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Here, we provide an overview of theoretical approaches to semiflexible polymers and their net-
works. Such semiflexible polymers have large bending rigidities that can compete with the entropic
tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and
their assemblies have been motivated by their importance in biology. Indeed, crosslinked networks
of semiflexible polymers form a major structural component of tissue and living cells. Reconsti-
tuted networks of such biopolymers have emerged as a new class of biological soft matter systems
with remarkable material properties, which have spurred many of the theoretical developments
discussed here. Starting from the mechanics and dynamics of individual semiflexible polymers,
we review the physics of semiflexible bundles, entangled solutions and disordered cross-linked
networks. Finally, we discuss recent developments on marginally stable fibrous networks, which
exhibit critical behavior similar to other marginal systems such as jammed soft matter.
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I. INTRODUCTION

Over the past decades, semiflexible polymers and their
assemblies in the form of solutions and networks have
emerged as a distinct new class of soft condensed mat-
ter with striking properties. A major reason for the re-
cent interest in semiflexible polymers has been their im-
portance in living systems. Biopolymer assemblies form
principal structural components throughout biology (Al-
berts et al., 1994; Bausch and Kroy, 2006; Fletcher and
Mullins, 2010; Kasza et al., 2007; Lieleg et al., 2010),
from the intracellular scaffold known as the cytoskele-
ton to extracellular matrices of collagen, as illustrated in
Figs. 1 and 2. Cytoskelatal structures contribute to intra-
cellular transport and organization, and ensure the struc-
tural integrity and mobility of cells (Alberts et al., 1994).
Thus, most of the experimental studies of semiflexible
polymers have been carried out on biopolymers. From
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FIG. 1 Fluorescence microscopy image of bovine pulmonary
artery endothelial cells. Nuclei are stained blue with DAPI,
microtubules (green) are labeled by an antibody bound to
FITC and actin filaments (red) are labelled with phalloidin
bound to TRITC. Source http://rsb.info.nih.gov/ij/images/
(example image from ImageJ (public domain))

FIG. 2 Confocal microscopy image of a fluorescently labeled
collagen network with a concentration of 0.4 mg/ml. Courtesy
of Stefan Münster (Erlangen-Nurnberg).

a fundamental physics perspective, a major motivation
for many of the experimental and theoretical studies of
biopolymers has been the diverse behavior of biopolymer
systems, which are often in stark contrast to their now
better understood synthetic and flexible counterparts in
polymer science and materials.

A polymer is said to be semiflexible when its bend-
ing stiffness is large enough, such that the bending
energetics—that favors a straight conformation—can just
out-compete the entropic tendency of a chain to crumple
up into a random coil. Thus, semiflexible polymers ex-
hibit small, yet significant, thermal fluctuations around
a straight conformation. This competition between en-
tropic and energetic effects gives rise to many of the
unique physical properties of semiflexible polymers and

their assemblies (Bausch and Kroy, 2006; Fletcher and
Mullins, 2010; Kasza et al., 2007; Lieleg et al., 2010;
MacKintosh and Janmey, 1997). The semiflexible nature
of the polymers also has major implications for how they
interact with each other to form entangled or crosslinked
networks, and for the linear and nonlinear elastic and flow
properties of such networks. A deep and predictive un-
derstanding of the physics of such networks has proven
to be a daunting theoretical challenge, in part due to
their disordered many-body nature, and the fundamen-
tally more peripheral role of entropy in these systems.
Here, we review recent advances in modeling such sys-
tems, and highlight some of the major remaining open
questions.

Biopolymers, especially those composed of globular
proteins much larger than the atomic or molecular scale,
are far more rigid than most synthetic polymers, and
they constitute prime examples of semiflexible polymers.
Their rigidity results in conformations, both at the sin-
gle polymer and network level, that are very far from the
near gaussian or random coil configurations common in
polymer physics (Wilhelm and Frey, 1996). This differ-
ence turns out to be more than just a quantitative one:
Semiflexible polymer systems exhibit qualitatively differ-
ent elastic and viscoelastic properties. These properties
include reversible softening under compression (Chaud-
huri et al., 2007), as well as both stiffening (Gardel et al.,
2004a; Lieleg et al., 2007; Storm et al., 2005) and negative
normal stress under shear (Janmey et al., 2007).

Because of the unusual material properties of biopoly-
mers and their assemblies, much can be learned from
them and they can serve as inspiration for new mate-
rials or new experimental systems to test fundamental
physics. An example of the latter is the recent use of
carbon nanotubes, which have comparable mechanical
properties to many biopolymers and which can be very
effectively visualized with light microscopy, to address
long-standing puzzles in polymer physics (Doi and Ed-
wards, 1988; Fakhri et al., 2010, 2009; Odijk, 1983).

From a physical point of view, the main differences
between various semiflexible polymers, biological or syn-
thetic, are their dimensions and mechanical properties.
One of the ways to quantify the bending stiffness of poly-
mers is by their so-called persistence length, which is es-
sentially the length over which they appear straight in the
presence of Brownian forces. The persistence lengths and
dimensions of various semiflexible polymers are listed in
Table I. An important aspect, setting biopolymers apart
from most synthetic polymers, is that their persistence
length is much larger than the molecular or single pro-
tein scale, and is often comparable to or larger than the
relevant length scale on which the polymer is considered,
such as its contour length or the cross-linking length scale
of the network in which they are embedded. Thus, many
biopolymers are considered to be semiflexible, and their
dynamics is governed by a competition between entropic
and energetic effects. Many theories of semiflexible poly-
mers have been put to a test, since it became possible
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to study the dynamics and elastic properties of isolated
biopolymers.

Quantitative measurements of the properties of
biopolymer systems in their native environment in vivo
remains a formidable experimental challenge (Fletcher
and Mullins, 2010). However, important advances have
been achieved by using a bottom-up approach: proteins
are purified and reconstituted to form simplified in vitro
models of real biopolymer systems, which can be studied
quantitatively under well-controlled conditions (Bausch
and Kroy, 2006; Kasza et al., 2007; Lieleg et al., 2010).
Most biopolymers, including filamentous actin (F-actin),
intermediate filaments and microtubules, as well as as-
sociated regulatory proteins can now be purified and re-
constituted into networks. These reconstituted networks
have not only formed an ideal testing ground for theory,
but have often lead the way for new theoretical devel-
opments. Thus, a large share of the work reviewed here
was done in the context of such reconstituted biopolymer
networks.

As an example, we show an electron micrograph and a
fluorescence microscopy image of an in vitro F-actin net-
work in Figs. 3a,b. The microstructure and mechanics
of such networks can depend sensitively on the type and
concentration of polymer and crosslinking proteins (Lie-
leg et al., 2010). This represents yet another key dif-
ference with respect to flexible polymers: semiflexible
polymers are fundamentally less prone to entangle with
their neighbors, since they cannot readily form tight coils
or knots. This renders biopolymer networks much more
sensitive to cross-linking, and may be a reason why na-
ture employs a wide variety of crosslinkning proteins. In-
deed, distinguishing properties of physiological crosslink-
ers, such as their dynamic or transient nature (Broedersz
et al., 2010a; Heussinger, 2011; Lieleg et al., 2008, 2009;
Strehle et al., 2011; Ward et al., 2008; Yao et al., 2013)
or a nonlinear elastic response (Broedersz et al., 2008;
Gardel et al., 2006; Kasza et al., 2010, 2009; Wagner
et al., 2006), have been found to have a major impact on
the linear and nonlinear viscoelastic properties of the net-
works they form. The addition of motor proteins such as
myosin, which can actively generate stochastic forces by
tugging on F-actin filaments, can drive the network into
a nonequilibrium state (Koenderink et al., 2009; Mizuno
et al., 2007), with striking effects on the dynamics and
mechanics of the system.

One of the key mechanical properties of such reconsti-
tuted networks is the shear modulus. The shear modulus
typically exhibits a rich frequency dependence (Hinner
et al., 1998; Koenderink et al., 2006; Schnurr et al., 1997),
including frequency-independent plateau regimes at in-
termediate frequencies, and various power law regimes
at both low and high frequencies. This variety reflects
how the network can be dominated by qualitatively dif-
ferent dynamics on different times scales. Insights into
these various frequency regimes were given by theories on
the dynamics of semiflexible polymers or bundles in per-
manently or transiently crosslinked networks (Broedersz

FIG. 3 a) Electron micrograph of a fixed and rotary-shadowed
filamin-F-actin network at an actin concentration 1 mg/ml,
average filament length 15 µm, and a filamin:actin molar ra-
tio of 0.005:1. From (Kasza et al., 2009) b) Confocal mi-
croscopy image of a fluorescently labeled bundled filamin-F-
actin network at high filamin concentrations (From (Kasza
et al., 2010)). c) Electron micrograph of a fixed and rotary-
shadowed Vimentin network. Courtesy of Y-C. Lin and D.
Weitz (Harvard).

et al., 2010a; Gittes and MacKintosh, 1998; Heussinger
et al., 2007a, 2010; Lieleg et al., 2008; Morse, 1998a,b,c).
In some cases, weak power laws were observed (Semm-
rich et al., 2007), suggesting soft glassy dynamics, which
spurred the developments of theories on the dynamics of
polymers in glassy environments (Kroy, 2008; Kroy and
Glaser, 2007). These systems also exhibit a striking non-
linear response (Gardel et al., 2006, 2004a,b; Storm et al.,
2005), in which the networks’ differential stiffness can
increase 10-100 fold at moderate strains between 10%-
100%, which lead to much debate on the origins of this
behavior (Conti and MacKintosh, 2009; Heussinger et al.,
2007b; Huisman et al., 2008, 2007; Kabla and Mahade-
van, 2006; Lieleg et al., 2007; Onck et al., 2005; Wyart
et al., 2008).

In this review we focus largely on minimal, physical
approaches. We begin with the properties of single fila-
ments, and then move on to the collective properties of
entangled solutions and semiflexible polymer networks.
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TABLE I Persistence lengths and dimensions of various biopolymers(Dogic et al., 2004; Gittes et al., 1993; Howard, 2001; Lin
et al., 2010a,b; Mücke et al., 2004).

Type approximate diameter persistence length contour length

Microtubule 25 nm ∼ 1− 5 mm 10s of µm
F-actin 7 nm 17 µm <∼ 20 µm
Intermediate filament 9 nm 0.2− 1 µm 2− 10 µm
DNA 2 nm 50 nm <∼ 1 m
SWNTs < 1 nm ∼ 10 µm >∼ 1 µm

II. SEMIFLEXIBLE POLYMERS

Biopolymers such as those that make up the cytoskele-
ton and extracellular matrices typically consist of aggre-
gates of large globular proteins (Fig. 4). These are usu-
ally bound together more weakly than most synthetic,
covalently-bonded polymers. Biopolymers can neverthe-
less exhibit surprising stability and strength. Specifi-
cally, given that their diameter can be as large as tens
of nanometers or more, they are far more rigid to bend-
ing than most common synthetic polymers, and it can
be a good approximation in some cases to treat them as
elastic fibers. Thus, their bending rigidity is often their
most important characteristic. In many cases, however,
the contour length of these filaments is still long enough
that they may exhibit significant thermal bending fluc-
tuations. Thus they are said to be semiflexible or worm-
like.

The most intuitive characterization of the stiffness of
biopolymers is their persistence length `p, which can be
regarded as the contour length at which significant bend-
ing fluctuations occur. This characterization is convent,
but can be misleading. It is not correct, for instance,
to think of a semiflexible polymer as rod-like and effec-

FIG. 4 The three families of cytoskeletal filaments, including
F-actin, intermediate filaments and microtubules.

tively athermal on length scales shorter than `p: even
for lengths much less than this, thermal fluctuations can
play an important, even dominant role, e.g., in determin-
ing the axial stretching response of a semiflexible chain.
Also, it is important to bear in mind that `p is directly
related to the filament stiffness only in thermal equilib-
rium and only for filaments that are perfectly straight
in their relaxed state. Sometimes, the term persistence
length is also used merely as a way of characterizing how
straight a given polymer is, for instance, in AFM exper-
iments that measure the conformation of a polymer ad-
sorbed on a surface. Such conformations can be far from
equilibrium, and thus the shape may not directly reflect
the bending rigidity of the filament. Under conditions of
thermal equilibrium, the persistence length is more pre-
cisely defined in terms of the angular correlations of the
local tangent along the polymer backbone, which decay
exponentially with a characteristic length `p. The per-
sistence lengths of a few important semiflexible polymers
are given in Table I, along with their approximate diam-
eter and contour length.

A. Worm-like Chain Model

On the scale of several nanometers to micrometers,
biopolymers are often effectively modeled as inextensi-
ble elastic rods or fibers with finite resistance to bend-
ing. This is the essence of the so-called worm-like-chain
(WLC) model (Kratky and Porod, 1949). This can be
described by a bending energy of the form,

Hbend =
κ

2

∫
ds

∣∣∣∣ ∂~t∂s
∣∣∣∣2 , (1)

where κ is the bending modulus and ~t is a (unit) tangent
vector along the chain, and the integrand represents the
square of the local curvature along the chain. Here, the
chain position ~r(s) is described by an arc-length coor-
dinate s along the chain backbone. Hence, the tangent
vector

~t =
∂~r

∂s
. (2)

These quantities are illustrated in Fig. 5.
The bending modulus κ has units of energy times

length. A natural energy scale due to Brownian fluc-
tuations is kBT , where T is the temperature and k is
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2a

s

t(s)

FIG. 5 A filamentous protein can be regarded as an elas-
tic rod of radius a. Provided the length of the rod is very
long compared with the monomeric dimension a, and that the
rigidity is high (specifically, the persistence length `p � a),
this can be treated as an abstract line or curve, characterized
by the length s along its backbone. A unit vector ~t tangent
to the filament defines the local orientation of the filament.
Curvature is present when this orientation varies with s. For
bending in a plane, it is sufficient to consider the the angle
θ(s) that the filament makes with respect to some fixed axis.
The curvature is then ∂θ/∂s.

Boltzmann’s constant. Thus, `p = κ/(kBT ) is a length.
In fact, this is precisely the persistence length described
above. For a homogeneous rod of diameter 2a consisting
of a homogeneous material, the bending modulus should
be proportional to the material’s Young’s modulus E,
which has units of energy per volume. Thus, having units
of energy times length, we expect that κ to be of order
Ea4. In fact (Landau and Lifshitz, 1986),

κ =
π

4
Ea4. (3)

This is often expressed as κ = EI, where I is the moment
of inertia of the cross-section. For a cylindrical fiber, the
moment of inertia I depends on the fourth power of the
fiber radius a, apart from a purely geometric prefactor
depending only on the cross-section. The factor πa4/4
happens to be the right one for a cylindrical solid rod of
radius a. For a hollow tube, the prefactor would be dif-
ferent, but still of order a4, where a is the (outer) radius.
This elastic rod (or tube, as in the case of microtubules)
approximation can be a good one, at least if the radius
of curvature of the filament is large compared with the
molecular scale a. Within this approximation, the im-
plied Young’s modulus E for polymers such as F-actin
and microtubules can be as large as 1 GPa (Howard,
2001; de Pablo et al., 2003).

It is instructive to begin our analysis of the WLC model
with the case of motion confined to a plane, for which
there is a single transverse degree of freedom, the deflec-
tion away from a straight line. Here, the integrand above
in Eq. (1) becomes (∂θ/∂s)

2
, where θ is simply the lo-

cal angle that the chain axis makes relative to any fixed
axis. A discrete approximation to the integral in Eq. (1)

is then
∑
i (∆θi)

2
/∆s, where ∆θi = θi−θi−1 is the angle

change between points separated by a small distance ∆s
along the contour. If the ∆θi are independent degrees
of freedom, which can be expected to be valid in the ab-
sence of long-range forces, the equipartition theorem tells

TABLE II List of main symbols used in text.

Symbol Description

a Filament radius
E Young’s modulus
φ Volume fraction
G Shear modulus
γ Strain
Γ Nonaffinity parameter
ε Relative extension
K Differential shear modulus
κ Filament bending rigidity
` Filament length
`p Persistence length
`c Spacing between crosslinks.
µ Filament stretching modulus
ρ Filament length density
σ Stress
τ Tension
ξ Mesh size
z Network connectivity
zCF Central force isostatic point
zb Bending isostatic point

us that

〈∆θ2
i 〉 =

kBT∆s

κ
. (4)

This can be used to determine the correlations of orien-
tations from one point along the chain to another. We
note that the thermal average

〈cos (θm − θn)〉 = 〈cos (∆θm)〉〈cos (θm−1 − θn)〉
. . . (5)

= 〈cos (∆θm)〉m−n−1,

where we have used the independence of the various ∆θi,
and the fact that 〈sin (∆θm)〉 = 0. From this, it follows
that the correlation function decays as

〈~t(s) · ~t(s′)〉 = e−|s−s
′|/`p , (6)

where `p = 2κ/kBT . Of course, this is all for motion
confined to a plane. Taking into account the two inde-
pendent transverse directions for thermal fluctuations in
3D, the persistence length becomes `p = κ/kBT . This
persistence length provides a geometric measure of the
mechanical stiffness of the rod, provided that it is in equi-
librium at temperature T .

This provides, in principle, a way to measure the per-
sistence length, and thus the bending modulus of fila-
ments by imaging the angular correlations along a fila-
ment. As discussed below, however, one must also be
careful to account for the dynamics of filaments.

B. Force-extension

A single filament can respond to forces applied to it
by bending, stretching or compressing. On length scales



6

shorter than the persistence length, the bending can
be described in mechanical terms, as for elastic rods.
By contrast, stretching and compression may involve a
purely elastic or mechanical response (as for macroscopic,
elastic rods), a purely entropic response, or a combina-
tion of the two. For an inextensible chain, the entropic
response comes from the thermal bending fluctuations of
the filament. Perhaps surprisingly, as we shall see below,
the longitudinal response can be dominated by entropy
even on length scales small compared with the persistence
length. Thus, it may be incorrect to think of a filament
as truly rod-like, even on length scales shorter than `p.

The longitudinal single filament response is often de-
scribed in terms of a so-called force-extension relation-
ship, in which the axial force required to extend the
filament is measured or calculated in terms of the de-
gree of extension along a line. At any finite temperature,
there is an entropic resistance to such extension due to
the presence of thermal fluctuations that make the poly-
mer deviate from a straight conformation: since there
are many more crumpled configurations of the polymer
than the (unique) straight conformation, extending the
polymer reduces the entropy and may increase the free
energy. This entropic force-extension has been the basis
of mechanical studies, for example, of long DNA (Busta-
mante et al., 1994), and a full, general calculation for low
and high force, as well as short and long chains is very
involved, although simple approximations can be very ac-
curate in the limit of long chains (`� `p) or high forces
(Marko and Siggia, 1995). An interesting and univer-
sal form was recently proposed and shown to capture a
broad range of polymer properties (Carrillo et al., 2013;
Dobrynin and Carrillo, 2010). Here, we focus on a simple
calculation appropriate for high tensile forces or for stiff
polymers such as those that make up the cytoskeleton of
cells, for which a nearly straight chain is most relevant
(MacKintosh et al., 1995).

For a filament segment of length ` <∼ `p the filament is
nearly straight, with only small transverse fluctuations.
We let the x-axis define the average orientation of the
chain segment, and let u and v represent the two inde-
pendent transverse degrees of freedom. These can then
be thought of as functions of x and time t in general.
For simplicity, we first consider just a single transverse
coordinate, u(x, t). The bending energy is then

Hbend =
κ

2

∫
dx

(
∂2u

∂x2

)2

=
`

4

∑
q

κq4u2
q, (7)

where u(x) is represented by a Fourier decomposition

u(x, t) =
∑
q

uq sin(qx). (8)

As illustrated in Fig. 6, the local orientation of the fila-
ment can be characterized by the slope ∂u/∂x, while the
local curvature involves the second derivative ∂2u/∂x2.
Such a description is appropriate for the case of a nearly

FIG. 6 If one end of a filament is fixed, both in position and
orientation, while the other is free. The filament tends to
wander in a way that can be characterized by u(x), a trans-
verse displacement field. For a fixed total arc length of the
filament, thermal fluctuations result in a contraction of the
end-to-end distance, which is denoted by ∆`. In fact, this con-
traction is actually distributed about a thermal average value
〈∆`〉. The mean-square (longitudinal) fluctuations about this
average are denoted by 〈δ`2〉, while the mean-square lateral
fluctuations (i.e., with respect to the dashed line) are denoted
by 〈u2〉. The bottom image shows how the fluctuations are
reduced and the chain is extended when a tension τ is applied.

straight filament with fixed boundary conditions u = 0
at the ends, x = 0, `. Here, the wave vectors q = nπ/`,
where n = 1, 2, 3, . . ..

