. We find three transition lines that meet at the point of the

. fragmentation transition of the linear voter model. A first transition line corresponds to a continuous

- absorbing transition between the active and fragmented phases. The other two transition lines are

. discontinuous transitions fundamentally different from the transition of the linear voter model. One is a
. fragmentation transition between the consensus and fragmented phases, and the other is an absorbing
- transition in a single component network between the active and consensus phases.




Co-evolving nonlinear voter model

Phase Diagram

2 < 1 = y
(a) Q s L
Consensus ® 0.8 [
® i -
Qs q © 0.6 P ° | \ Pescossaesd
B | ‘ ‘
o\% i 1o 04 prosas,)
S 7 rewiring \
‘. ." > ’ 0.2 (b) w‘ “0'8'90090%4
° ] s S~ 4 Lo 0 leeese fomcao) " x
1 q 1 0
05 |
l-p
""" active Copying O
: 0
— inert
q
Figure 1. Schematic illustration of update rule of the coevolving nonlinear voter model. Each node is in either Figure 5. (a) Phase diagr am with respect to p and q shows congensus, coexistence, and fragmented phases,
up (red circle) or down (blue rounded square) state. Solid and dashed lines indicate respectively inert and active obtained numericauy on degree regular networks with < k) =8,/N=10% and initial condition m =0, averaged
links. At each step, we randomly choose a node i. And we choose one of its neighbors j connected by an active 103 lizafi E 1 £ Kk fi i h d fth Tt del
link with a probability ((a;)/(k;))?. Then, we rewire an active link with a probability p and copy the state of the over rea 1z‘at10ns. xamples of network con gurathn at thg steady-state of the coevolution model are
neighbor with a probability 1 — p. also shown with N=200 and (p, g) = (0.2, 0.5) for coexistencej (0.2, 2) for consensus, and (0.8,0.5) for

fragmentation. Size of giant component, magnetization, and density of active links at (b) p=0.55 and (c)
p=0.75 are also shown.

Let's remember this!!



Multi-state voter model

Local and global ordering dynamics in multi-state voter models

Lucia Ramirez*
Instituto de Fisica Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB),
Campus Universitat Illes Balears, E-07122 Palma de Mallorca, Spain and
Departamento de Fisica, Instituto de Fisica Aplicada, Universidad Nacional de San Luis-CONICET,
Ejército de Los Andes 950, D57T00HHW, San Luis, Argentina

Maxi San Miguel? and Tobias Gallat
Instituto de Fisica Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB),
Campus Universitat Illes Balears, E-07122 Palma de Mallorca, Spain

We investigate the time evolution of the density of active links and of the entropy of the dis-
tribution of agents among opinions in multi-state voter models with all-to-all interaction and on
uncorrelated networks. Individual realisations undergo a sequence of eliminations of opinions until
consensus is reached. After each elimination the population remains in a meta-stable state. The
density of active links and the entropy in these states varies from realisation to realisation. Making
some simple assumptions we are able to analytically calculate the average density of active links
and the average entropy in each of these states. We also show that, averaged over realisations, the
density of active links decays exponentially, with a time scale set by the size and geometry of the
graph, but independent of the initial number of opinion states. The decay of the average entropy is
exponential only at long times when there are at most two opinions left in the population. Finally,
we show how meta-stable states comprised of only a subset of opinions can be artificially engineered
by introducing precisely one zealot in each of the prevailing opinions.
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Can be used the voter model to reproduce real data?
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Is the Voter Model a Model for Voters?
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The voter model has been studied extensively as a paradigmatic opinion dynamics model. However, its
ability to model real opinion dynamics has not been addressed. We introduce a noisy voter model
(accounting for social influence) with recurrent mobility of agents (as a proxy for social context), where
the spatial and population diversity are taken as inputs to the model. We show that the dynamics can be
described as a noisy diffusive process that contains the proper anisotropic coupling topology given by
population and mobility heterogeneity. The model captures statistical features of U.S. presidential elections
as the stationary vote-share fluctuations across counties and the long-range spatial correlations that decay
logarithmically with the distance. Furthermore, it recovers the behavior of these properties when the
geographical space is coarse grained at different scales—from the county level through congressional
districts, and up to states. Finally, we analyze the role of the mobility range and the randomness in decision
making, which are consistent with the empirical observations.
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FIG. S2: Recurrent mobility and population heterogeneities. a) Schematic representation of the commuting network
obtained from census data. b) Schematic representation of the different agent interactions. The home county interactions
(black edges) and work county interactions (red edges) occur with different probabilities (o and 1 — « respectively). The agents
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Summary

» We have seen sociological theories of social influence

» We focus today on discrete opinion model, like different variations of the
classical voter model

» We derived the master equations of the voter model in uncorrelated
networks

» We show variations of voter model with co-evolving networks. It appears
echo-chamberse What is thise

» Can voter model be applied to understand voting datae



See you next class!!