If the chain is inextensible, with no compliance in its
contour length, then the end-to-end contraction of the
chain in the presence of thermal fluctuations in u is

∆` =

∫
dx

√1 +

∣∣∣∣∂u∂x
∣∣∣∣2 − 1

 ' 1

2

∫
dx

∣∣∣∣∂u∂x
∣∣∣∣2

=
`

4

∑
q

q2u2
q. (9)

The integration here is actually over the projected length
of the chain. But, to leading (quadratic) order in the
transverse displacements, we make no distinction be-
tween projected and contour lengths here, and above in
Hbend. Because the tension τ is conjugate to ∆`, we can
write the energy in terms the applied tension as

H =
1

2

∫
dx

[
κ

(
∂2u

∂x2

)2

+ τ

(
∂u

∂x

)2
]

=
`

4

∑
q

(
κq4 + τq2

)
u2
q. (10)

Under a constant tension τ therefore, the equilibrium
amplitudes uq satisfy the equipartition theorem,

〈|uq|2〉 =
2kBT

` (κq4 + τq2)
, (11)
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and the contraction

〈∆`〉τ = kBT
∑
q

1

(κq2 + τ)
. (12)

There are, of course, two transverse degrees of freedom,
and this final expression incorporates a factor of two ap-
propriate for a chain fluctuating in 3D.

semiflexible filaments exhibit a strong suppression of
bending fluctuations for modes of wavelength less than
the persistence length `p, as can be seen in the q-
dependence in Eq. (11). This has important conse-
quences for many of the thermal properties of such fil-
aments. In particular, it means that the longest uncon-
strained wavelengths tend to be dominant in most cases
of interest, provided that this length is short compared
with `p. This allows us, for instance, to anticipate the
scaling form of the end-to-end contraction ∆` between
points separated by arc length ` in the absence of an ap-
plied tension. We note that it is a length, it must vary
inversely with stiffness κ, and must increase with temper-
ature. Thus, since the dominant mode of fluctuations is
that of the maximum wavelength, `, we expect the con-
traction to be of the form 〈∆`〉0 ∼ `2/`p. More precisely,
for τ = 0,

〈∆`〉0 =
kBT`

2

κπ2

∞∑
n=1

1

n2
=

`2

6`p
. (13)

Similar scaling arguments to those above lead us to ex-
pect that the typical transverse amplitude of a segment
of length ` is approximately given by

〈u2〉 ∼ `3

`p
. (14)

in the absence of applied tension. The precise coeffi-
cient for the mean-square amplitude of the midpoint be-
tween ends separated by ` (with vanishing deflection at
the ends) is 1/24. Apart from the prefactor, we could
have anticipated the scaling form of the result in Eq. (14)
by noting that, being a thermal effect, it should increase
proportional to kBT . It should also decrease inversely
with bending rigidity κ. Thus, the expectation is that
〈u2〉 ∼ (kBT/κ) × `3, where the dominating wavelength
λ ∼ ` is the longest unconstrained mode and this length
enters with a third power for dimensional reasons.

For a finite tension τ , however, the longest uncon-
strained wavelength is not the only relevant length.
There is also a characteristic length `t ∼

√
κ/τ asso-

ciated with the competition of bending and the tension.
In short, modes of wavelength shorter than this are gov-
erned primarily by bending, while those of longer wave-
length are governed by tension. Thus, the analysis above
is valid provided that `t >∼ `, i.e., for tensions τ small
compared with the Euler buckling force κ/`2 of an elas-
tic rod of length `. This also corresponds to the regime
of force for which the response to tension is linear. In
the other limit, `t <∼ `, nonlinearities in the response can

be expected. In both limits, the extension of the chain
(toward full extension) under tension is given by

δ`(τ) = 〈∆`〉0 − 〈∆`〉τ =
`2

π2`p

∑
n

φ

n2 (n2 + φ)
, (15)

where

φ = τ`2/(κπ2) (16)

is a dimensionless force. As suggested above, the charac-
teristic force κπ2/`2 that enters here is the critical force
in the classical Euler buckling problem. The summation
in Eq. (15) can be found analytically, with the result that
the relative extension

ε ≡ δ`

〈∆`〉0
= 1− 3

π
√
φ coth

(
π
√
φ
)
− 1

π2φ
. (17)

Thus, the force-extension curve can be found by inverting
this relationship numerically.

In the linear regime, the extension becomes

δ` =
`2

π2`p
φ
∑
n

1

n4
=

`4

90`pκ
τ, (18)

i.e., the effective spring constant for longitudinal exten-
sion of the chain segment is 90κ`p/`

4, which varies in-
versely with kBT , in contrast to the freely-jointed chain

0.02 0.05 0.10 0.20 0.50 1.00

0.1

1

10

100

|φ|

|ε|

compression

extension

FIG. 7 The dimensionless force φ as a function of the relative
extension ε = δ`/〈∆`〉 from Eq. (17). For small extension
or compression, the response is linear. The upper curve de-
picts the force under extension (ε > 0), where the force is
positive. The lower solid curve depicts the case of compres-
sion (ε < 0), where the force is negative. Both curves exhibit
nonlinearities near the point where the extension or compres-
sion become comparable to the thermal contraction 〈∆`〉0 in
the absence of force (i.e., |ε| ' 1). For comparison, the lin-
ear limit is shown by the dashed line. For both extension
and compression, the nonlinearities appear when the force is
near the buckling threshold, φ = 1, indicated by the end of
the dashed line. While these results are exact for inextensi-
ble chains of length `� `p under tension, finite-temperature
buckling must be included for −ε ' −φ ' 1 (Baczynski et al.,
2007; Emanuel et al., 2007; Odijk, 1998).
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and semiflexible chains in the limit ` � `p, both of
which exhibit increasing stiffness with temperature T .
The scaling form of this could also have been anticipated,
based on very simple physical arguments similar to those
above. In particular, given the expected dominance of
the longest wavelength mode (i.e., `), we expect that the

end-to-end contraction scales as δ` ∼
∫

(∂u/∂x)
2 ∼ u2/`.

Thus, 〈δ`2〉 ∼ `−2〈u4〉 ∼ `−2〈u2〉2 ∼ `4/`2p, which is con-
sistent with the effective (linear) spring constant derived
above from Eq. (18), since 〈δ`2〉 should be equal to kBT
divided by the longitudinal spring constant.

Importantly, due in part to the asymmetry of the
wormlike chain under extension and compression, the
statistics of the end-to-end fluctuation of a semiflexible
polymer are not described by a Gaussian distribution.
The full distribution function was calculated analytically
in (Wilhelm and Frey, 1996). The resulting distribution
can be approximated by a Gaussian only near the thermal
average extension, while the distribution cuts off sharply
near the full extension.

The full nonlinear force-extension curve can be calcu-
lated numerically by inversion of the expression above.
This is shown in Fig. 7. Here, one can see both the linear
regime for small forces, with the effective spring constant
given above, as well as a divergent force near full exten-
sion. In fact, the force diverges in a characteristic way,
as the inverse square of the distance from full extension:
τ ∼ |1− ε|−2 (Fixman and Kovac, 1973; Marko and Sig-
gia, 1995; Odijk, 1995). This form of the divergence of
force can be identified without preforming the full sum-
mation in Eq. (12), as follows. For q <∼ qτ =

√
τ/κ ∼ `−1

t ,
the tension τ governs the mode amplitudes, as noted
above. Mathematically, in this range the tension term
dominates the bending term in the denominator of Eqs.
(11,12). In the other limit, for larger q, the sum rapidly
converges. Thus, only a number of terms that grows as√
τ are really needed in the sum, and these terms are

themselves proportional to 1/τ . Thus, 〈∆`〉τ ∼ 1/
√
τ

and

τ → κ`2

4`2p|〈∆`〉0 − δ`|2
(19)

for large tension.
As noted above, the force-extension relation can be

found by numerically inverting Eq. (15) using Eq. (17).
In practice, however, it is often preferable to use a more
tractable approximation to the exact force-extension re-
lation, as is usually done for DNA (Marko and Siggia,
1995). However, this worm-like-chain approximation is
only valid for `� `p. In the opposite limit of ` < `p, the
small-extension or linear response regime is characterized
by a different spring constant, although the high-force
asymptotic regime in Eq. (19) is the same, including pref-
actor. An approximate force-extension relation can be
obtained from the asymptotic limit in Eq. (19), together
with a constant term and a term linear in the extension,
where these are chosen to yield the correct overall linear
response and zero force at zero extension. The result can

be expressed simply in terms of the normalized extension
ε and force φ:

φ =
9

π2

[
1

(1− ε)2
− 1− 1

3
ε

]
. (20)

Under extension, this yields the correct small and large
force limits. It strictly overestimates the intermediate
force range between these limits, but by less than 16%.
This form has been used for efficient computation of
the nonlinear elasticity of semiflexible networks (Gardel
et al., 2004a). An equivalent force-extension expression
with an additional approximate term to capture buckling
was derived in (Huisman et al., 2008).

1. Inextensible versus extensible polymers

Before concluding our discussion of the longitudinal re-
sponse of semiflexible polymers, it is worth asking about
another obvious contribution to their response. This, we
can think of as the zero-temperature enthalpic or purely
mechanical response. After all, we are treating semiflex-
ible polymers as small bendable rods. To the extent that
they behave of rigid rods, we might expect them to re-
spond to longitudinal stresses by increasing/decreasing
their countour length. Based on the arguments above,
it seems that the persistence length `p determines the
length below which filaments behave like rods, and above
which they behave like flexible polymers with significant
thermal fluctuations. It would be tempting to expect
that enthalpic stretching dominates for any ` <∼ `p. Per-
haps surprisingly, however, even for segments of semiflex-
ible polymers of length much less than the persistence
length, their longitudinal response can be dominated by
the entropic force-extension described above.

To examine this, we consider a simple model of a semi-
flexible polymer as a homogeneous elastic rod of radius
a. We have already seen that the bending modulus is
κ ∼ Ea4. Likewise, the (linear) stretching/compression
of such an elastic rod is described by the Hamiltonian

Hstretch =
1

2
µ

∫
ds

(
d`(s)

ds

)2

(21)

where d`/ds gives the relative change in length (strain)
along the filament. The stretch modulus µ ∼ Ea2. The
effective (mechanical) spring constant of a segment of
length ` is thus kM ∼ µ/` ∼ Ea2/`, compared with
the effective (thermal) spring constant kT ∼ κ`p/`

4 ∼
kMa

2`p/`
3, since κ ∼ Ea4. Since the system will respond

primarily according to the softer effective spring con-
stant, the dominant response will be thermal if `3 >∼ a2`p,
and will be mechanical only if `3 <∼ a2`p. Thus, even
segments of length much less than `p can still respond
according to the thermal response described above. For
F-actin, for example, even filament segments as short as
100-200 nm in length may be dominated in their longitu-
dinal compliance by the thermal response arising from
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bending fluctuations. The extent of this compliance,
however, will be quite limited. Thus, there is expected to
be a crossover from a nonlinear thermal compliance to an
enthalpic stretching regime. This crossover can be char-
acterized by two mechanical springs in series, in which
one adds a purely enthalpic compliance δ`(e) = `τ/µ
to the compliance in Eq. (15) (Odijk, 1995). However,
the entropic stiffness is nonlinear, and nonlinear compli-
ances do not simply add. There is an additional higher-
order correction that corresponds to a renormalization
of the force in the nonlinear entropic force extension
curve (Storm et al., 2005). The resulting extension in
Eq. (15) for stiff chains, where `� 〈∆`〉0, is given by

δ`(τ) = `τ/µ+ δ` (τ [1 + τ/µ]) . (22)

2. Euler buckling

In addition to the mechanical or enthalpic response to
stretching, there is also another purely mechanical re-
sponse under compression: Euler buckling (Landau and
Lifshitz, 1986). When a straight elastic rod is subject to
a compressive load, it initially responds by compressing
longitudinally along its axis. Above a well-defined force
threshold, however, it undergoes a buckling instability.
To a good approximation, the rod simply cannot bear
any additional compressive load beyond this threshold.
Thus, the rod is simply unstable and any additional load
will cause the rod to completely collapse. This threshold
compressive force can be calculated as follows.

When a rod of length ` undergoes an oscillatory trans-
verse deflection of amplitude u(x) =

∑
q uq sin(qx), it

contracts longitudinally by an amount given by Eq. (9).
The energy of this deflection is given by Eq. (10), where
τ is the (tensile) load. For τ > 0, each term in the
series contributes a positive energy, so that the system
is (harmonically) stable against increasing amplitude uq,
for each q. For compressive loads, however, where τ < 0,
this is no longer the case if τ < −κq2. In that case, the
energy as function of u2

q, transitions from being concave
to being convex. Thus, for compressive tensions exceed-
ing this q-dependent threshold, the corresponding trans-
fer deflection modes become unstable. For such modes,
the system is unstable to transverse displacements. As
the compressive load −τ increases from zero, this insta-
bility first occurs for the smallest q possible, which is de-
termined by the length of the rod: q = q1 = π/`. Thus,
the buckling instability occurs for compressive force given
by

fc = κ
(π
`

)2

, (23)

and this instability corresponds to the fundamental os-
cillatory mode for the rod, where the wavelength of the
instability is twice the length of the rod, as illustrated in
the upper panel of Fig. 8. One important aspect of this
buckling is its threshold nature, which has been used ef-
fectively in numerous biopolymer experiments to measure
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 results suggest that this ubiquitous highly curved form of 

 microtubule deformation refl ects the generic nature of reinforced 

microtubule compression in living cytoplasm.

Our results suggest that microtubules can be used to probe 

the local mechanical environment within cells. Although we 

have focused on the cytoskeleton of interphase cells, the mitotic 

spindle is another important microtubule-based structure. This 

may provide additional insight into the poorly understood me-

chanical behavior of mitotic spindles (Pickett-Heaps et al., 1984; 

Maniotis et al., 1997; Kapoor and Mitchison, 2001; Scholey 

et al., 2001). Microtubules within spindles have been observed 

to buckle at somewhat longer wavelengths under natural condi-

tions (Aist and Bayles, 1991), or after mechanical or pharma-

cological perturbations (Pickett-Heaps et al., 1997; Mitchison 

et al., 2005), which suggests that spindle microtubules also 

experience compressive forces. This long-wavelength buck-

ling may refl ect an increased effective stiffness of microtubules 

caused by reinforcement by intermicrotubule bundling connec-

tions within the complex structure of the spindle. However, in 

the absence of bundling, these results suggest that the elasticity 

of any surrounding matrix cannot be very large. Another cell 

in which longer-wavelength buckling is observed is the fi ssion 

yeast, where nuclear positioning is thought to occur by com-

pressive loading of microtubules (Tran et al., 2001). This again 

suggests that the elasticity of any surrounding network must be 

considerably less than that of the interphase animal cells we 

studied. Thus, in these particular microtubule arrays, structural 

reinforcement may be either unnecessary, or mediated by other 

mechanisms, such as microtubule bundling.

An important implication of this work is the demonstra-

tion that cytoplasmic microtubules are effectively stiffened when 

embedded in even a relatively soft (elastic modulus �1 kPa) 

 cytoskeletal network; e.g., a reinforced 20-μm-long cytoplasmic 

microtubule can withstand a compressive force (>100 pN) 

>100 times larger than a free microtubule before buckling. 

Consequently, individual microtubules can withstand much 

larger compressive forces in a living cell than previously con-

sidered possible (Fig. 7). Moreover, as demonstrated by our re-

sults with cytochalasin-treated cells, the lateral reinforcement is 

robust; even disruption of the surrounding actin network only 

slightly increases the buckling wavelength, with a corresponding 

decrease in the critical force by a factor of �2. This is likely 

caused by the presence of other sources of elasticity, such as in-

termediate fi laments, which have been previously shown to both 

connect laterally to microtubules (Bloom et al., 1985), and to 

contribute to whole cytoskeletal mechanics (Wang et al., 1993). 

As illustrated with the macroscopic model, this reinforcement is 

a robust phenomenon that is insensitive to the specifi c molecu-

lar details; the only requirement is that the surrounding matrix 

must be elastic.

Mechanical reinforcement by the surrounding cytoskele-

ton may therefore provide a physical basis by which the mi-

crotubule network can bear the large loads required to stabilize 

the entire cytoskeleton and thereby control cell behavior that is 

critical for tissue development, including polarized cell spread-

ing, vesicular transport, and directional motility. These data also 

suggest that these are often large compressive forces; this is 

consistent with mechanical models of the cell that incorporate 

compression- bearing microtubules which balance tensional forces 

present within a prestressed cytoskeleton (Wang et al., 1993; 

 Stamenovic et al., 2002; Ingber, 2003). Compressive loading 

of reinforced microtubules may also have important implications 

for specialized cell functions, such as in cardiac myocytes, where 

elastic recoil of compressed microtubules may contribute to dia-

stolic relaxation or interfere with normal contractility in diseased 

tissue. These results represent a fi rst step toward a quantitative 

understanding of how living cells are constructed as composite 

materials and mechanically stabilized at the nanometer scale.

Materials and methods
Cell culture and transfection
Cos7 cells (African green monkey kidney–derived) were obtained from the 
American Type Culture Collection and cultured in 10% FBS DME. Bovine 
capillary endothelial cells were cultured as previously described (Parker 
et al., 2002). For EGFP studies, confl uent monolayers of cells were incu-
bated for 24–48 h with an adenoviral vector encoding EGFP-tubulin (Wang 
et al., 2001). Cells were sparsely plated onto glass-bottomed 35-mm 
dishes (MatTek Corp.) and allowed to adhere and spread overnight. For 
some studies, cells were microinjected with �1 mg/ml rhodamine-labeled 
tubulin (Cytoskeleton, Inc.) using a Femtojet microinjection system (Eppendorf) 
and allowed to incorporate fl uorescent tubulin for at least 2 h. For some 
experiments, cells were incubated with 2 μM cytochalasin D (Sigma-
 Aldrich) for 30 min before imaging. Microtubules were buckled using 
 Femtotip needles controlled with a micromanipulator (both Eppendorf).

Figure 7. Schematic summarizing how the presence of 
the surrounding elastic cytoskeleton reinforces micro-
tubules in living cells. Free microtubules in vitro buckle on 
the large length scale of the fi lament, at a small critical 
buckling force. Microtubules in living cells are surrounded 
by a reinforcing cytoskeleton. This leads to a larger criti-
cal force, and buckling on a short wavelength.

 on June 5, 2006 
w

w
w

.jcb.org
D

ow
nloaded from

 

FIG. 8 Schematic of classical Euler buckling (above), show-
ing the expected shape for an elastic rod that is free to bend
between its ends. Under compression defined by a fixed end-
to-end distance, beyond a well-defined threshold force, the
elastic energy can be lowered by relieving the compression at
the cost of a bend to accommodate the reduced end-to-end
distance (Landau and Lifshitz, 1986). When the lateral de-
flection of the rod is suppressed by a surrounding elastic ma-
trix (indicated in red), the buckling exhibits a shorter wave-
length bend at a correspondingly higher force threshold (Lan-
dau and Lifshitz, 1986). Microtubules in vivo exhibit such a
constrained buckling under compression (Brangwynne et al.,
2006). c©Brangwynne et al., 2006. Originally published in
Journal of Cell Biology. doi:10.1083/jcb.200601060.

axial forces precisely (Dogterom and Yurke, 1997; Footer
et al., 2007).

Thermal fluctuations modify this classical, Euler buck-
ling result. As might be expected for thermal fluctua-
tions, the sharp force threshold no longer applies for fil-
aments at finite temperature. Rather, the smooth force-
compression curve is found, and for even small forces
there is a finite compression. This can be seen in the lin-
ear regime for compression in Fig. 7. Qualitatively, ther-
mal fluctuations can be said to enhance the compliance
under compression, resulting in reduced forces, relative
to Euler buckling, for the same degree of compression
(Emanuel et al., 2007; Odijk, 1998). Interestingly, how-
ever, this only holds for buckling in three dimensions,
and there are qualitative differences for buckling in two
dimensions: for large compressive forces (f >∼ fc), fi-
nite temperature filaments actually exhibit reduced com-
pressive compliance, relative to zero-temperature buck-
ling (Baczynski et al., 2007; Emanuel et al., 2007). As
discussed by Emanuel et al., the enhanced compliance
arises from fluctuations out of the plane of buckling.

Interestingly, if an athermal elastic rod is embedded
in a surrounding elastic material, as can be the case
for microtubules embedded in the matrix formed by the
rest of the cytoskeleton (Brangwynne et al., 2006), then
this classical Euler buckling problem and corresponding
threshold is altered (Landau and Lifshitz, 1986). We can
see this from Eg. (9), since a given amount of longitu-
dinal compression ∆` requires a larger amplitude uq for
smaller q. Such large amplitude lateral deflections are
suppressed by the surrounding matrix. More precisely,
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for a transverse deflection u, the elastic energy per unit
length along the rod is approximately given by

1

2
α⊥u

2 , (24)

where

α⊥ '
4πG

ln(λ/b)
. (25)

Here, G is the shear modulus of the surrounding elastic
medium, λ is the bending wavelength and b is a micro-
scopic length of order the radius of the rod. This result
is the elastic analogue of a possibly more familiar hy-
drodynamics result for the viscous drag per unit length
on a thin rod of length ∼ λ moving transverse to its
axis (Lamb, 1945). The hydrodynamics case will be dis-
cussed in the next section on dynamics. There are two
important points to note in deriving either result: (1)
on dimensional grounds, the elastic spring constant α⊥
for transverse displacement cannot involve an additional
factor of length beyond the obvious term ∝ G, and (2)
the elastic as well as viscous stress balance equations in-
volve the Laplacian, for which the solutions in the two
transverse dimension naturally lead to logarithms. Thus,
using the mode decomposition above, we obtain the elas-
tic energy

H =
1

2

∫
dx

[
κ

(
∂2u

∂x2

)2

+ τ

(
∂u

∂x

)2

+ α⊥u
2

]

=
`

4

∑
q

(
κq4 + τq2 + α⊥

)
u2
q. (26)

The elastic energy of the matrix has the effect of both
increasing the threshold force and shifting the instability
to a shorter wavelength. The first unstable mode corre-
sponds to

q∗ = 4
√
α⊥/κ , (27)

and the critical buckling force is now

fc = 2κq2
∗ , (28)

which can be much larger than for unconstrained buck-
ling. Such constrained buckling has been reported for
microtubules under compression in cells, where the sur-
rounding cytoskeletal meshwork can greatly enhance the
compressive load bearing capability of microtubules by
up to 100 times (Brangwynne et al., 2006; Das et al.,
2008; Liu et al., 2012; Shan et al., 2013).

C. Dynamics

In the above, we have considered only static proper-
ties of individual polymer chains. The dynamics of sin-
gle chains exhibit rich behavior that can have important

consequences even at the level of bulk solutions and net-
works. The principal dynamic modes come from the
transverse motion, i.e., the degrees of freedom u and
v above. The equation of motion of these modes can
be found from Hbend above, together with the hydro-
dynamic drag of the filaments through the solvent. In
the presence of only thermal forces, this is done via
a Langevin equation describing the net force per unit
length on the chain at position x,

0 = −ζ ∂
∂t
u(x, t)− κ ∂4

∂x4
u(x, t) + ξ⊥(x, t), (29)

which is, of course, zero within linearized, inertia-free
(low Reynolds number) hydrodynamics that we assume
here.

The first term represents the hydrodynamic drag per
unit length of the filament. Here, we have assumed a
constant transverse drag coefficient that is independent of
wavelength. In fact, given that the actual (low Reynolds
number) drag per unit length on a rod of length ` is

ζ =
4πη

ln (A`/a)
, (30)

where `/a is the aspect ratio of the rod, and A is a con-
stant of order unity that depends on the precise geometry
of the rod (Lamb, 1945). As noted above, the logarithm is
a natural consequence of the 2D nature of the transverse
plane in which the motion occurs. For a filament under-
going free bending fluctuations in solution, the relevant
length ` is the wavelength λ of the bending mode. Thus,
a week logarithmic dependence of the relaxation rate on
the wavelength is expected. However, this hydrodynamic
effect is weak and has not been directly observed. In
practice, the presence of other chains in solution gives
rise to an effective screening of the long-range hydrody-
namics beyond a length of order the typical separation
ξ between chains, which can then be taken in place of `
above.

The second term in the Langevin equation above is the
restoring force per unit length due to bending, which is
obtained by the functional derivative

− δ

δu
Hbend = −κ ∂4

∂x4
u(x, t). (31)

Finally, we include a random force ξ⊥, which can be taken
to be uncorrelated white-noise in the case of a purely
viscous solvent. Equation (29) represents an example of
model A dynamics, in which the dissipation (here, hy-
drodynamic drag) is local and the field u(x, t) is non-
conserved (Chaikin and Lubensky, 2000; Hohenberg and
Halperin, 1977).

A simple force balance in the Langevin equation above
after thermal averaging (i.e., without the noise term)
leads us to conclude that the characteristic relaxation
rate of a mode of wavevector q is (Farge and Maggs,
1993)

ω(q) = κq4/ζ. (32)
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This is valid provided end-effects are not important, i.e.,
provided that the wavelength is short compared to the
contour length of the chain. The fourth-order depen-
dence of this rate on q is to be expected from the appear-
ance of a single time derivative along with four spatial
derivatives in Eq. (29). This relaxation rate determines,
among other things, the correlation time for the fluctu-
ating bending modes. Specifically, in the absence of an
applied tension,

〈uq(t)uq(0)〉 =
2kBT

`κq4
e−ω(q)t. (33)

That the relaxation rate varies as the fourth power of the
wavevector q has important consequences. For example,
while the time it takes for an actin filament bending mode
of wavelength 1 µm to relax is of order 10 ms, it takes
about 100 s for a mode of wavelength 10 µm.

The very strong wavelength dependence of the relax-
ation rates in Eq. (32) has important consequences, for
instance, for imaging of the thermal fluctuations of fila-
ments, as is done in order to measure `p and the filament
stiffness (Gittes 1993). This is the basis, in fact, of most
measurements to date of the stiffness of DNA, F-actin,
and other biopolymers. Using Eq. (33), for instance, one
can both confirm thermal equilibrium and determine `p
by measuring the mean-square amplitude of the thermal
modes of various wavelengths. However, in order to both
resolve the various modes, as well as establish that they
behave according to the thermal distribution, one must
sample over times long compared with 1/ω(q) for the
longest wavelengths λ ∼ 1/q. At the same time, one
must be able to resolve fast motion on times of order
1/ω(q) for the shortest wavelengths. Given the strong
dependence of these relaxation times on the correspond-
ing wavelengths, for instance, a range of order a factor of
10 in the wavelengths of the modes requires a range of a
factor 104 in observation times.

Another way to look at the result of Eq. (32) is that
a bending mode of wavelength λ relaxes (i.e., fully ex-
plores its equilibrium conformations) in a time of order
ζλ4/κ. Since it is also true that the longest (uncon-
strained) wavelength bending mode has by far the largest
amplitude, and thus dominates the typical conformations
of any filament (see Eqs. (12) and (33)), we can see that in
a time t, the typical or dominant mode that relaxes is one

of wavelength `⊥(t) ∼ (κt/ζ)
1/4

. As we have seen above
in Eq. (14), the mean-square amplitude of transverse fluc-
tuations increases with filament length ` as 〈u2〉 ∼ `3/`p.
Thus, in a time t, the expected mean-square transverse
motion is given by (Farge and Maggs 1993; Amblard et
al. 1996)

〈u2(t)〉 ∼ (`⊥(t))
3
/`p ∼ t3/4, (34)

because the typical and dominant mode contributing to
the motion at time t is of wavelength `⊥(t).

The dynamics of longitudinal motion can be calculated
similarly. Here, however, we must account for the fact

that the mean-square longitudinal fluctuations 〈δ`2(t)〉
of a long filament involve the sum (in quadrature) of in-
dependently fluctuating segments along a full filament of
length `. The typical size of such independently fluc-
tuating segments at time t is `⊥(t), of which there are
`/`⊥(t). As shown above, the mean-square amplitude
of longitudinal fluctuations of a fully relaxed segment of
length `⊥(t) is of order `⊥(t)4/`2p. Thus, the longitudinal
motion is given by (Granek 1997; Gittes 1998)

〈δ`(t)2〉 ∼ `

`⊥(t)
× `⊥(t)4

`2p
∼ t3/4, (35)

where the mean-square amplitude is smaller than for the
transverse motion by a factor or order `/`p. Thus, for
both the short-time fluctuations as well as the static
fluctuations of a filament segment of length `, a point
on the filament explores a disk-like region with longi-
tudinal motion smaller than perpendicular motion by a
factor of order `/`p, which is assumed here to be small.
This is illustrated in Fig. 6. From the end-to-end fluc-
tuations in Eq. (35), it is also possible to determine the
time- or frequency-dependent compliance of such a fila-
ment to a longitudinal force applied at one end, using the
Fluctuation-Dissipation Theorem. The result can be ex-
pressed in terms of a (complex) spring constant Keff(ω):

Keff(ω) = κ`p (−2iζ/κ)
3/4

ω3/4 . (36)

This is valid in the limit of high frequency and high
molecular weight. As discussed in Sec. III, additional
relaxations are expected for finite length polymers.

For the problem as stated above, i.e., for an isolated
fluctuating filament in a quiescent solvent, there is a po-
tential problem with the analysis above, which includes
only the effect of drag for motion perpendicular to the
filament (Everaers 1999). In fact, there is a finite propa-
gation of tension along a semiflexible filament, expressed
by yet another length (Morse 1998b)

`‖(t) ∼
√
`⊥(t)`p ∼ t1/8. (37)

This represents, for instance, the range along the fila-
ment over which the tension has spread from a point of
disturbance. At very short times, it is possible to observe
a t7/8 motion of ends of a freely fluctuating filament in a
quiescent solvent, rather than the t3/4 in Eq. (35) (Ever-
aers 1999). For the high-frequency rheology of semiflexi-
ble polymer networks, however, only a dynamical regime
corresponding to Eq. (35) is observed (Gittes 1997; Koen-
derink 2006) and expected (Morse 1998a; Gittes 1998).
This will be examined in greater detail in Sec. III.

There are two important extensions to the dynamic
analysis above. First, when a filament is subject to ten-
sion τ , the equation of motion in Eq. (29) must be mod-

ified to include τ ∂2

∂x2u(x, t). Then, the relaxation rate in
Eq. (32) becomes

ω(q) =
1

ζ

(
κq4 + τq2

)
. (38)
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As noted above, tension becomes dominant for wave-
lengths longer than `t ∼

√
κ/τ . Here, the relaxation rate

reduces to τq2/ζ This has important consequences,e.g.,
for the end-to-end fluctuations (R. Granek, 1997):

〈δ`(t)2〉 ∼ t1/2. (39)

Tension also leads to a corresponding G(ω) ∼ ω1/2

regime in the rheology of networks (Mizuno et al., 2007).
The analysis based on Eq. (38) fails for large applied ten-
sions. As the linearized theory above appears to be suffi-
cient for many purposes, including a quantitative under-
standing of network and solution rheology, this is what we
have focused on here. It is interesting to note, however,
that there are rich nonlinear aspects of the full dynam-
ics. These have been addressed in part by scaling anal-
yses (Seifert et al., 1996) and more rigorous multi-scale
perturbative approaches (Hallatschek et al., 2007a,b).

The second important extension of the analysis above
is required for quantitative dynamics of finite length fil-
aments, such as any practical situation of isolated or di-
lute chains freely fluctuating in a solvent. The important
thing to note here is that, while the mode decomposi-
tion and amplitudes in Eqs. (8 and 11) are valid when
considering static fluctuations, they do not correspond
to proper normal modes, i.e., modes that exhibit single-
exponential relaxation, as in Eq. (33). Put differently,
the simple Fourier modes mix in their dynamics. For
a discussion of the proper analysis of this situation, we
point the interested reader to excellent discussions and
derivations in Ref. (Aragon and Pecora, 1985; Wiggins
et al., 1998), as well as specific discussion of the dynam-
ics of isolated F-actin and microtubule filaments in Refs.
(Brangwynne et al., 2007; Gittes et al., 1993).

D. Wormlike bundles

In many biological systems individual filaments can be
crosslinked or ligated together to form hierarchical bun-
dles, which in some cases combine to form networks. For
instance, actin is known to form networks of thick bun-
dles when polymerized in the presence of certain actin
crosslinker proteins (Claessens et al., 2008; Gardel et al.,
2004a; Hirst et al., 2005; Kasza et al., 2010; Lieleg et al.,
2010; Pelletier et al., 2003; Schmoller et al., 2009), and
such bundles constitute important cytoskeletal compo-
nents of live cells, including filopodia, sensory hair cells
and microvilli (Bathe et al., 2008; Claessens et al., 2006;
Fletcher and Mullins, 2010). An illustrative example of
a network of long, straight semiflexible bundles obtained
by polymerizing actin in the presence of fascin crosslink-
ing proteins is shown in Fig. 9 (Lieleg et al., 2007). In
this review we focus on work that addressed the mechan-
ical properties of such bundles, and for more detail on
the structural properties of bundles we refer the reader
to (Claessens et al., 2008; Grason, 2009; Grason and Bru-
insma, 2007; Kierfeld et al., 2005; Shin et al., 2009).

Can such bundles be described as an inextensible chain
with the standard worm like chain model with some
effective, renormalized bending stiffness? We may al-
ready suspect various problems. For instance, the WLC
model would not account for internal deformation modes
of the bundle, i.e twisting or relative sliding (shear) of
the constituent filaments in the bundle. To address this,
a new theory was proposed termed the worm-like bun-
dle (WLB) model (Bathe et al., 2008; Heussinger et al.,
2007a, 2010), which explicitly accounts for the discrete
character of the internal architecture of the bundle, and
its internal deformation modes.

The WLB model describes a bundle of length ` as a
collection of N filaments oriented in parallel, which are
connected by crosslinks with a stiffness kx and spacing
δ (see Figs. 10 and 11). The individual fibers run the
full length of the bundle, have a bending rigidity κ, and
a stiffness ks on the scale of the crosslinking distance
δ. An important dimensionless parameter in this model

FIG. 9 a) Fluorescence microscopy image of a bundled F-
actin network (0.1 mg/ml actin) crosslinked by fascin proteins
(scale bar is 10 micron). (b) From transmission electron mi-
crographs (inset, scale bar is 0.2 micron) a scaling relation for
the average bundle diameter D is obtained. Image and data
adapted from (Lieleg et al., 2007).
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is (Bathe et al., 2008; Heussinger et al., 2007a, 2010)

α =
kx`

2

ksδ2
, (40)

which is a measure of the competition between crosslink
shearing and filament stretching. The continuum limit
of this model is obtained by taking N → ∞ at fixed
bundle diameter, at which the WLB model describes a
Timoshenko beam.

Importantly, it was found that the bundle can not
be described by a single bending rigidity. Instead, the
bending stiffness is state-dependent and, in particular,
depends on the wavenumber qn of a bending mode of the
bundle (Heussinger et al., 2007a)

κn = Nκ

[
1 +

(
12κ̂

N − 1
+ (qnλ)2

)−1
]
, (41)

with a dimensionless bending stiffness κ̂ = κ/ksδb
2 and

length scale λ = (`/
√
α)
√
Mκ̂/(M − 1/2), where b is the

inter filament distance and M =
√
N/2. Note, however,

that λ itself does not depend on bundle length `.
For a fixed wavenumber qn ∼ n/`, three elastic regimes

can be identified: 1) If the shear stiffness of the bundle
is large, α � N , the system is in the “tightly coupled”
limit and the fibers do not slide (shear) relative to each
other to accommodate bundle bending, and κn ∼ N2ks.
2) If the shear stiffness is small, α � 1, the system is
“decoupled” and the fibers contribute to bundle bending
independently, and κn ∼ Nκ. 3) For intermediate shear
stiffness, 1 � α << N , the bundles’ bending stiffness is
dominated by internal shearing, and thus has a strong
wavelength dependence, κn ∼ Nkxq−2

n .
The various regimes for the dependence of the bun-

dles bending rigidity on N have been observed for single
F-actin bundles formed with variety of actin binding pro-
teins (Claessens et al., 2006). This was done by inferring
the scaling dependence of the bundles persistence length,
`p, on N . For actin bundles crosslinked by plastin, evi-
dence of a decoupled regime was found (`p ∼ N), while
for actin crosslinked with fascin and α-actinin, the results
were consistent with tightly-coupled behavior (`p ∼ N2)
for lower values of N , which then crossed over to de-
coupled behavior for larger values of N . By contrast,
actin bundles formed by the depletion agent PEG ex-
hibited tightly-coupled behavior for a broad range of N .
Thus, the molecular details of the crosslinker can have
an important impact on the mechanical (and dynami-
cal) behavior of bundles. Clearly, this will impact the
mechanics of a bundle network on the macroscopic level.
Indeed, various studies have found evidence for decoupled
or coupled regimes in the macroscopic rheology of bun-
dle networks (Lieleg et al., 2007). Moreover, evidence
for such behavior has also been found for networks of
fibrinogen, which forms complex, hierarchical fibers con-
sisting of many protofibrils. The resulting fibers can be
modeled as bundles, although the protofibrils are less dis-
tinct than, e.g., actin in bundles. Interestingly, fibrin

networks have also shown evidence of a nonlinear ther-
mal compliance that goes beyond the mechanical models
above (Piechocka et al., 2010).

It has also been argued that the WLB model is a
more appropriate description than the WLC model for
microtubules, owing to their anisotropic molecular ar-
chitecture (Taute et al., 2008): as shown in Fig. 4, mi-
crotubules are cylindrical and tubular in shape, but the
axial binding of tubulin proteins into protofilaments is
stronger than the lateral binding of these filaments. In-
terestingly, it has been reported that microtubules have
a length- or wavelength-dependent stiffness (Pampaloni
et al., 2006; Taute et al., 2008), and the elastic anisotropy
of their structure has been implicated as the cause of
this (Heussinger et al., 2010). However, it was also
noted that the degree of anisotropic elasticity required
to account for the reported length dependence is ex-
tremely large, and much larger than recent detailed sim-
ulations found (Sept and MacKintosh, 2010). Moreover,
AFM experiments probing the response of microtubules
to radial forces have not shown evidence for significant
anisotropy (de Pablo et al., 2003). Thus, this remains
and interesting and unresolved puzzle (Liu et al., 2012).

The remarkable wavelength dependence of the bundles
bending rigidity has a number of important implications.
The entropic stiffness of a bundle in the parameter range
λ
√
N � `� λ is given by (Heussinger et al., 2007a)

kentr ∼
(Nκ)

2

`λ3kBT
(42)

Importantly, the strong 1/`4 dependence of length in the
WLC model (see Eq. (18)), is replaced here by 1/`λ3 with
implications for the modulus of a network and its scaling
with concentration (Heussinger et al., 2007a). Under a
compressive force, the bundle buckles (see Sec. II.B.2) at
a force threshold fc ∼ κn/`

2 (with n = 1) . However, in
the intermediate regime, where internal shear dominates,
κn ∼ `2, and thus the strong length-dependence of the
buckling force threshold drops out fc ∼ Nκ/λ2. It has
been argued that this mechanism may stabilize biopoly-
mer assemblies under compression, with possible impli-
cations for microtubules, and actin bundles in growing
filliopodia (Bathe et al., 2008; Heussinger et al., 2007a).

III. ENTANGLED SOLUTIONS OF SEMIFLEXIBLE
POLYMERS

A. Rheology of entangled networks

Given the rigidity of semiflexible polymers at scales
shorter than their contour length, it is not surprising
that in solutions they interact with each other in very
different ways than flexible polymers would, e.g., at the
same concentration. In addition to the important char-
acteristic lengths of the molecular dimension (say, the fil-
ament diameter 2a), the material parameter `p, and the
contour length of the chains, there is another important
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↵ ⌧ 1 ↵ � N

kx b

FIG. 10 Semiflexible filaments (black) are coupled to nearest-
neighbor filaments by crosslinks (green) with axial spacing, δ,
and stiffness, kx. The inter-filament spacing, b, is fixed by
the length of the intervening ABPs and remains constant in
tightly crosslinked bundles. The ratio α (See Eq. (40)), rep-
resents the competition between crosslink shearing and fila-
ment extension or compression during bundle bending. This
ratio determines the degree of coupling in the bundle. Image
adapted from (Claessens et al., 2006).

FIG. 11 Schematic illustrating the wormlike bundle model.
Bundles consist of regular arrangements of filaments held to-
gether by equally spaced crosslinking proteins. The bundle
can bends and twists in space, which can result in internal fil-
ament sliding/shear. Image adapted from (Heussinger et al.,
2010).

new length scale in a solution, the mesh size, or typical
spacing between polymers in solution, ξ. A simple esti-
mate (Schmidt et al., 1989) shows how ξ depends on the
molecular size a and the polymer volume fraction φ. In
the limit that the persistence length `p is large compared
with ξ, we can approximate the solution on the scale of
the mesh as one of rigid rods. Hence, within a cubical
volume of size ξ, there is of order one polymer segment
of length ξ and cross-section a2, which corresponds to a

volume fraction φ of order (a2ξ)/ξ3. Thus,

ξ ∼ a/
√
φ. (43)

While the mesh size characterizes the typical spacing
between polymers within a solution, it does not entirely
determine the way in which they interact sterically with
each other. For instance, for a random static arrange-
ment of rigid rods, it is not hard to see that polymers
will not touch each other on average except on a much
larger length: imagine threading a random configuration
of rods at small volume fraction with a thin needle. An
estimate of the distance between typical interactions (en-
tanglements) of semiflexible polymers must account for
their thermal fluctuations (Odijk, 1983). As we have seen
above, the transverse range of fluctuations δu a distance `
away from a fixed point grows according to δu2 ∼ `3/`p.
Along this length, such a fluctuating filament explores
a narrow cone-like volume of order `δu2. An entangle-
ment that leads to a constraint of the fluctuations of such
a filament occurs when, with probability of order unity,
another filament crosses through this volume, in which
case it will occupy a volume of order a2δu, since δu� `.
Thus, the volume fraction and the contour length ` be-
tween constraints is of order φ ∼ a2/(`δu). Taking the
corresponding length as an entanglement length

`e ∼ (a4`p)
1/5φ−2/5, (44)

which is larger than the mesh size ξ in the semiflexible
limit `p � ξ.

These transverse entanglements, separated by a typi-
cal length `e, govern the elastic response of solutions, in
a way first outlined by (Isambert and Maggs, 1996). A
more complete discussion of the rheology of such solu-
tions can be found in (Morse, 1998b,c), along with ex-
perimental evidence in (Hinner et al., 1998). The ba-
sic result for the rubber-like plateau shear modulus G0

for such solutions can be obtained by noting that the
number density of entropic constraints (entanglements)
is n ∼ 1/(ξ2`e), where ρ ∼ 1/ξ2 is the concentration in
total chain length per volume. In the absence of other en-
ergetic contributions to the modulus, the reduction in en-
tropy associated with these constraints results in a shear
modulus proportional to kBT per entanglement:

G ∼ kBT

ξ2`e
∼ φ7/5. (45)

This is analogous to the case of flexible polymers, where
G ∼ kBT/ξ

3. It is also interesting to note that the semi-
flexible result in Eq. (45) is strictly smaller than the cor-
responding flexible polymer result for the same mesh size,
since stiff polymers are fundamentally less entangled than
flexible polymers, and `e > ξ. The modulus in Eq. (45)
has been well-established in experiments, such as those
of (Hinner et al., 1998).

With increasing frequency, or for short times, the
macroscopic shear response of solutions is expected to
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show the underlying dynamics of individual filaments.
One of the main signatures of the frequency response of
polymer solutions in general is an increase in the shear
modulus with increasing frequency. In practice, for high
molecular weight F-actin solutions of approximately 1
mg/ml, this is seen for frequencies above a few Hertz.
Initial experiments measuring this response by imaging
the dynamics of small probe particles have shown that
the shear modulus increases as G(ω) ∼ ω3/4 (Gittes
et al., 1997; Schnurr et al., 1997), which has since been
confirmed in other experiments and by other techniques
(Deng et al., 2006; Gardel et al., 2004b; Gisler and Weitz,
1999; Hoffman et al., 2006; Koenderink et al., 2006).

This behavior can be understood in terms of the
dynamic longitudinal fluctuations of single filaments,
as shown above (Gittes and MacKintosh, 1998; Morse,
1998a). Much as the static longitudinal fluctuations
〈δ`2〉 ∼ `4/`2p correspond to an effective longitudinal

spring constant ∼ kBT`
2
p/`

4, the time-dependent longitu-
dinal fluctuations shown above in Eq. (35) correspond to
a time- or frequency-dependent compliance or stiffness, in
which the effective spring constant increases with increas-
ing frequency, as shown in Eq. (36). This is because, on
shorter time scales, fewer bending modes can relax, which
makes the filament less compliant and stiffer. Account-
ing for the random orientations of filaments in solution
results in a frequency-dependent shear modulus

G(ω) =
1

15
ρκ`p (−2iζ/κ)

3/4
ω3/4 − iωη, (46)

where ρ is the polymer concentration measured in
length per unit volume. As shown in Fig. 12, this
frequency dependence of the shear modulus has been
quantitatively confirmed in measurements on in vitro
actin networks (Koenderink et al., 2006), and has also
been reported for the high-frequency response of living
cells (Deng et al., 2006; Hoffman et al., 2006). Moreover,
the experiments of Koenderink et al., also showed evi-
dence of an additional relaxation predicted by Pasquali
et al. (Pasquali et al., 2001). These authors identified
a macroscopic relaxation associated with tension prop-
agation along the polymer chains, which was predicted
to occur at frequencies intermediate between the high-
frequency ω3/4 regime and an entangled plateau in the
rheology. The experiments in in the inset of Fig. 12 are
consistent with the predicted relaxation, and are also
consistent with the fact that the relaxation mechanism is
predicted to be absent in cross-linked networks.

B. Glassy wormlike chain model

Microrheology experiments on live cells have provided
evidence that cells may behave as soft glassy materials—
existing close to a glass transition (Deng et al., 2006;
Fabry et al., 2001). The rheology of cells was found to
exhibit weak power law behavior G ∼ ω0.17 over five
decades in frequency. This weak frequency dependence

a)

b)

FIG. 12 (a) Storage modulus G′(ω) and b) loss modu-
lus G′′(ω) of 1mg/ml solutions of F-actin filaments with
(triangles) and without (squares) crosslinks plotted against
frequency. The solid lines indicate theoretical predic-
tions from Eq. (46) Inset: scaled loss modulus G′′s (ω) =

− [G′′(ω) + iωη] /(caω
3/4). From (Koenderink et al., 2006).

can not be understood within existing theories for semi-
flexible polymer networks or solutions, and indeed ap-
pears to be reminiscent to the glassy rheology of other
soft matter systems. This suggest that the cytoskeleton
and its polymer constituents, which are thought to pro-
vide the dominant contribution to the rheological mea-
sured by Fabry et al., may be surrounded by a “glassy”
environment. However, the affect of such a glassy envi-
ronment of the dynamic rheology of a semiflexible poly-
mer network remains poorly understood.

Kroy and Glaser addressed this issue by considering
the affect of a glassy environment on the dynamics of
a semiflexible polymer (Kroy, 2008; Kroy and Glaser,
2007). Their approach starts from the relaxation spec-
trum of a polymer under tension using the ordinary worm
like chain model. From Eq. (38), one obtains a relaxation
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FIG. 13 Schematic to illustrate the Glassy worm-like chain
model. The (red) test polymer can be trapped through ef-
fective interactions with the surrounding polymer solution.
These interaction are indicated by the potential wells at sticky
entanglement points, which are on average separated by the
entanglement length `e. The test polymer can bind or unbind
by overcoming an energy barrier of height ε. The average dis-
tance length between the “closed” bonds is represented by Λ.
Image from (Wolff et al., 2010).

time for the n-th mode of wavevector qn = nπ/` give by

tn =
1

ω(qn)
=
ζ`4

κπ4

1

n4 + n2τ/τ`
(47)

where τ` = κπ2/`2 and τ is the backbone tension. This
spectrum describes the relaxation time of the n-th mode
of the transverse fluctuations (see Sec. II.C) for a filament
under tension.

From the equilibrium mode amplitudes and the relax-
ation spectrum one can calculate various quantities of
interest, such as the dynamic structure factor and the
rheological response. The question, asked by Kroy and
Glaser, was how a glassy environment might affect the
dynamics of the wormlike chain. Such a glassy envi-
ronment may be thought of as a collection of traps dis-
tributed in space, with a broad power law distribution in
strength (set by the height of a free energy barrier), lo-
cally pinning the polymer—along the lines of the trap
models underlying soft glassy rheology (Sollich et al.,
1997)

The trapping interactions will impact the relaxation
timescales of the transverse fluctuations, and longer
wavelength modes are expected to be slowed down more
substantially, since there will be more trapping interac-
tions (see Fig. 13). To obtain a description of the glassy
worm like chain (GWLC), the relaxation spectrum of the
ordinary WLC is “stretched” as follows

t̃n = tn exp(Nnε) (48)

for wavelengths longer than λn = 2π/qn > Λ. Here,
Nn = λn/Λ− 1 represents the number of trapping inter-
actions per wavelength λn of a given mode. The so-called
stretching parameter ε controls how modes get slowed

down by the trapping interaction through an Arrhenius
factor; ε may be thought of as the characteristic height of
the free energy barriers associated to the traps in units
of kBT , while Λ represent the typical distance between
traps. In principle, one expects that the rough energy
landscape of a glassy environment might also affect the
mode amplitudes, but this presents a very daunting cal-
culation, and has so far remained elusive. However, it
was argued that the slowing down of the relaxation times
could capture the most relevant aspects of the glassy
wormlike chain. Thus, it was assumed that the mode
amplitudes of the ordinary WLC, but with a stretched
relaxation spectrum.

The predictions of the GWLC model include logarith-
mic tails in the long-time behavior of the dynamic struc-
ture factor, which can account for experiments on F-actin
solutions (Semmrich et al., 2007). In addition, within an
affine framework the rheology of a collection of GWLC’s
can be calculated, also in the presence of a prestress on
the network (Kroy and Glaser, 2007). The role of pre-
stress was included in the model by its affect on the pa-
rameter ε, since the free energy landscape gets tilted by
the presence of a force directed along the reaction co-
ordinate. It is interesting to contrast the GWLC pre-
dictions for the dynamic rheology with that predicted
for a crosslinked network, which exhibits a frequency-
independent plateau at low frequencies. The GWLC still
allows relaxation beyond the interaction length Λ, in con-
trast to a permanently crosslinked network for which
the transverse filament fluctuations can not relax for
modes with wavelengths beyond the crosslinking scale
`c. Thus, in the GWLC model, the “plateau” regime
is no longer flat but appears to increase with frequency
as a weak power law, consistent with experiments on live
cells (Deng et al., 2006; Fabry et al., 2001). In the GWLC
model, the exponent of this power law depends on the
level of prestress and the interaction strength ε, which
is a phenomenological parameter that is hard to predict
from first principles. Nonetheless, various predictions of
the glassy wormlike chain agree favorably with the rhe-
ology of actin solutions, as well as live cells, and this was
taken as evidence that these systems operate near a glass
transition (Semmrich et al., 2007).

C. Transient linkers and cross-link governed dynamics

One essential feature of many physiological biopoly-
mer networks is the intrinsically dynamic nature of their
cross-links. For instance, many actin-binding crosslink-
ing proteins only form transient bonds between filaments.
Such systems represent a distinct class of polymeric ma-
terials whose long-time dynamics are not governed by vis-
cosity or reptation (Doi and Edwards, 1988), but rather
by the transient nature of their cross-links (Broedersz
et al., 2010a; Heussinger, 2011; Lieleg et al., 2008, 2011,
2009; Strehle et al., 2011; Ward et al., 2008; Yao et al.,
2011, 2013). This can give rise to a complex mechanical
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b)

a)

c)

FIG. 14 a) For times shorter than the unbinding time τoff ,
only small scale bend fluctuations between the effectively per-
manent cross-inks can relax, resulting in a plateau in G0 for
frequencies > 1/τoff . b) For longer times, large scale con-
formational relaxation can occur via linker unbinding (open
circle) and subsequent rebinding at a new location. c) Mea-
sured linear rheology of a 23.8µM actin network cross-linked
with various concentrations of α-actinin-4. The low-frequency
behavior is consistent with G ∼ ω1/2. The solid and dashed
lines are global fits using the mean-field CGD model for the
low-frequency regime together with the known high frequency
response. Image adapted from (Broedersz et al., 2010a).

response, particularly at long times, where the network is
expected to flow. In the next section we will discuss per-
manently crosslinked networks in detail. Here, we briefly
discuss some recent work on transient networks, which
forms a natural segue between solutions and crosslinked
networks.

The simplest possible description of a material that is
elastic on short time scales while flowing on long time
scales is that of a Maxwell fluid; this exhibits a sin-
gle relaxation time. Indeed, some experiments on tran-
sient networks have been modeled with a single relax-
ation time (Lieleg et al., 2008, 2009); however, those
experiments and others (Broedersz et al., 2010a; Ward
et al., 2008; Yao et al., 2011, 2013)—probing longer rela-
tive time scales compared to the linker unbinding time—
show amore complex low-frequency viscoelastic behavior,
indicative of multiple relaxation times.

To address these experimental observations, a micro-
scopic model was developed for long-time network relax-
ation that is controlled by cross-link dynamics (Broed-

ersz et al., 2010a). This cross-link-governed dynamics
(CGD) model describes the structural relaxation that
results from many independent unbinding and rebind-
ing events (FIg. 14), leading to very slow relaxation of
stress. Using a combination of Monte Carlo simulations
and an analytic approach, it was shown that this type of
cross-link dynamics yields power-law rheology

G ∼ ω1/2 (49)

at frequencies below the crosslink unbinding rate, aris-
ing from a broad spectrum of relaxation rates. An im-
portant difference with the GWLC model for entangled
solutions described in the previous section, is that in
the CGD model the relaxation spectrum of the bend-
ing modes is derived from the microscopic unbinding of
individual crosslinks at a constant rate 1/τoff , and the
exponent of the power law rheology is fixed at a value of
1/2. The predictions from the CGD model are in quanti-
tative agreement with experiments on F-actin networks
using the transient linker protein α-actinin-4 (Broedersz
et al., 2010a; Yao et al., 2011, 2013), as shown in Fig.
14c.

The CGD model can be qualitatively understood in
simple physical terms, as follows. Each filament is as-
sumed to be cross-linked into the network, with an av-
erage spacing `c. Only filament bending modes between
cross-links can relax (Fig. 14a), and the thermalization
of these results in an entropic, spring-like response (e.g.,
that of Eq. (18)). To account for transient crosslinking,
the linkers may unbind at a rate 1/τoff . This initiates the
relaxation of long-wavelength (λ > `c) modes (Fig. 14b),
giving rise to a reduced macroscopic modulus. However,
the relaxation of successively longer wavelength modes
becomes slower, as an increasing number of unbinding
events are needed for such a relaxation. Interestingly,
this suppression of longer wavelength relaxation cannot
be accounted for, even phenomenologically, by an effec-
tively larger viscosity for polymer motion. This would
lead to a terminal relaxation and viscous-like response.
Rather, this simple physical picture of multiple, unco-
ordinated unbinding events suggests a broad spectrum
of relaxation times for the different mode wavelengths
λ >∼ `c, leading to a power-law rheology. Specifically, this
model predicts the scaling in Eq. (49) below the charac-
teristic frequency 1/τoff .

This model does not account for the steric entangle-
ments of the surrounding chains that can hinder the re-
laxation of bending modes. These constraints will be-
gin to affect the relaxation of modes with wavelength
λ >∼ `e. Thus, the ω1/2 regime above can be expected for
networks with `c substantially smaller than `e, and this
power-law regime is expected to give way to a solution-
like plateau in Eq. (45), albeit at much lower frequen-
cies due to the transient binding. Finally, at the lowest
frequencies, a dramatically slowed-down reptation, and
correspondingly enhanced viscous behavior is expected.

The unbinding kinetics of the transient crosslinks
may also depend on the level of an imposed macro-
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scopic stress. One possibility is that stress leads
to forced unbinding (Kasza et al., 2010; Lieleg and
Bausch, 2007), which has been studied within the
GWLC framework (Wolff and Kroy, 010b). Interest-
ingly, various experiments with actin and myosins (Lieleg
et al., 2009; Norstrom and Gardel, 2011) or α-actinin-4
crosslinks (Yao et al., 2013) appear to show a counter in-
tuitive response to stress; macroscopical rheological ex-
periments indicate that the upper bound of the cross-
link governed dynamical regime shifts to lower frequen-
cies with increasing stress, suggesting that the unbind-
ing rate slows down with increasing stress. Such behav-
ior may be caused by a “catch-bond” mechanism at the
molecular level, causing an enhances gel-like range in the
macroscopic rheology (the fluid like regime is shifted to
lower frequency with increasing stress levels).

Another framework to describe networks with tran-
sient crosslinks was proposed in (Heussinger, 2012). This
model went beyond the assumption of affine deforma-
tions (See Sec. IV.A) on the scale of a filament, and
assigned an elastic stiffness to the transient crosslinks.
Using a self-consistent effective medium approach, this
model treated a test-filament connected by reversible
crosslinks to a “tube”, representing the surrounding net-
work. When a finite strain is applied, this confining tube
deforms, stretching the crosslinks and bending the test
filament. Thus, using this approach, it is possible to
self-consistently calculate the nonlinear mechanical prop-
erties of the network. When the network is deformed,
crosslink unbinding processes lead to stress relaxation,
resulting in a reduction of the network modulus with in-
creasing strain. However, in the current model, both
the crosslinks and filaments were treated as linear ele-
ments, and it will be interesting to investigate how the
network softening caused by linker unbinding competes
with stiffening contributions from the filaments and cross
links (Broedersz et al., 2008; DiDonna and Levine, 2006;
Gardel et al., 2006; Kasza et al., 2010, 2009; Wagner
et al., 2006).

IV. CROSS-LINKED NETWORKS

A major challenge in this field is to construct a formu-
lation to bridge the gap between the mechanical proper-
ties of an individual polymer and the collective response
of a network of such polymers. Here, among other things,
the disordered nature of these networks complicates such
a description because it can lead to nonuniform defor-
mations, which may depend sensitively on the local de-
tails of network inhomogeneities. In some cases, such
nonuniform strain fields can have a major qualitative
impact on the network’s elastic response. Nonetheless,
we shall start by ignoring these spatial strain fluctua-
tions. This constitutes the central assumption of the
affine model (MacKintosh et al., 1995; Morse, 1998b;
Storm et al., 2005). This is inspired, in large part, by
the success of such an approach in flexible polymer sys-

tems (Doi and Edwards, 1988; Rubinstein and Colby,
2003). Then, after discussing various experimental stud-
ies of reconstituted biopolymer gels that have made direct
comparisons with the affine model, we will resume with
theoretical approaches that have gone beyond the affine
assumption.

In the following, we treat the crosslinks as freely hing-
ing but otherwise noncompliant. Thus, we shall not cover
various interesting aspects of physiological crosslinking
proteins that are themselves compliant, or that tend
to impose specific bond angles. Recent reviews cover-
ing these topics can be found in (Fletcher and Mullins,
2010; Lieleg et al., 2010). Moreover, we focus here on
isotropic networks. We point the interested reader to
several recent studies addressing phase behavior and pos-
sible anisotropic networks in (Benetatos and Zippelius,
2007; Borukhov et al., 2005; Cyron et al., 2013; Zilman
and Safran, 2003).

A. Affine model

The affine model assumes that all crosslinks in the net-
work deform according to the externally imposed (uni-
form) strain, γ. A polymer strand of length ` be-
tween two such crosslinks will deform through stretch-
ing or compressing by an amount that scales with its
length and depends on both its orientation and the
macroscopic strain γ. In the limit of small γ, this
extension/compression is simply proportional to strain,
δ` ∼ `γ, with a simple trigonometric prefactor related
to the polymer orientation relative to the shear direc-
tion (MacKintosh et al., 1995; Morse, 1998a). Thus, this
affine assumption completely specifies how each polymer
strand in the network deforms, making the calculation
of all the stresses in the system straightforward. The
stress tensor is found by adding contributions from poly-
mer strands over all orientations. These aspects form the
essence of affine models of both the semiflexible networks
reviewed here, as well as much earlier approaches to rub-
ber elasticity (Doi and Edwards, 1988; James and Guth,
1943; Rubinstein and Colby, 2003; Wall and Flory, 1951)
that have been the inspiration for much of what follows
in this section.

We begin with the approach by (Storm et al., 2005),
which extends the small-strain approach of Refs. (MacK-
intosh et al., 1995; Morse, 1998a) to larger strains. Here,
we consider a semiflexible polymer strand with an ori-
entation n̂ in the initially undeformed network. The de-
formation of such a strand is described by the uniform
Cauchy deformation tensor Λij . For example, for a sim-
ple shear of the xy-plane in the x-direction we have

Λ =

 1 0 γ
0 1 0
0 0 1

 . (50)

The total polymer length per unit volume in the unde-
formed network, ρ, is not conserved under this deforma-
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tion. While the volume is conserved, the total length of
polymer will increase when the network is deformed.

To calculate all components of the stress tensor, we
need to decompose the various contributions to the stress.
It is helpful to recall that the stress is a rank-2 tensor be-
cause it contains both information about the direction of
the forces in a given plane, as well as the orientation of
this plane. The length density of strands per unit volume
crossing a plane oriented perpendicular to the j-direction
transforms as ρ

detΛΛjknk, where the determinant, detΛ,
accounts for the volume change associated with the de-
formation. For a simple shear, as considered here, the
volume is conserved, and thus, detΛ = 1. The tension
in a strand between the two affinely deforming crosslinks
is denoted as τ(|Λn̂| − 1), where |Λn̂| − 1 represents the
axial strain of the polymer. The i-component of this ten-
sion is given by τ(|Λn̂| − 1)Λilnl/|Λn̂|. Adding all these
contributions, weighed by the amount of polymer length
crossing the j-plane, results in the ij-component of the
symmetric stress tensor (Morse, 1999; Storm et al., 2005),

σij =
ρ

detΛ

〈
τ(|Λn̂| − 1)

ΛilnlΛjknk
|Λn̂|

〉
, (51)

where summation of repeated indices is implied. The
angular brackets indicate an average over the distribution
of chain orientations in the initial, undeformed network.
For a small shear deformation γ � 1, the stress simplifies
to (Gittes and MacKintosh, 1998; Morse, 1998b)

σij = ρ 〈τ(γnxnz)n̂in̂j〉+O(γ3), (52)

where γnxnz represents the axial strain of a polymer with
orientation n̂ due to the strain tensor in Eq. (50).

1. Affinely deforming semiflexible polymer networks

So far we have not specified the force-extension be-
havior of the network’s polymer constituents, which is
implied by the τ(γnxnz) term in Eq. (52). Here, we con-
sider the case of a semiflexible polymer networks. To
model an inextensible, semiflexible polymer of length `c
between two point-like, freely-hinging cross-links in the
network, we can use the WLC model (Kratky and Porod,
1949; Marko and Siggia, 1995) in the semiflexible limit
`p >∼ `c (MacKintosh et al., 1995), which was discussed
in Sec.II.B.

Taking the linearized force-extension relation for a
semiflexible polymer in Eq. (18), the tension above in
the small strain limit becomes

τ(γnxnz) =
90κ`p
`3c

γnxnz (53)

and the shear stress becomes

σxz = ρ
90κ`p
`3c

γ〈nxnznxnz〉. (54)

For an assumed isotropic distribution of orientations n̂,
we obtain the linear shear modulus of a semiflexible poly-
mer network,

G0 = 6ρ
κ2

kBT`3c
. (55)

Thus, the network stiffness depends sensitively on the
crosslinking density.

Using the small strain approximation, γ � 1, for the
stress tensor (Eq. (52)), we can also cast the nonlin-
ear network response in a universal form (Gardel et al.,
2004a)

σ̃ij = 〈φ(γ̃nxnz)n̂in̂j〉 (56)

where σ̃ = σ/σc, γ̃ = γ/γc, and φ was defined in Eq. (15).
Here, the characteristic strain and stress for the onset of
nonlinearity are defined as

γc =
1

6

`c
`p

and σc = ρ
κ

`2c
. (57)

Beyond these characteristic values, the differential shear
modulus, K = dσ/dγ, asymptotically approaches a scal-
ing regime where K ∼ σ3/2. This can be seen by the high
tension limit of the force extension relation in Eq. (19),
since σ ∼ τ and

dσ

dγ
∼ dτ

d(δ`)
∼ 1

|δ`−∆`|−3
∼ τ3/2. (58)

This scaling form is not exact, as it does not account
for the angular distribution of filaments, but this does
not significantly affect the asymptotic behavior (Gardel
et al., 2004a).

2. Comparison of the affine model to experiments on
reconstituted biopolymer networks

A comparison of the functional form of the nonlinear
elastic response of a range of biopolymer networks re-
veales a remarkable qualitative similarity, even between
intracellular and extracellular biopolymers, as shown in
Fig. 15 (Storm et al., 2005). All these systems stiffen un-
der applied strain. These data suggested that the nonlin-
ear elasticity across systems may have the same biophys-
ical origins, despite large differences in architectural de-
tails and mechanical properties at both the filament and
network level. Indeed, it has been shown, for systems
ranging from actin (Gardel et al., 2004a,b; Koenderink
et al., 2006; Tharmann et al., 2007) and intermediate
filaments (Lin et al., 2010a,b; Yao et al., 2010) to syn-
thetic stiff polymers (Kouwer et al., 2013), that aspects
of both linear and nonlinear rheological response can be
accounted for by simple affine thermal models. In this
section we discuss a few of these experimental studies.

First, we would like to relate some of the quantities in-
troduced in the previous section, such as the crosslinking
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FIG. 15 a) The shear modulus G′ = σ/γ as a function of strain for various reconstituted biopolymer networks and polyacry-
lamide (from (Storm et al., 2005)). b) The differential shear modulus K = dσ/dγ as a function of applied external stress σ0 for
reconstituted actin networks croslinked by scruin (Gardel et al., 2004a). The lines indicate the theoretically predicted form of
stiffening for small strains, as outlined in Sec. IV.A.1. c) Neurofilament network moduli (K = dσ/dγ) normalized by the linear
modulus G0 vs applied stress normalized by the characteristic stress σc for the onset of nonlinearity (adapted from (Lin et al.,
2010a)). These data are compared with the predicted behavior for the small-strain approximation (solid line) introduced in
(Gardel et al., 2004a), as well as the asymptotic 3/2 scaling (dashed line). The inset also shows a comparison with the behavior
predicted in Eq. (60) for both Neurofilaments and Vimentin intermediate filaments (Lin et al., 2010a). The difference between
these two filament types is consistent with a difference between their persistence lengths. d) Biomimetic polyisocyanopeptide
hydrogels also show nonlinear rheology consistent with the affine thermal model in Sec. IV.A.1 (Kouwer et al., 2013).

length scale `c, to experimental control parameters. For
example, consider a reconstituted F-actin network. Two
important experimental control parameters are the con-
centration of monomeric actin, c, and the concentration
of crosslinking protein, c×. It will also turn out to be use-
ful to quantify the degree of crosslinking by the ratio of
crosslinkers to polymer, which is often most conveniently
expressed in terms of the molar ratio ratio R = c×/c.

We will limit this discussion to the affine thermal
model for homogenous, isotropic networks in which the
crosslinks do not lead to bundling of filaments. For
such cases, we expect that varying the polymer concen-

tration will not only affect the polymer length density
ρ ∼ c but also the crosslinking lenghtscale `c, since the
number of potential physical bonds between crosslinks
increases with more polymer (see Eqs.(55) and (57)).
The precise dependence of the crosslinking distance `c
on parameters is subtle. The mostly likely binding sites
on the polymer for effective crosslinks are sites where
two polymer strands interact sterically, i.e., the entan-
glement points (Odijk, 1983). Thus, we expect that
crosslinking will occur on the entanglement length scale
`c ∼ `e ∼ (a4`p)

1/5φ−2/5 (see Eq. (44)), where a is
the polymer’s diameter, and the polymer volume frac-
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tion φ ∼ c. However, if we fix the actin concentration to
hold the entanglement length constant, while varying R,
we expect that `c will also vary. It is often postulated
that `c ∼ R−x, where x is a phenomenological exponent
that may depend on the type of crosslinker. Taking the
scaling of `c with the entanglement length scale and the
degree of crosslinking together yields,

`c ∼ (a4`p)
1/5c−2/5R−x (59)

If R is held fixed, then it is expected that G0 ∼ c11/5,
which is a stronger dependence than the prediction for
an entangled solution, G ∼ c7/5 (see section III). Various
measurements of the linear shear modulus of F-actin and
intermediate filament networks have been found to be
consistent with the 11/5 scaling predicted by the affine
model (Gardel et al., 2004a,b; Lin et al., 2010a,b; MacK-
intosh et al., 1995; Tharmann et al., 2007; Yao et al.,
2010).

It is often found that the network response becomes
nonlinear for stresses (or strains) beyond a characteristic
or critical stress σc (or strain γc). From Eqs. (55) and
(57), the critical stress can be expressed in terms of the
linear modulus according to

G0 = 6

√
κ

ρ
σ3/2
c ∼ c−1/2(kBT`p)

1/2σ3/2
c . (60)

Note that `c drops out of this equation, and hence, this
relationship should only depend on directly measured
rheological quantities and material parameters such as `p
that are usually known by independent means. The pre-
dicted relationship in Eq. (60) is in good agreement with
recent experiments on intermediate filaments (Lin et al.,
2010a) (see Fig. IV.A.1) and has also been tested in syn-
thetic hydrogels (Kouwer et al., 2013). In particular, this
relation should be insensitive to the details of crosslink-
ing. Moreover, from the measured rheological quantities
G0 and σc, one can the infer microscopic quantities

`p =
1

36
ρkBT

G2
0

σ3
c

, (61)

and

`c = 6`p
σc
G0

. (62)

Since the persistence length is often known indepen-
dently, the first of these represents an additional test of
the model. These relations have been tested recently
in intermediate filament gels and in synthetic hydrogels
(Kouwer et al., 2013; Lin et al., 2010a,b; Yao et al., 2010).

Another important prediction of this model is the uni-
versality of the stiffening response to applied stress. Scal-
ing the differential shear modulus K = dσ

dγ by G0 and the

stress by σc should result in a collapse of all data on a
universal curve (see Eq. (56)) that exhibits a high stress
scaling regime in which K ∼ σ3/2 (Gardel et al., 2004a).
Such behavior has been observed for actin, intermedi-
ate filaments and for synthetic hydrogels (Gardel et al.,

2004b; Kouwer et al., 2013; Lin et al., 2010b; Yao et al.,
2010) (See Fig. 15). However, this universal response is
only valid if the polymers are truly inextensible. Real
polymers will have some purely energetic/enthalpic (as
apposed to entropic) mode of extension (Odijk, 1995),
which could start playing a role at high stresses, result-
ing in a departure from the universal stiffening curve.
Evidence of this has been seen for fibrin gels and interme-
diate filament gels (Lin et al., 2010a,b; Piechocka et al.,
2010; Storm et al., 2005).

B. Contractility and motor-generated stiffening in affine
thermal networks

Given the ubiquitous nonlinear elastic response of
biopolymer networks to applied stress, it is natural to
ask whether internal stresses in living systems might also
couple to such nonlinearities. These internal stresses
might arise, for instance, due to molecular motors that
are known to induce motion and exert forces within cy-
toskeletal networks in the cytoplasm of living cells. While
the evidence for this in vivo remains indirect, reconsti-
tuted systems in vitro with added motor activity have
observed mechanical stiffening, qualitatively consistent
with the elastic stiffening due to externally applied stress
(Koenderink et al., 2009; Mizuno et al., 2007). Specifi-
cally, when myosin motor proteins are added to actin net-
works, together with adenosine triphosphate (ATP) that
acts as a fuel for the activity, an approximate 100-fold
increase in the modulus was observed, both by local mi-
cromechanical measurements (Mizuno et al., 2007) and
by macroscopic rheological measurements (Koenderink
et al., 2009). While such a stiffening can also arise from
an increase of mechanical crosslinking, e.g., due to dead
or inactive myosins, Mizuno et al., were able to confirm
that there was a significant increase in network tension
that was coincident with the mechanical stiffening, con-
sistent with a mechanisms due to network nonlinearity.
These authors were also able to demonstrate directly the
non-equilibirum nature of both reconstituted and living
systems (Mizuno et al., 2009, 2008, 2007). Interestingly,
analogous behavior is beginning to be studied in syn-
thetic systems (Bertrand et al., 2012).

These observations are consistent with mean-field the-
ories of stiffening due to network tension induced by
motor activity (Liverpool et al., 2009; MacKintosh and
Levine, 2008), as well as simulations of networks of stiff
fibers activated by motors (Broedersz and MacKintosh,
2011). Both of these approaches model the motors by
force dipoles of pairs of equal and opposite forces within
the network. This was done to ensure the necessary force
balance within the network. Subsequent theory has be-
gun to account for the nonlinear nature of the networks
in determining the local response of networks to inter-
nal motor forces (Shokef and Safran, 2012). Here, we
shall only briefly return to motor-activated systems in
Sec. V.C.1, but we would point the interested reader to
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recent reviews on the subject (Brangwynne et al., 2008;
MacKintosh and Schmidt, 2010; Marchetti et al., 2013).

C. Nonaffine approaches for disordered fiber networks

Considering the success of the affine model in describ-
ing rubber elasticity (Doi and Edwards, 1988), its appli-
cation to semiflexible polymer networks may seem rea-
sonable. Indeed, in many cases, the affine model for
semiflexible polymers agrees well with in vitro experi-
ments for a range of biopolymer systems, including in-
tracellular actin and intermediate filament gels as well
as extracellular fibrin networks (Gardel et al., 2004a,b;
Lin et al., 2010a,b; MacKintosh et al., 1995; Piechocka
et al., 2010; Storm et al., 2005; Tharmann et al., 2007;
Yao et al., 2010). There are reasons, however, to expect
the affine approximation to fail. In detail, of course, even
rubber or flexible polymer networks are not strictly affine
in their response (Basu et al., 2011; Wen et al., 2012).
But, in such cases, nonaffinity does not result in a signif-
icant deviation from the affine limit (Carrillo et al., 2013).
The more interesting question for semiflexible networks
is whether nonaffinity leads to a qualitatively different
behavior. This can happen, for instance, if the response
becomes dominated by chain/fiber bending, rather than
stretching. Naively, affine shear cannot lead to bend-
ing of straight filaments. If bending dominates, one can
expect, for instance, a softer network response than for
purely affine deformations, as well as a different scaling
of G with the concentration c (Broedersz et al., 2012;
Kroy and Frey, 1996; Satcher Jr and Dewey Jr, 1996).
Recent evidence seems to point in this direction for some
systems (Lieleg et al., 2007; Piechocka et al., 2011; Stein
et al., 2011), and the affine state may even be considered
to be unstable (Heussinger and Frey, 2006b). This leaves
us now with the question: when should we expect this
model to break down and what are the signatures of a
network response that is dominated by nonaffine defor-
mations?

An important aspect of affine models is that the
polymer strands only deform through stretching-modes.
In contrast to flexible polymers, however, the force-
extension behavior of a semiflexible polymer is highly
anisotropic: semiflexible polymers are typically much
softer to bending than to stretching. In particular, the
ratio of the restoring force for a transverse displace-
ment (bending) to that for an axial deformation (stretch-
ing) is k⊥/k‖ ∼ `c/`p. Naively, this may suggest that

in semiflexible polymer networks, for which `p >∼ `c,
it may be considerably more favorable to avoid costly
affine stretching-modes by, instead, favoring deformation
through the (presumed) softer bending modes. Inter-
estingly, however, it turns out to be not that simple.
The energy of a deformation mode is not just set by the
associated elastic rigidity, but also by the amplitude of
the deformation; even though the fibers themselves can
be softer to bending, the bending deformations required

FIG. 16 Schematic to illustrate nonaffine deformations in net-
works (DiDonna and Lubensky, 2005). a) Undeformed refer-
ence state. b) Sheared state with nonaffine displacements.
Under affine deformation, points on the vertical dotted lines
in a) would map to points on the slanted dotted lines. The
schematic in b) illustrates a nonaffinely deformed network
where they do not.

to accommodate the macroscopically imposed strain can
still be large compared to the stretching deformations,
which may render the nonaffine scenario energetically less
favorable than the affine alternative. Clearly, there is
a tradeoff, which may depend sensitively on the system
properties. Moreover, given the connectivity of the net-
work, it might simply be impossible to construct modes
of deformation that avoid stretching of bonds. Thus,
we seek to determine a “phase” or regime diagram of
some sort for fiber networks, describing which deforma-
tion modes dominate the macroscopic response, given
certain network and fiber parameters. To set the stage
for this, we start by discussing how the nonaffine defor-
mation field can be characterized and quantified.

1. Characterizing nonaffinity in disordered elastic media

A detailed discussion of nonaffine correlation functions
of inhomogeneous elastic media was provided in Ref. (Di-
Donna and Lubensky, 2005), and here we summarize
some of their results.

The most general and straightforward way of charac-
terizing the nonaffine deformation field (Figs. 16 and 17)
is by the correlation function

Gij(x,x
′) = 〈δui(x)δuj(x

′)〉, (63)

or, perhaps, the related form,

G(x) = 〈[δu(x)− δu(0)]
2〉. (64)

Here, δui represents the nonaffine component of the dis-
placement δu = u− uaff in the i direction. Since δu will
scale with strain, both these nonaffinity measures scale
with γ2.

The scaling of this function with distance may be an-
ticipated from continuum elasticity theory. Considering
the nonaffine displacement, δu(0), multiplied by the local
modulus, as a force applied at the origin we should expect
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FIG. 17 Simulated fiber network on a diluted triangular lat-
tice (see Sec.V.A). The gray network in the background rep-
resents the affinely sheared state. Segments in the simulated
network are colored red for large nonaffine deformations and
blue for deformations closer to the affine state.

a scaling δu(x) ∼ δu(0)|x|−(d−2). Indeed it was shown
by Didonna and Lubensky that for disordered media with
spatially varying elastic properties that G scales logarith-
mically with distance in 2D and inversely with distance
in 3D. The 3D results makes intuitive sense as we expect
the network to become more affine on larger scales (Di-
Donna and Lubensky, 2005; Hatami-Marbini and Picu,
2008; Head et al., 2003a; Liu et al., 2007). Furthermore,
Didonna and Lubensky reported that, within this contin-
uum approach, the nonaffinity parameter is expected to
be proportional to the variance of the spatial fluctuations
of the elastic modulus.

There are numerous other nonaffinity parameters in
the literature. However, it has been shown in (DiDonna
and Lubensky, 2005) that many of these nonafinity pa-
rameters are closely related and can be expressed in terms
of the nonaffinity correlation function in Eq. (63). Per-
haps the simplest measure of nonaffinity is the variance
of local nonaffine fluctuations

Γ =
1

γ2
〈[δu(x))]

2〉 (65)

Note that in this measure the strain dependence is scaled
out, and it thus represents an intrinsic network property,
equal to the trace γ−2Gii(x,x). The advantage of this
measure is its simplicity and convenience in experiments
(an accurate estimate of a one-point measure requires
less data than a two-point measure). However, there are
drawbacks: in 2D this measure has a logarithmic depen-
dence on system size, and this measure may be more sen-
sitive to spurious long-wavelength inhomogeneities com-
pared to a two-point measure.

Finally, another example of a two-point measure is one
that characterizes the change in orientation of a vector
between two nodes separated by a distance x under de-
formation, relative to the affine prediction (Head et al.,
2003a,b; Liu et al., 2007). The variance in the nonaffine
component of this angular deformation is a measure of

nonaffinity, and depends on the distance between two
points. This measure can be shown to scale as∼ G(x)/x2,
and is thus related to the other measure discussed above.

We are still left with the question: What can we learn
from these nonaffinity measures? The message we hope
to convey in the next few sections is that although these
nonaffinity parameters can be extremely insightful, they
need to be interpreted with caution. For instance, para-
doxically, a system with higher values of the nonaffinity
parameter may still have a mechanical response that is
dominated by affine deformation modes, compared to a
system with lower nonaffine fluctuations that is governed
by a nonaffine mechanical response. Again, it must be re-
membered that all disordered networks can be expected
to exhibit some level of nonaffinity, so that simply mea-
suring a non-zero value of any of the above measures of
nonaffine deformation does not imply an essential break-
down of the affine limit, e.g., in the form of qualitative
changes to the elastic response. We will discuss these
issues in Sec.IV.C.6.

2. Unit cell approaches

Various unit cell approaches have been developed for
networks such as rubber, especially in the mechanics lit-
erature (Arruda and Boyce, 1993). In such approaches,
rather than assuming that all network strands deform
affinely, a small cell consisting of a few strands of differ-
ent orientations is repeated to form a 2D or 3D struc-
ture. The resulting networks are studied as mechan-
ical and athermal structures. Such approaches have
been adapted go beyond the affine formalism to calcu-
late the viscoelastic or viscoplastic properties of biopoly-
mer solutions (Brown et al., 2009; Cioroianu et al., 2013;
Fernández et al., 2009; James and Guth, 1943; Jerry Qi
et al., 2006; Palmer and Boyce, 2008; Satcher Jr and
Dewey Jr, 1996).

Among the earlier theoretical studies of nonaffine be-
havior of crosslinked nonaffine, Refs. (Kroy and Frey,
1996; Satcher Jr and Dewey Jr, 1996) borrowed from the
field of cellular solids. The assumption of this model is
that fibers only deform through bending and that such
network deformations can be characterized using a cubic
unit cell with sides equal to the mesh size, ξ. Assuming
that the fiber strands deform by an amount δu ∼ γξ,
perpendicular to their orientation, the bending energy

becomes, Eb ∼ κ( δuξ2 )2ξ = κ(γ
2

ξ ). Thus, the energy den-

sity amounts to κ(γ
2

ξ4 ). Using this unit cell picture, we

can relate the mesh size to the polymer concentration
ξ ∼ √c (see Eq. (44)), suggesting a scaling for the shear
modulus

G ∼ κc2. (66)

This concentration dependence should be contrasted
with the affine thermal model for which G ∼ c11/5 in
Sec. IV.A.2, although from this scaling alone, it is diffi-
cult to distinguish the two models in practice.
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FIG. 18 2D Mikado networks at low and high density under
a small shear. The colors indicate distribution of tensions on
a filament; the load on a filament increases from blue to red.
Adapted from (Wilhelm and Frey, 2003).

Unit cell models have the advantage that an affine re-
sponse does not need to be enforced at the crosslink level,
and aspects such as averaging over different fiber orienta-
tions are included naturally. Recently, a variation on this
theme was introduced in Ref. (Carrillo et al., 2013), in
which a diamond lattice unit cell was used to create and
study fully thermalized networks of semiflexible filaments
spanning a wide range of mechanical properties. These
authors found good agreement with several experimental
observations.

Such unit-cell approaches, whether thermal or ather-
mal, should be appropriate, at least for networks of
short stubby filaments with lengths comparable to the
network’s mesh size, such as in a foam like architec-
ture (Heussinger and Frey, 2006b). However, in many
cases filaments have lengths greatly exceeding the net-
works’ mesh size. At the very least, this introduces addi-
tional correlations since the filaments exhibit mechanical
integrity beyond the scale of the unit cell. A unit cell-
based approach cannot account for this, and one may
need to deal with network of linear dimension at least
as large as the fibers themselves. In addition, one might
challenge the assumption that deformations of the fibers
scale with mesh size and the implicit assumption made
here that nonaffine deformations are uncorrelated. These
assumptions clearly fail in some cases, such as networks
that are close to marginal stability (see Sec.??), where
network deformations may be correlated over large length
scales, and where nonaffine deformations may be con-
trolled by other network parameters such as connectiv-
ity or filament length. To address these issues, we now
continue with a discussion of whole-network models that
have been studied numerically.

3. A minimal model for disordered, athermal fiber networks in
2D: The Mikado model

One of the simplest whole-network models for
crosslinked filamentous networks is the Mikado
model (Head et al., 2003a,b; Wilhelm and Frey,

2003). Mikado networks are constructed by randomly
depositing monodisperse filaments of length ` onto a two
dimensional square of size W ×W , as shown in Fig. 18.
The intersections between filaments are identified as
point-like, freely-hinging crosslinks. The energy of this
system can be expressed as

H =
µ

2

∑
i

δ`2i
`i

+
κ

2

∑
〈ij〉

δθ2
ij

`ij
(67)

Here, `i indicates the length of segment i, `ij is the av-
erage length of segments i and j, and δθij is the angu-
lar deflection between segments i and j. For fibers, the
second sum runs only over neighboring segments along
the same fiber. This is a purely mechanical model, and
the thermal properties of semiflexible polymers can be
captured, at best in a coarse-grained sense, by setting
the modulus µ = 90κ`p/`

3
c—the entropic elasticity of a

semiflexible polymer (Head et al., 2003a). Moreover, the
model treats the filaments as linearly elastic elements
with respect to both bending and stretching. Thus, it
does not capture filament nonlinearities such as the en-
tropic stiffening behavior. This does not mean, however,
that networks of these simple elastic filaments are neces-
sarily linear in their macroscopic response: networks of
purely linear elements can have a nonlinear response, as
we shall see below. In fact, even at the level of single
fibers with linear bending and stretching elasticity, non-
linearity can appear due to buckling under compression.

The parameter space of the Mikado model can be ex-
pressed in terms of a line density ρ = π/〈`c〉 and the di-
mensionless parameter `b/`c. Here, the material length

scale `b =
√
κ/µ characterizes the ratio of the bend-

ing and stretching rigidities. For simple elastic beams of
length `c, `b/`c is a measure of their aspect ratio, while

for thermal semiflexible polymers `b/`c =
√
`c/90`p.

Simulations of the Mikado model reveal various quali-
tatively distinct mechanical regimes, including a stretch-
ing dominated regime where the shear modulus is close
to the affine limit G ≈ Gaff (large `/`c or `b/`c). The
affine shear modulus of the Mikado model can easily be
calculated and is given by

Gaff =
π

16

µ

`c
(68)

in 2D. This affine value forms a strict upper bound on the
shear modulus of such networks: networks always have
the affine deformation mode available to them, and any
deviations from this deformation will only occur if they
lower the elastic energy. In addition to the affine regime,
there is a nonaffine bending regime G ∼ κ, and a rigidity
percolation point ρc at low network densities at which
the shear modulus vanishes continuously. The crossover
between bending dominated elastic behavior G ∼ κ and
stretching dominated behavior G ∼ µ is shown in Fig. 19
for a simulated Mikado network response.

An understanding of the bending regime poses one
of the main theoretical challenges in this model. Ow-
ing to the disordered nature of the network, bending
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FIG. 19 Simulations of the Mikado model indicate a transi-
tion between a nonaffine bending regime and an affine stretch-
ing regime (adapted from (Head et al., 2003b)). Shear modu-

lus G as a function of filament rigidity `b =
√
κ/µ for `/`c =

29.09, where G has been scaled to the affine prediction for this
density and `b is shown in units of `. The straight line corre-
sponds to the bending-dominated regime with G ∼ κ, which
gives a line of slope 2 when plotted on these axes. The inset
depicts the shear modulus G, normalized by the affine value,
for different densities as function of filament length scaled by
the non affinity length scale λ (See Eq. (71)). This rescaling
results in a good data collapse, as described by Eq. (70).

deformations may be correlated and could extend over
large length scales. Initially, two basic approaches where
offered to provide insight into the origins of this non-
affine bending regime and the crossover to affine net-
work behavior. One argument approaches the problem
from the rigidity percolation point (Wilhelm and Frey,
2003), which we will discuss first, while the other ap-
proach starts from the affine limit (Head et al., 2003a,b).
In Sec.IV.C.4 we discuss a more recent approach, based
on constructing the networks’ floppy modes (Heussinger
and Frey, 2006a; Heussinger et al., 2007b).

For densities beyond the regime controlled by the rigid-
ity percolation point, Wilhelm and Frey proposed the fol-
lowing form for the shear modulus (Wilhelm and Frey,
2003)

G =
κ

`3
|δρ̂|µg

(
`b
`
|δρ̂|ν′

)
, (69)

where δρ̂ = `(ρ− ρc) is dimensionless, and g(x) is a uni-
versal scaling function. To capture the affine limit G →
Gaff, the universal function should scale as g(x) → x−2

for x � 1, and the exponents must satisfy µ − 2ν′ = 1.
By contrast, in the bending-regime x � 1, the function
g(x) should be constant such that G ∼ κ

`3 |δρ̂|µ. Wilhelm
and Frey found an excellent collapse of their numerical
data with this scaling function with the values ρ̂c = 5.71,
µ = 6.67, and thus ν′ = 2.83.

One interesting implication of this scaling law is a

length scale ξ′ = `|δρ̂|−ν′
—distinct from the length

scale of the incipient percolation cluster—controlling the
crossover between the bending and stretching regimes. In
particular, the crossover is expected when ξ′ ' `b, yield-
ing the crossover line density δρcross = `−1(`b/`)

−1/ν (re-
instating units of length). Alternatively, this crossover
line density can be understood from the limiting expres-
sions of the shear moduli: In the bending regime the
shear modulus scales more strongly with δρ̂ than in the
affine limit. Thus, at high density the modulus of the
bending-dominated regime would surpass the affine “ceil-
ing”, implying a crossover to affine network behavior be-
yond δρcross.

An alternative approach to understanding the rich me-
chanical behavior of the Mikado model uses the affine
limit as a bench mark, together with a self-consistent
scheme to find the crossover to the nonaffine bending
regime (Head et al., 2003a,b). The implicit assump-
tion is that the bending regime near the nonaffine-affine
crossover is governed by different physics than the rigid-
ity percolation point. Conceptually, the main idea of this
argument is to estimate when the total energy can be re-
duced by relaxing the axial strain of a filament of length `
over a scale λ near the ends at the cost of bending other
filaments in the surrounding network. This argument
leads to the following scaling prediction

G =
µ

`c
f

(
`

λ

)
, (70)

where

λ = `c

(
`c
`b

)z′
(71)

is a length scale controlling the crossover (at ` ' λ) be-
tween the bending and the affine stretching regime. This
argument predicts a crossover exponent z′ = 2/5. For
the system to crossover to a bending dominated regime,
given here byG ∼ κ

`3c
(`/`c)

2/z′ , the universal scaling func-

tion f(x) ∼ x2/z′ for x � 1, while for large arguments
f(x) is constant. Refs. (Head et al., 2003a,b) report a
good collapse of numerical data using this scaling form
for z = 1/3 for low network density data, while a bet-
ter collapse is obtained using z = 2/5 at higher densi-
ties (see inset to Fig. 19). However, this scaling form
does not capture the continuous vanishing of the shear
modulus at the rigidity threshold, which may explain the
different scaling at low density. An effective medium de-
scription for diluted Kagome lattices was offered by Mao
et al., as a model for 2D filamentous networks. This effec-
tive medium approach provided an analytical calculation
of the crossover function that captures the bend-stretch
transition (Mao et al., 2013b). Interestingly, the expo-
nent that governs the crossover appears to be different in
lattice based networks than in Mikado networks. Other
studies have discussed the impact of orientational order
and length polydispersity of the filaments on this scal-
ing (Bai et al., 2011; Missel et al., 2010).
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Although the physical reasoning in the two approaches
is different and the two scaling forms differ in detail,
some reconciliation is obtained by identifying the length
scales ξ′ and λ. Far from the rigidity threshold δρ ∼
ρ ∼ 1/`c and the two scaling forms become similar, im-
plying a correspondence between the two lengthscales if
z′ = 1/(ν′ − 1) or, equivalently, µ = 2/z′ + 3. However,
the numerical values for these exponents reported in the
two studies are inconsistent with these equations, still
leaving the puzzle partially open.

4. Floppy mode theory

Heussinger and Frey proposed a theoretical frame-
work to calculate the properties of the nonaffine bend-
ing regime of semiflexible polymer networks (Heussinger
and Frey, 2006a; Heussinger et al., 2007b), although the
general framework is not limited to fibrous networks and
could find applications in other soft matter systems. The
main premise of this model is that the low-frequency,
soft deformation modes in the system derive from a set
of zero-energy, floppy modes (Liu and Nagel, 2010). In
the `b → 0 limit, the network can deform through these
floppy modes with no contribution to the mechanical en-
ergy up to harmonic order. However, at a finite, yet small
bending rigidity these modes are no longer floppy, but are
still considered to be the softest modes, and may thus be
used to calculate the network’s properties.

By using a self-consistent effective medium approach
in which the floppy modes for the Mikado model are con-
structed explicitly, the elastic properties of the nonaffine
bending regime can be calculated (Heussinger and Frey,
2006a; Heussinger et al., 2007b). This calculation yields
the prediction G ∼ κρµ, with µ = 6.75, in good agree-
ment with simulations (Wilhelm and Frey, 2003).

The high value of this exponent (µ) may be understood
from a simple scaling argument, which conveys the main
idea behind the Floppy mode theory. The typical bend-
ing energy of a segment of length `s is wb ∼ κδu2

na/`
3
s,

where δna is the amplitude of a bend on the scale `s.
This amplitude represent the nonaffine deformation, and
is independent of `s, as apposed to an affine model; by
assuming that individual fiber centers follow the affine
deformation field, it was argued that δuna ∼ `. Thus,
the average bending energy stored in a fiber is

〈Wb〉 = ρ

∫ ∞
`min

d`sP (`s)
κδu2

na

`3s
, (72)

where P (`s) represents the distribution of segment
lengths and `min is a cutoff. Below this cutoff the seg-
ments become too stiff to contribute to the bending en-
ergy. A localized bend on this scale can be relaxed by
exciting a “floppy mode” in the fiber to which it is con-
nected, with a corresponding typical energy 〈Wb〉. Hence,
this cutoff length scale can be found self-consistently from
the condition wb(`min) = 〈Wb〉. Using a Poissonian dis-
tribution for P (`s), as in a Mikado network, the shear

modulus is predicted to scale as G ∼ κρµ, with µ = 7.
This is remarkably close to the result of the more elab-
orate effective medium calculation and the numerical re-
sult. This model has provided insight in the mechanics of
bundled actin networks (Lieleg et al., 2007) and in sim-
ulations of composite networks (Huisman et al., 2010a).

5. 2D versus 3D networks

Biological filamentous networks are usually three-
dimensional. To what extent should one expect the me-
chanical behavior of such networks to be captured by the
simple 2D models described above? Put differently, are
there essential qualitative differences in the mechanics of
semiflexible polymer networks in 2D and 3D.

Various computational approaches to address 3D net-
works of semiflexible polymers or elastic fibers have been
developed recently, including Brownian dynamics mod-
els (Huisman et al., 2010b; Kim et al., 2009), Monte Carlo
simulations (Blundell and Terentjev, 2011), energy mini-
mization schemes for minimal mechanical models (Broed-
ersz et al., 2012; Buxton and Clarke, 2007; Stenull and
Lubensky, 2011) and coarse grained approaches (Huis-
man and Lubensky, 2011; Huisman et al., 2008, 2007;
Stein et al., 2011). These have shown significant non-
affine effects.

On very general grounds, nonaffine deformations could
be expected to have a greater impact on the network’s
elastic response in 3D systems. More specifically, the
case of binary crosslinks between fibers can be expected
to be more bend-dominated than corresponding 2D sys-
tems. This can be seen as a consequence of arguments
going back to Maxwell (Maxwell, 1865), showing that
the critical coordination number for mechanically stable
networks of springs (i.e., with stretching and no bending
resistance) is greater in 3D than than the local coordi-
nation of binary crosslinked networks. Moreover, this
critical coordination or connectivity depends on dimen-
sionality, and is close to that of filament networks in 2D,
while it is far from that of such networks in 3D. Thus, the
mechanical stability of 3D fibrous networks with binary
crosslinks is expected to rely on the bending elasticity
of the fibers, while a 2D network is (marginally) stable
without fiber bending elasticity. This suggests that non-
affine bending deformations could play a more dominant
role in 3D fibrous networks with binary crosslinks (Broed-
ersz et al., 2012; Huisman and Lubensky, 2011; Huisman
et al., 2007; Stenull and Lubensky, 2011). However, the
scaling arguments in (Head et al., 2003a) appear to sug-
gest that the behavior in 2D and 3D, at least for high
molecular weight, should not be qualitatively different.

Thus, there are fundamental questions regarding the
behavior of 3D networks that makes their study more
important than simply the need to examine more real-
istic systems. However, addressing these questions in
3D proved to be a significant computational challenge,
partly because, by analogy with the Mikado work in 2D,
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FIG. 20 Comparison between various fiber network models. a) Mikado model with curved filaments (Onck et al., 2005) b)
Thermalized semiflexible polymer network model (Huisman and Lubensky, 2011; Huisman et al., 2008). c) Lattice-based
dilution model of a 3D fiber network on an fcc lattice (Broedersz et al., 2011).

the transition from bending to stretching may only occur
for long fibers, compared to the spacing of the crosslinks,
which would suggest the need for large networks and,
thus, computationally slow models in 3D.

To develop a three-dimensional network model that re-
flects architectural characteristics of an actual biopoly-
mer gel, Huisman et al. used a Monte Carlo scheme to
generate thermalized networks (Huisman and Lubensky,
2011; Huisman et al., 2008, 2007) using the worm-like
chain model for semiflexible polymers. Starting from a
random, isotropic network, Monte Carlo moves that alter
the topology of the network are performed to minimize
the free energy of the network. Subsequently, segments
are cut until an average filament length ` is obtained.
This procedure results in a disordered network of curved
filaments (see Fig. 20b). Though these filaments have
disordered intrinsic curvatures, they maintain direction-
ality over their persistence length. Once the network
is generated, the filament segments are described by a
bending rigidity, and the nonlinear force-extension curve
for semiflexible filaments (Eq. (15)). Finally, an energy
minimization scheme is used to simulate the network un-
der shear.

Simulations of this model found a nonaffine bending
regime that covered the range of network parameters
studied (Huisman and Lubensky, 2011). Importantly,
however, computational limits did not permit the au-
thors to exceed system sized about an order of magnitude
larger than the network mesh size. Also, the persistence
length was held constant, while increasing the molecular
weight. Networks in the high molecular weight limit con-
structed in this way consist of filaments that are much
longer than their persistence length. Thus, the question
of what happens in networks of long stiff filaments that
are approximately straight over their full contour length
remained.

An obvious practical problem associated with this high
molecular weight limit is that networks with large `/`c

have a large number of degrees of freedom, which may not
be computationally tractable. To overcome this problem,
fiber networks with underlying lattice geometries were
developed for which such large networks are computa-
tionally feasible, although the architectures were obvi-
ously simplified. We will discuss these lattice-based net-
works in the next section, as well as in Sec. V.A.

6. 3D Phantom and generalized Kagome networks

Three dimensional lattice-based fiber network models
with binary crosslinks have been developed (Broedersz
et al., 2012; Stenull and Lubensky, 2011). Because of the
computational efficiency of lattice-based networks, these
models have been able to address the outstandinc ques-
tion of whether 3D networks exhibit a bend-to-stretch
crossover analogous to 2D networks. In particular, these
approaches have been able to address the high molecular
weight limit. Stennul and Lubensky generated a 3D gen-
eralization of the Kagome lattice by appropriately com-
bining 2D Kagome lattices. The result was a large unit
cell with 54 nodes. In (Broedersz et al., 2012) a network
based on a face centered cubic (fcc) lattice ((see Fig. 20c))
was constructed, and disorder was introduced in such a
way as to reduce the maximum coordination number to
4 while maintaining individual fibers of arbitrary length.
Although an fcc lattice has local 12-fold coordination, a
simple trick can be used to achieve the desired network
structure in which the maximum coordination number at
each vertex can be reduced: Three independent pairs of
crosslinked fibers are formed out of the six fibers cross-
ing at a vertex. Thus, this results in 3 binary crosslinks
that may overlap in space, but do not interact with or
constrain each other; these 3 pairs of fibers move through
each other as phantom chains. This lattice is termed the
3D Phantom network.

In both the Kagome-based lattice and the 3D Phan-
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tom lattice networks, the fiber length can be tuned
` = `0/(1− p) by cutting bonds with a probability 1− p,
where `0 is the distance between vertices. In the Phan-
tom model at least one bond is removed along every fiber
to avoid filaments that span the system; such spanning
filaments will deform more affinely. Thus, this model
can only approach z = 4 asymptotically from below. Al-
though this may seem like a technical detail, some of the
most subtle and interesting behavior in this model occurs
in the limit where filaments are long, and spanning fila-
ments can completely overshadow the macroscopic elastic
response of the network.

The perfect, undiluted lattice is mechanically rigid
when κ = 0 in both models, and there is a first-order
jump in the shear modulus to zero when p is less than 1.
Surprisingly, however, for diluted networks it was found
that for a finite bending rigidity, no matter how small, the
network shear modulus approaches its affine value in the
high molecular weight limit, which becomes insensitive
to the fiber bending stiffness. This is similar to what was
observed in 2D Mikado networks (Sec.IV.C.3). However,
the reason this is particularly surprising in 3D is that in
this case the network connectivity is still well below the
Maxwell isostatic threshold, which governs the stability
of networks with κ = 0; only beyond a higher local co-
ordination number do stretching constraints imposed by
the connectedness of the network force the system to be
stretch-dominated and nearly affine (see discussion on
isostaticity in Sec.V.A). Put differently, these are net-
works that are strictly mechanically unstable (G = 0)
when κ = 0, and yet stretch-dominated and approxi-
mately affine (G ≈ Gaffine) for any κ > 0, provided `/`0 is
chosen to be sufficiently large. Another interesting find-
ing in the 3D 4-fold networks is that, in the limit of floppy
filaments with weak bending rigidity or infinite molecu-
lar weight, the elastic response of the system becomes
intrinsically nonlinear with a vanishing linear response
regime (Broedersz et al., 2012). We will discuss nonlin-
ear properties of filamentous networks in more detail in
Sec.IV.D.

The linear response of these systems can be under-
stood within an effective medium framework developed
for 2D Kagome networks (Mao et al., 2013b), as dis-
cussed in (Stenull and Lubensky, 2011). An alternative
approach (Broedersz et al., 2012) builds on some of the
ideas of the floppy mode theory (Heussinger and Frey,
2006a; Heussinger et al., 2007b) (see Sec.IV.C.4), as well
as ideas presented in (Head et al., 2003a,b). We start
by considering a deformed network in which the fibers
are softer to bending than to stretching. Network nodes
along a fiber are assumed to undergo independent non-
affine deformations scaling as δuNA ∼ γ` to avoid stretch-
ing of the other fibers to which they are connected. As
a result, we would anticipate a scaling for the nonaffine
fluctuations of the form Γ ∼ `2 independent of κ, which
is indeed observed numerically (Broedersz et al., 2012)
((see Sec.IV.C.1 and Eq. (65) for more detail on the def-
inition of the nonaffinity parameter).

Nonaffine fluctuations of this form have interesting im-
plications for the bending energy in the system. Such
length-controlled nonaffine deformations store an amount
of elastic energy that scales as κ(δuNA/`

2
0)2`0 per segment

of length `0, which at the macroscopic level results in a
shear modulus for the bending regime given by

GLC ∼
κ

`20

(
δuNA

`20

)2
1

γ2
∼ κ

`60
`2. (73)

We can relate this to the behavior discussed for the 2D
Mikado model (Sec. IV.C.3). Thus, for 3D lattice net-
works we expect a similar scaling, but with the exponent
µ = 5 in Eq. (69). This type of bending elasticity im-
plies that the energetic cost of nonaffine bending defor-
mations grows with increasing `. But, the affine shear
modulus GA ∼ µ/`20 represents an upper bound. Thus,
with increasing `, at some point the nonaffine modulus
in Eq. (73) exceeds the affine upper bound, and thus be-
comes unphysical. This suggests a crossover from bend-
dominated to stretch-dominated elasticity, as the non-
affine bending deformations become less favorable than
the `-independent affine stretching deformations. This
crossover is expected to occur for an average molecular
weight comparable to λNA , which can be identified as a
nonaffine length scale. This length can be estimated by
comparing GLC with the affine stretching shear modulus
GA ∼ µ/`20, which become comparable for

` ∼ λNA = `20/`b, (74)

where `b =
√
κ/µ. Consistent with this expected

crossover, numerical simulations of both the 2D andy 3D
Kagome-based and 3D Phantom models show a length-
controlled crossover in G to the affine prediction for large
` (Broedersz et al., 2012; Mao et al., 2013b; Stenull and
Lubensky, 2011). Moreover, G/GA is a universal function
of `/λNA , for which G/GA ' 1 when `/λNA

>∼ 1.
These results are qualitatively consistent with the ear-

lier Mikado model in 2D, which also showed a length-
controlled crossover from non-affine to affine elasticity
with increasing fiber length, indicating that dimension-
ality does not play a qualitatively important role, in
spite of the Maxwell argument (Maxwell, 1865). In de-
tail, however, the prior 2D work showed a different non-
affine length scale: λNA ∼ `−αb , with α ≈ 0.3 − 0.4
(Head et al., 2003a,b; Wilhelm and Frey, 2003) (see
Sec.IV.C.3). However, for such 2D Mikado networks it
is difficult to unambiguously identify the origin of the
crossover as the same length-controlled mechanism in 3D,
since the high molecular weight limit also corresponds
to the CF isostatic point for the Mikado model, which
also leads to a bend-stretch crossover.(Broedersz et al.,
2011; Buxton and Clarke, 2007; Heussinger and Frey,
2006a; Heussinger et al., 2007b) . Head et al. argued
for a length-controlled mechanism that was independent
of dimensionality (Head et al., 2003a), and it may be
that the difference in the exponent α is due primarily
to the difference in local network structure: the Mikado
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model exhibits inherently larger polydispersity of fiber
segment lengths than lattice-based networks (Heussinger
and Frey, 2006a; Heussinger et al., 2007b). By con-
trast, 2D diluted Kagoma lattice networks (Mao et al.,
2013b), which do not exhibit a large polydispersity in
fiber segment length, exhibit crossover behavior quan-
titatively more similar to the 3D networks with binary
crosslinks (Broedersz et al., 2012; Stenull and Lubensky,
2011).

The scaling argument discussed in this section also pro-
vides some insight into the amplitude of the nonaffine
fluctuations at the nonaffine-affine transition. Intrigu-
ingly, at this crossover the nonaffine fluctuations reach a
maximum Γλ = λ2

NA /`
2
0 = `20/`

2
b (Broedersz et al., 2012).

This counter-intuitive result shows that the amplitude of
the nonaffinity parameter can actually be large (or max-
imal), even if the networks shear modulus is very close
to the affine value. This analysis suggest that we should
be cautious interpreting the nonaffine fluctuations in an
absolute sense; these nonaffinity parameters may only be
meaningful when considered in the context of the elastic
properties of the relevant modes of deformation.

We can summarize the main results from these studies
in a simple diagram, as shown in Fig. 21. In panel a) we
show the expectation for a thermal semiflexible polymer
network with binary crosslinks as a function of two im-
portant control parameters: Filament length ` and poly-
mer concentration c. When the connectivity is too low,
the network is mechanically unstable, and thus is best de-
scribed as a solution. However, just beyond this thresh-
old, the network is marginally stable and is described
by the physics of the rigidity percolation. In principle,
the network can be dominated either by bending (low
concentration) or stretching modes (high concentration).
When the polymer length is increased further, we enter
the nonaffine bending regime, and subsequently crossover
to the affine regime. At low concentrations the distance
between crosslinks is large, and thus the entropic stretch-
ing modulus of the semiflexible polymers is softer than
the enthalpic stretching modulus. Thus, there is a low-
concentration affine thermal regime, and a high concen-
tration affine mechanical regime (Head et al., 2003a).

In panel b) of Fig. 21, we sketch the expected
regimes for an athermal fiber network in 3D with binary
crosslinks as a function of `/`c and `b/`c, where `2b is set
by the ratio between the bending and stretching rigidity
of a fiber. When increasing `/`c, the system transitions
from a solution state (G = 0), to a marginally stable
network. When the fiber length is further increased, it
starts dominating the nonaffine deformations, and thus
we enter the length-controlled bending regime. However,
no matter how soft the fibers are to bending, the systems
always crosses over over to an affine regime at high `/`c.
As long as the network is mechanically stable (G > 0),
the system is bend-dominated at low `b/`c, and stretch
dominated at `b/`c.

7. Is the affine limit stable?

The discussion above was limited to the simple ather-
mal fiber limit, in which the fiber segments are charac-
terized by a 1D Young’s modulus that is independent of
length. By contrast, thermal semiflexible polymers have
an entropic stretch modulus that depends sensitively on
length (see Sec II.B), and this may have important impli-
cations for the macroscopic elastic response of real semi-
flexible polymer networks; typically, such systems can be
expected to exhibit polydispersity in the length of seg-
ments between crosslinks, and thus also a polydispersity
in the stretching moduli of these segments.

It has been argued that the pure affine limit in such
networks is not strictly stable (Heussinger and Frey,
2007; Mao et al., 2013b). This can be understood in
terms of the local force balance in the network. Consider
two consecutive segments along the a single filament (1)
somewhere in a network of straight filaments. These two
segments are separated by a crosslink to another filament
(2) crossing at some angle. Assuming a purely affine net-
work deformation, the force due to the stretching of fila-
ment 1 on each side of the crosslink will be proportional
to the Young’s modulus of the respective segments. If
these are different, there is a net force on the crosslink
that must be balanced by filament 2. As this crosses
at an angle, some resulting bending energy is expected
and the network deformation must be locally nonaffine.
Thus in networks with polydispersity, the affine limit is
stable for athermal simple elastic fibers, but not for ther-
mal semiflexible filaments or other systems where the 1D
Young’s modulus is not constant.

How important is this lack of local force balance and
the resulting local instability in networks with polydis-
perse Young’s moduli? Will the necessary bending en-
ergy generated in such systems under strain be dominant
over stretching, or will this result in merely a quanti-
tative correction to an otherwise still stretch-dominated
response? On the one hand, it has been argued based
on scaling and simulations of 2D Mikado network ar-
chitectures that regimes can arise where the mechanical
response depends on both stretching and bending ener-
gies (Heussinger and Frey, 2007). On the other hand, as
argued in the previous section, if the response is purely
bend-dominated with small or vanishing stretch response,
then the bend elastic energy must increase with molecu-
lar weight `. Thus, in the limit of high molecular weight,
a purely bend-dominated behavior may not be possible.
Thus, the question as to whether real, disordered net-
works are stretch- or bend-dominated remains, particu-
larly in the limit of high molecular weight.

D. Nonaffinity and nonlinear elasticity of athermal fiber
networks

In Sec.IV.A we discussed the nonlinear network re-
sponse of the affine thermal model. As filaments in
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FIG. 21 a) Schematic for the elastic regimes (a) for a thermal semiflexible polymer network with binary crosslinks as a function
of two important control parameters: Filament length ` and polymer concentration c, and (b) for an athermal fiber network in
3D with binary crosslinks as a function of `/`c and `b/`c. Here `c is the distance between crosslinks measured along a filament,
and `2b is set by the ratio between the bending and stretching rigidity of a fiber.

the network undergo large affine deformations, the ther-
mal undulations in the polymer get “stretched out”, giv-
ing rise to a dramatic entropic stiffening response, re-
flected by a 10-1000 fold increase of the networks differ-
ential shear modulus at large deformations (Gardel et al.,
2004a; Kroy and Frey, 1996; Lin et al., 2010a; MacKin-
tosh et al., 1995; Morse, 1998b; Storm et al., 2005; Yao
et al., 2010). However, as discussed above, semiflexi-
ble polymer networks can be nonaffine, and dominated
by athermal filament bending deformations. Thus, the
question arises: what is the elastic response under large
imposed shear deformations of an athermal fiber net-
work dominated by nonaffine fiber bending deformation
modes? Naively, one might not expect a nonlinear stiffen-
ing response for athermal networks that are composed of
purely linear elastic elements. Strikingly however, it was
shown that athermal fiber networks also strain stiffen,
with a dramatic increases of the differential shear modu-
lus at moderate deformations.

Onck et al. employed 2D Mikado networks to study the
effects of large strains in filamentous networks, with the
additional feature that static, intrinsic curvatures could
be build into the filaments (Onck et al., 2005). These
“frozen-in” undulations were sampled from a thermal
equilibrium distribution for semiflexible filaments with-
out tension, although the network was otherwise treated
as athermal and fully mechanical. They found that net-
works that were dominated by soft bending modes for
small strains crossed over to a high-strain elastic regime
dominated by stiffer stretching modes. The authors ar-

gued that such a strain-induced bend-to-stretch crossover
is due to filament reorientations, which is reflected as a
peak in the nonaffinity parameter at strain values near
the transition. The additional frozen-in undulations were
not found to be responsible for the transition, although
these tended to increase the strain threshold for the stiff-
ening transition (we will return to the point of frozen-in
curvature below). Indeed, a similar stiffing response was
observed in 2D athermal networks even without curva-
ture defects along the filaments in (Chandran and Baro-
cas, 2006; Conti and MacKintosh, 2009; Heussinger et al.,
2007b). Similar results have also been seen in 3D (Broed-
ersz et al., 2012).

Despite the numerous numeric studies demonstrating
nonlinear strain stiffening originating in nonaffine net-
work deformations, very little analytical progress was
made initially to provide insight into this behavior. The
floppy mode theory, which provided a description for
the linear regime, also has implications for the onset
of the nonlinear behavior (Heussinger and Frey, 2006a;
Heussinger et al., 2007b). An essential point in under-
standing the nonlinear elastic response of athermal net-
works, is that fibers can not undergo large bending de-
formations without stretching at all. This can be under-
stood from a simple geometric argument. We consider
one of the filaments crosslinked at a length scale `c in
a deformed network, and suppose that there is a trans-
verse displacement δu⊥ at one of the crosslinks. This
transverse displacement not only results in a curvature
of the filament, but also in an axial deformation `c + δ.
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This axial deformation can be related to the transverse
bend deformation, `2c + δu2

⊥ ∼ (`c + δ)2, where δu⊥ ∼ γ`
is assumed in the floppy mode model. For moderate de-
formations one finds to leading order δ ∼ δu2

⊥/`c. It
was argued in (Lieleg et al., 2007) that the floppy mode
description for the linear regime only remains valid as
long as the axial fiber stretch δ is small compared to
the available thermal excess length `c/`p (see Eq. (57)).
Thus, this implies a critical strain set by δu2

⊥/`
2
c ∼ δc/`c,

yielding

γc ∼ `3/2c /(`2`p)
1/2. (75)

This is an argument for a thermal semiflexible polymer
that is dominated by nonaffine bending mechanics in the
linear regime, but that stiffens entropically under shear.

From simulations, we know that athermal networks of
linear elastic fibers also stiffen. We can build on the
argument in the previous section to provide some in-
sight in this behavior (Broedersz et al., 2012). As in the
floppy mode model, length-controlled nonaffine deforma-
tions are assumed δu⊥ ∼ γ`. This deformation results
in a bend with an amplitude ∼ γ`, and a corresponding
bending energy δEB ∼ κ`2γ2/`3c . We know from the ge-
ometric argument in the previous paragraph, that there
is also a higher order axial stretch δ ∼ δu2

⊥/`c of the fila-
ment, but what is the energy associated to this stretching
deformation? The axial strain associated to this stretch
is ε ∼ (γ`/`0)2 + O(γ4), which amounts to a stretch en-
ergy δES ∼ µ(γ`)4/`30. Thus, we expect that these higher
order stretch contributions start dominating the elastic
response at a strain where δEB ≈ δES , resulting in a
stiffening of the network’s shear modulus. This implies a
critical strain,

γc ∼
`b
`
, (76)

where `b =
√
κ/µ. Interesting, both Eqs. (75) and (76)

show a characteristic strain for the onset of nonlinear
behavior that vanishes in the limit of increasing molec-
ular weight `. Thus, both models can be said to have
an absent or vanishing linear response regime in this
limit. The argument that led to this last result assumed
that the bending energy scales with `2. However, the
floppy mode model for the Mikado network predicted
a slightly stronger scaling, which would then lead to
γc ∼ (`b/`)(`/`c)

(µ−5)/2, with µ = 5 for the 3D Phan-
tom model and µ ≈ 6.67 for the 2D Mikado model.

In the discussion above, we have assumed that the non-
affine deformations are governed by filament length. Near
isostatic connectivity thresholds (See section V), where
the network is marginally stable, we know that nonaffine
deformations can be dominated by the proximity of net-
work connectivity to the isostatic point. Indeed, for such
cases, arguments like the one discussed in the previous
paragraph taken together with nonaffine deformations
that follow the form in Eq. (83) (Broedersz et al., 2011;
Wyart et al., 2008), imply a critical strain for the onset

of stiffening

γc ∼
(
`b
`c

)λCF/φ+1

, (77)

where λCF is a critical exponent associated with the non-
affine fluctuations, and φ is a crossover exponent, both of
which are discussed in detail in sections V.A.2 and V.A.3.

It is interesting to note that the various results in Eqs.
(75), (76) and (77) make rather different predictions for
the dependence of the critical strain on `c. Since this is
a parameter that is expected to depend on network con-
centration c, roughly as `c ∼ c−1/2. Thus Eqs. (75) and
(77) both predict a decrease in the critical strain with
increasing polymer concentration. Qualitatively, such a
decrease is observed for many biopolymer networks, in-
cluding actin (Gardel et al., 2004a,b; Tharmann et al.,
2007), fibrin (Piechocka et al., 2010) and intermediate fil-
aments (Lin et al., 2010b). However, the experimentally
observed exponents are more consistent the predictions
of Eqs. (57) and (59). By contrast, the prediction of the
athermal nonaffine model far from the isostatic point in
Eq. (76) is that the critical strain should be independent
of concentration. This is consistent with reports for colla-
gen networks (Piechocka et al., 2011), which are expected
to be athermal.

The arguments above only address the strain at which
stiffening sets in. Numerical data also clearly indicate
the presence of a stiffening regime in athermal fiber net-
works (Onck et al., 2005), but such results do not identify
a specific functional form of the stiffening response. Be-
yond the critical strain (or critical stress), the network
stiffens gradually as the system crosses over from bend-
ing dominated to stretching dominated elasticity. At
very large deformations, the differential shear modulus
of linear elastic fibers is expected to asymptotically ap-
proach the affine high-strain prediction, and no longer
stiffen. But, what happens during the crossover? Recent
lattice-based and Mikado simulations not only show the
expected asymptotic affine behavior, but also suggest a
regime where K ∼ σ1/2 at higher stress, as well as an
initial stiffening regime with an approximate K ∼ σα

with α ≈ 1 (Broedersz and MacKintosh, 2011; Conti
and MacKintosh, 2009), as shown in Fig. 22. However,
the origin of this form of stiffening behavior, and even
whether it represents a genuine power-law regime remains
unclear. It has been argued that such nonlinearity can
be viewed as a transition from predominantly bending to
stretching behavior (Onck et al., 2005). But, pure spring
networks without bending have been shown to exhibit
shear stresses σ that increase quadratically with strain γ
(Wyart et al., 2008), suggesting that only the onset of the
K = dσ/dγ ∼ σ1/2 regime corresponds to a transition
to stretching-dominated behavior. (See also Sec. V.B.)
Thus, whether the nonlinear response of fiber networks
can be generally described by a crossover from bending
to stretching remains unclear (Licup et al., 2014).
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FIG. 22 Nonlinear elasticity of a fiber network on a diluted 2D
Phantom lattice. The differential shear modulus K = dσ/dγ
as a function of the applied external stress σext for various val-
ues of 〈`〉 at fixed bending rigidity κ = 10−3. K and σext are
measured in units of µ/`0. It is not completely clear whether
definite powerlaw regimes exist, but the stiffening curves for
〈`〉 <∼ 5 initially show a stiffening behavior of approximately

K ∼ σ that crosses over to a regime K ∼ σ1/2 at large shear,
as shown by the dashed lines that indicate a slope of 1 and
1/2. For longer filaments, only the second, weaker stiffen-
ing response is apparent. From (Broedersz and MacKintosh,
2011).

1. More on the role of intrinsic curvature

We would like to return briefly to the point of intrin-
sic curvature. An interesting perspective on the role of
intrinsic curvatures was provided in (Kabla and Mahade-
van, 2006). Their model captures the geometrical effects
of the quenched disorder in the intrinsic curvatures of the
fibers. When a single such filament is stretched, it will
first unbend as the natural curvatures are ironed out, af-
ter which the presumedly stiffer back bone may stretch.
They considered an inextensible, weakly curved filament
with random curvatures chosen from a distribution that
represents the curvatures of fibers in felt. Using this,
they calculated a force extension curve, which for large
forces diverges as

f ∼ 1√
1− ε , (78)

where ε measures the extension relative to the fully ex-
tended state. Interestingly, this is in contrast to the
predicted divergence of the force-extension behavior of
a semiflexible polymer, for which f ∼ 1

(1−ε)2 (Fixman

and Kovac, 1973; Gardel et al., 2004a; MacKintosh et al.,
1995; Marko and Siggia, 1995). Thus, even though both
mechanisms for a nonlinear response have their origin
in stretching out fluctuations, quenched fluctuations and
thermal fluctuations can give rise to a quantitatively dif-

ferent form for the divergence. Kabla and Mahadevan
used a unit-cell approach in their quenched fiber model
to describe the elastic and plastic behavior of felt net-
works.

2. Negative normal stress in athermal networks

Recently, biopolymer networks were shown to exhibit
an additional form of nonlinear elastic response known as
negative normal stress or a negative/anomalous Poynt-
ing effect. When most materials are subjected to simple
shear, they tend to expand in the strain gradient direc-
tion. This is an effect first observed by Poynting a lit-
tle more than one hundred years ago (Poynting, 1909).
Poynting performed careful experiments twisting wires,
which he showed resulted in an axial extension of the
wires. This Poynting effect can also be expressed in terms
of the positive (compressive) stresses that would develop
axially if such a wire is not allowed to elongate. This ef-
fect is fundamentally nonlinear, in that it cannot change
sign under twisting in the reverse direction: while shear
stresses are odd in twist or shear strain, normal stresses
must be even. Thus, no linear normal stress response is
expected at small strain.

Interestingly, rheological studies of a wide variety of
biopolymer gels have been shown to exhibit the opposite
effect: they develop tensile stresses or contract in the
axial direction, which shows up as a negative thrust in
a rheometer (Janmey et al., 2007). Moreover, the nor-
mal stresses were shown to become as large in magnitude
as the shear stresses. It was shown in that same work
that the affine thermal model can account for the unex-
pected sign and large magnitude of the normal stresses.
The stiffening response of Mikado networks has also been
shown to coincide with additional nonlinearities, such as
the appearance of negative normal stresses and a soft-
ening response due to buckling (Conti and MacKintosh,
2009; Heussinger et al., 2007b; Kang et al., 2009; Onck
et al., 2005). Although both affine and nonaffine models
can account for negative normal stresses, they predict a
qualitatively different dependence of the normal stress as
a function of shear stress (Conti and MacKintosh, 2009).
Experiments on fibrin networks appear to be in better
agreement with the non-affine predictions (Kang et al.,
2009).

Normal stresses are frequently studied in other soft
matter systems, in connection with such phenomena as
the Weissenberg effect, in which a viscoelastic fluid tends
to climb a rod that is rotated in the liquid (Larson, 1999).
This can also be seen in the stirring of bread dough, as a
network of gluten begins to form. Normal stresses appear
in the stress tensor along the diagonal, where hydrostatic
pressure also appears as a uniform contribution along the
diagonal of the stress tensor. But, only spatial varia-
tions in the pressure can affect the flow and deformation
of incompressible materials. Thus, the stress tensor for
such materials is only defined up to an additive isotropic
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(pressure-like) term, with the result that rheological mea-
surements are only sensitive to normal stress differences
among the various diagonal terms in the stress tensor.

It is important to note, however, that this only follows
for incompressible materials. And, while systems such
as biopolymer network can usually be considered to be
incompressible by virtue of the solvent they are imbed-
ded in, the two-component character of such systems can
lead osmotic compressibility of the network (Brochard
and De Gennes, 1977; Gittes et al., 1997; Levine and
Lubensky, 2001; MacKintosh and Levine, 2008). This
means that rheological measurements in such effectively
compressible materials can, in principle, measure indi-
vidual normal stress components of the tensor. As was
argued by Janmey et al., (Janmey et al., 2007), this can
be expected especially for biopolymer systems with their
relatively open meshworks, where the mesh size can be
as large a several micrometers, e.g., in the case of col-
lagen and fibrin gels. On long time scales, the solvent
can be expected to move relatively freely through such
a porous network. Only on shorter time scales, or for
finer meshworks, where this motion is impeded by hy-
drodynamics, will the network be expected to inherit the
incompressibility of the solvent: here, a strong hydrody-
namic coupling of network and solvent is expected. For
this reason, normal stress measurements in biopolymer
gels have been reported in terms of the single, axial nor-
mal stress component (Janmey et al., 2007; Kang et al.,
2009).

V. MARGINAL STABILITY AND CRITICAL
PHENOMENA IN FIBER NETWORKS

The importance of network connectivity, and concepts
such as isostaticity and criticality have long been recog-
nized in the fields of rigidity percolation and jamming
phenomena. As we will discuss here, many of these con-
cepts have also proven to be helpful in understanding
interesting aspects of fibrous networks.

Maxwell introduced an analysis of the mechanical sta-
bility of spring networks highlighting the importance of
connectivity (Maxwell, 1865). Spring-like bonds give rise
to central forces, i.e., forces which only depend on the
relative distance between two connected network nodes.
Maxwell’s constraint counting argument predicts that
such spring networks are mechanically rigid at connec-
tivities exceeding zCF = 2d. At this central force (CF)
isostatic point the number of constraints arising from
the central-force interactions Nz/2 precisely balances the
number of internal degrees of freedom Nd. This predic-
tion for the isostatic connectivity is remarkably accurate
for jammed systems and is reasonably accurate in per-
colation networks (Feng and Sen, 1984; He and Thorpe,
1985; Schwartz et al., 1985; Thorpe, 1985, 1983). (See
(van Hecke, 2010; Liu and Nagel, 2010) for recent re-
views on this subject.) These, and many other studies
have also demonstrated that a variety of systems, includ-

ing network glasses and jammed systems exhibit a rich
mechanical behavior that is controlled by the proximity
of network connectivity to the isostatic connectivity.

What is the role of connectivity and isostaticity in fiber
networks? Clearly this is more subtle than for spring
networks, since fibers resist both stretching and bend-
ing; while fiber stretching can be modeled with spring-
like central-force interactions, fiber bending requires non-
central, 3-point interactions. Thus, bending interactions
add constraints of a different nature that can stabilize
the systems at connectivities below the central-force iso-
static point. Indeed, various studies on network glasses
and jammed systems have illustrated how additional in-
teractions can stabilize networks below the CF thresh-
old (Garboczi and Thorpe, 1986; Wyart et al., 2008).
More recently, various studies looked at the role of other
stabilizing quantities, such as contractile stresses, viscous
interaction and temperature, and we will return to these
studies below.

Filamentous networks such as biological gels typically
have average connectivities between three and four, po-
sitioning them well below the CF isostatic threshold in
3D (Lindström et al., 2010). Thus, their rigidity can be
be strongly influenced or even controlled by other sta-
bilizing effects, such as bending rigidity. However, al-
though the network stability may rely on fiber bending
rigidity, this does not necessarily imply that the network
mechanics is governed by fiber bending, as evidenced by
the length controlled bend-to-stretch crossover discussed
in Sec. IV.C.6. The role of network disorder and non-
affinity is also presumed to become more important in
such under-connected networks. Indeed, the precise role
of bending interactions in biological fiber networks has
been subject of much debate (Buxton and Clarke, 2007;
Chaudhuri et al., 2007; Gardel et al., 2004a; Head et al.,
2003a,b; Heussinger and Frey, 2006a; Heussinger et al.,
2007b; Huisman and Lubensky, 2011; Lieleg et al., 2007;
Onck et al., 2005; Storm et al., 2005; Wilhelm and Frey,
2003)

One fruitful approach to studying the role of network
connectivity in 2D and 3D has been to use network ar-
chitectures based on lattice structures (Broedersz et al.,
2012; Broedersz and MacKintosh, 2011; Broedersz et al.,
2011; Das et al., 2007, 2012; Mao et al., 2013a,b; Shein-
man et al., 2012a), and we discuss these studies in the
next section.

We should pause to ask how useful such an approach
might be for describing real networks. Differences in net-
work architecture can have dramatic consequences for the
network mechanics (Heussinger and Frey, 2007). The
precise architecture of biological networks in different
physiological contexts and in vitro reconstituted biopoly-
mer gels is not well understood. While the architectural
variety is an interesting subject of investigation in and of
itself, we now ask whether there may be simple overarch-
ing principles governing the network mechanics that do
not depend sensitively on architectural details. If such
principles exist, this could justify using a network archi-
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tecture that is convenient from a theoretical perspective,
enabling both efficient computation and tractable analyt-
ical calculations. However, one should ask whether the
results of these lattice models, or other minimalistic mod-
els for that matter (see IV.C.3), do not rely crucially on
the simplified geometry or dimensionality and still hold
for more realistic network.

A. Lattice-based bond-dilution networks

These networks consist of straight fibers organized
on a lattice geometry. The constituent filaments resist
stretch, with modulus µ, and compression, with modulus
κ. Thus, they generate central forces directed along the
fiber segment between crosslinks; because the fibers re-
sist bending, they also generate torques favoring parallel
alignment of consecutive segments along a single fiber.
The connectivity can be controlled by randomly diluting
bonds between crosslinks, such that the probability for
each bond to be present is p, as illustrated in Fig. 17 for a
2D triangular lattice and Fig. 20c for a 3D face centered
cubic lattice. Thus the connectivity in such a network,
set by the average number of bonds connected to a node
excluding dangling bonds, is roughly given by z = pZ,
where Z is the coordination number of the undiluted lat-
tice.

We focus here on networks with freely-hinged bonds
between fibers, in contrast with earlier studies of rigidity
percolation, including studies of network glasses (He and
Thorpe, 1985; Sahimi and Arbabi, 1993; Schwartz et al.,
1985; Thorpe, 1983). The motivation for this is partly to
keep the number of parameters to a minimum, but also
because of the large aspect ratio of crosslink distance to
molecular scale or low volume fraction of most biopoly-
mer networks, which means that the fiber segments have
a large lever-arm for bending fibers at crosslinks that fix
the bond angles. Bond bending can be included, how-
ever, and it has been shown to stabilize networks to a
somewhat lower connectivity threshold (Das et al., 2012).
Otherwise, the qualitative features are much the same as
for freely-hinged bonds.

The numerical results for this lattice-based fiber model
with freely freely-hinged crosslinks are shown in Fig. 23
for a triangular lattice in 2D. For κ = 0 (dashed grey line
Fig. 23), the shear modulus vanishes continuously at a
critical value pCF (for a 2D triangular lattice pCF ≈ 0.651,
and for a 3D fcc lattice pCF ≈ 0.473). In particular,
it is well established that near the CF isostatic point
G ∼ µ|p−pCF|fCF (see Table III). In contrast, in the limit
of large κ/µ the shear modulus is approximately G ∼
µp. Thus, the shear modules approaches the affine limit
and, thus, becomes independent of κ; even if the network
has a connectivity below the CF threshold, if nonaffine
bending deformations are energetically more costly than
stretching deformation, it is more favorable to deform
through stretching.

For all networks with a finite bending stiffness, the
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FIG. 23 The shear modulus for a diluted 2D triangular lattice
fiber networks. The shear modulus G, is shown in units of
µ/`0 as a function of the bond occupation probability, p, for
a range of filament bending rigidities, κ (in units of µ`20). The
numerical results for κ = 0 are shown as dashed grey lines.
The EMT calculations for a 2D triangular lattice are shown
as solid lines in (a). b) The nonaffinity measure, Γ, is shown
as a function of p for various values of κ for a 2D triangular
lattice. Adapted from (Broedersz et al., 2011).

shear modulus vanishes continuously at a rigidity thresh-
old pb. This behavior is governed by the bending rigidity
exponent fb (see Table III). The value of pb indepen-
dent of the bending rigidity (for a 2D triangular lattice
pb ≈ 0.445, and for a 3D fcc lattice pb ≈ 0.268). This
bending threshold can be understood from a counting
argument similar to Maxwell’s analysis at the central-
force threshold, but now extended to include bending
constraints.

1. Counting argument for the “bending” rigidity threshold

The bending isostatic point pb of lattice-based fibrous
networks can be calculated using Maxwell counting and
mean-field arguments. Isostatic conditions require that
the total number of network constraints due to both
stretching and bending are equal to the total number
of degrees of freedom. In d dimension, the total num-
ber of internal degrees of freedom is equal to dNc, where
Nc is the number of network crosslinks. The number of
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constrains due to the stretching stiffness of the bonds is
Nbp, where Nb is the number of bonds in the undiluted
network (p = 1). In addition, the bending rigidity con-
tributes d−1 constraints at any pair of neighboring coax-
ial bonds, and the total number of such bonds is Nbp

2.
Thus, the rigidity percolation transition occurs when

dNc = Nb
(
p+ (d− 1) p2

)
(79)

or

pb =

√
1 + 4dNc

Nb
(d− 1)− 1

2 (d− 1)
. (80)

For the triangular lattice we obtain pb =

√
11
3 −1

2 '
0.4574, for the Kagome and square lattices pb =

√
5−1
2 '

0.618, while for the fcc lattice pb =
√

5−1
4 ' 0.309, in

reasonable agreement with simulations (Broedersz et al.,
2011; Das et al., 2012; Mao et al., 2013a,b). A more
accurate calculation of the rigidity points can be found
in (Broedersz et al., 2011), and similar arguments for off-
lattice networks have also been presented (Huisman and
Lubensky, 2011).

2. The critical crossover regime between stretching and
bending dominated mechanical behavior

Although this bending threshold, pb, marks the true
onset for rigidity in fiber networks, there is another im-
portant connectivity threshold for these systems: For low
enough κ, the shear modulus crosses over at the cen-
tral force isostatic point pCF from bending dominated
to stretching dominated behavior, as shown in Fig. 23a.
This crossover in the mechanical response is accompanied
by a cusp in the nonaffine fluctuations, as quantified by
the nonaffinity parameter Γ (see Fig. 23b and Eq. (65) for
the definition of the nonaffinity parameter); the ampli-
tude of this cusp diverges with vanishing κ, highlighting
the critical state of the network when p = pCF and κ = 0.

It is instructive to draw an analogy between these ob-
servations in fiber networks and the behavior of other
well-understood models for critical behavior at finite tem-
perature. When a small bending rigidity is added to the
network model, the system is stabilized at and below the
central-force isostatic point: the shear modulus no longer
vanishes and the strain fluctuations are now finite. Thus,
at least qualitatively, the impact of κ on the strain fluc-
tuations and the shear modulus near the central-force
isostatic point is analogous to the impact of an exter-
nal field or coupling parameter on the order parameter
and its fluctuations near the critical temperature, as the
field takes the system away from criticality. This turns
out to be more than just a qualitative analogy, but with
some intriguing nuances between athermal networks and
thermal systems.

The CF isostatic point plays a central role in determin-
ing the cross-over from the stretching dominated regime

to the bending dominated regime (Broedersz et al., 2011;
Buxton and Clarke, 2007; Garboczi and Thorpe, 1986;
Straley, 1976; Wyart et al., 2008). Only in the limit
κ → 0, the CF isostatic point is a true critical point.
From the perspective of critical phenomena, the bending
rigidity may be thought of as an applied field or cou-
pling constant that leads to a crossover from one critical
system to another (such as from the Heisenberg model to
the Ising model (Fisher, 1982)). In such thermal systems,
there is a continuous evolution of the critical point as this
coupling parameter is varied. Interestingly, there is no
such continuous evolution with variation in κ in athermal
fiber networks, which show a discontinuous jump from
pCF to pb, as soon as κ becomes nonzero. Furthermore,
although the analogy between κ and a field is insight-
ful, there are other important formal differences. For
instance, the magnetic field couples linearly to a symme-
try breaking order parameter, while this not the case for
κ.

These ideas about how κ impacts the mechanical re-
sponse near pCF have been formalized by constructing
an effective medium theory (EMT) using the coher-
ent potential approximation (CPA) by Mao and Luben-
sky (Broedersz et al., 2011; Mao et al., 2013a) (See
Sec.V.C). This model shows that the shear modulus may
be written as a universal function when κ/µ� ∆p, with

G = µ|∆p|fCFG±
(κ
µ
|∆p|−φ

)
, (81)

where G± is a universal function where the two branches
apply above and below the transition. When the argu-
ment of G±(y), y � 1, G+(y) ∼ const. and G−(y) ∼ y,
such that G ∼ µ|∆p|fCF for ∆p > 0 and G ∼ κ|∆p|fCF−φ

for ∆p < 0. In the opposite limit (κ/µ)|∆p|−φ >∼ 1, i.e.,
in the critical regime, G must become independent of ∆p
since G is neither zero nor infinite at ∆p = 0. Thus, Eq.
(81) predicts G ∼ κfCF/φµ1−(fCF/φ) in the vicinity of pCF,
yielding an anomalous mechanical regime that is gov-
erned by both the stretching and bending energies. The
various mechanical regimes are summarized in a phase
diagram in Fig. 24.

Interestingly, the scaling form in Eq. (81) is analogous
to that for the conductivity of a random resistor net-
work (Straley, 1976) with bonds occupied with resistors
of conductance σ> and σ< with respective probabilities
p and (1 − p), as well as random spring networks with
soft and stiff springs (Garboczi and Thorpe, 1986; Wyart
et al., 2008).

The universal scaling function in Eq. (81) is also pre-
dicted by the EMT theory when κ/µ� ∆p, with

G±(y) ' 3

2

(
± 1 +

√
1 + 4Ay/9

)
(82)

where A ' 2.413, fEMT = 1 and φEMT = 2. Interest-
ingly, these mean field exponents are identical to those
found in central-force networks with two types of springs



36

FIG. 24 Phase diagram for a fibrous network on a diluted
triangular lattice. Above the rigidity percolation point pb

there are three distinct mechanical regimes: a stretching dom-
inated regime with G ∼ µ, a bending dominated regime with
G ∼ κ and a regime in which bend and stretch modes couple
with G ∼ µ1−xκx. Here x is related to the critical exponents
x = fCF/φ. The mechanical regimes are controlled by the
isostatic point pCF, which acts as a zero-temperature criti-
cal point. Adapted from (Broedersz et al., 2011; Mao et al.,
2013a).

TABLE III Critical exponents for bond-diluted lattice
fiber networks in 2D (triangular lattice) and 3D (fcc lat-
tice) (Broedersz et al., 2011).

exponent 2D sim 2D EMT 3D sim

fCF 1.4± 0.1 1 1.6± 0.2
φ 3.0± 0.2 2 3.6± 0.3
νCF 1.4± 0.2
λCF 2.2± 0.4
fb 3.2± 0.4 1 2.3± 0.2
νb 1.3± 0.2
λb 1.8± 0.3

(Garboczi and Thorpe, 1986; Wyart et al., 2008). How-
ever, in lattice-based fiber networks non mean-field ex-
ponents are found (See Table III).

We will provide a more detailed discussion of the effec-
tive medium approach below. But, we will first discuss
some other interesting aspects of these networks, which
generalize to other marginal systems, including networks
in the presence of viscous interactions, thermal fluctua-
tions or internal stresses.

3. What can we learn from the nonaffine fluctuations in
marginal networks?

The analogy observed above between the mechanics of
fiber networks and thermal critical phenomena begs the
question as to whether other signature of criticality may
also be present here. Among the most important and
general aspects of critical phenomena are fluctuations

and a corresponding correlation length, both of which
diverge at the critical point. These features have also
been shown for athermal fiber networks, as well as for
particle packings near the jamming transition. Perhaps
the most natural candidate for fluctuations in such sys-
tems is the nonaffinity of the deformation field, i.e., the
fluctuations in the strain field. Indeed, it was found that
the nonaffine fluctuations Γ diverge as Γ±|p − pCF|−λcf

for κ = 0 near the CF critical point, and Γ±|p−pb|−λb for
κ > 0 at the rigidity percolation point (See Sec.IV.C.1
and Eq. (65) for more details on the definition of the non-
affinity parameter). This is similar to findings in spring
networks in a jammed configuration (Wyart et al., 2008),
but with non mean-field exponents in the case of lattice
fiber networks. Moreover, one can find an associated di-
vergent length-scale ξ = ξ±|∆p|−ν near the respective
critical points. This scaling can be determined by per-
forming a finite size scaling analysis. The divergence of ξ
is limited by the system size W , which should and does
suppress the divergence of Γ.

When κ > 0, the system is no longer critical at pCF,
yet signatures of criticality remain near pCF. Specifically,
the divergence of the nonaffinity parameter is suppressed,
but grows as κ→ 0. Close to the CF isostatic point one
finds a peak of Γ that scales as

Γmax ∼
(
κ

µ

)−λCF/φ

. (83)

Moreover, as in ordinary critical phenomena, the diverg-
ing fluctuations are also associated with a diverging sus-
ceptibility χ ∼ Γ. This suggests that the order parameter
(here, G) can be expressed in terms of the susceptibility
and the field or coupling constant (here, κ) that takes
the system away from the critical point at pCF:

G ∼ κΓmax ∼ µλCF/φκ1−λCF/φ = µ1−fCFφκfCF/φ, (84)

which can be confirmed by simulation. The scaling be-
havior of the nonaffine fluctuations also has important
implications for the critical strain at which these net-
works become nonlinear, as discussed in Sec. IV.D.

B. Stability of marginal networks

We have discussed above how bending rigidity can sta-
bilize an otherwise floppy network below the isostatic or
marginal state of connectivity. This is an example of a
much broader class of phenomena, in which additional
interactions or fields can change the state of a system
and lead to rich critical phenomena associated with the
marginal state. The basic idea goes back at least to the
1970s in the context of random resistor networks (Dykne,
1971; Efros and Shklovskii, 1976; Straley, 1976). In the
present context, this is also closely related to rigidity per-
colation studies in 1980s, e.g., in (Garboczi and Thorpe,
1986). More recently, in the context of jamming, the im-
portance of critical fluctuations and crossover has also
been shown (Wyart et al., 2008).
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Here, it is useful to draw an analogy with ferromag-
netism in statistical physics. We associate the shear
modulus G of a network with the magnetic order pa-
rameter m: the ordered phase is the stable, rigid one.
In essence, much as a magnetic field h can stabilize a
paramagnet, i.e., by creating a non-zero magnetization,
the bending stiffness κ above can act to stabilize an oth-
erwise floppy network. Given the critical nature of the
underlying marginal point in the absence of additional
interactions, signatures of this critical point can be seen
away from the critical point, as for a magnetic system:
for instance, for weak applied magnetic fields, both the
susceptibility and magnetic fluctuations exhibit evidence
of a divergence near the critical point, although this di-
vergence is suppressed or rendered finite by the finite
magnetic field. For fiber networks, this is illustrated by
the divergence of the fluctuations near pCF in Fig. 23b,
which is suppressed by bending stiffness κ. Similar ef-
fects are also seen in jamming (Wyart et al., 2008), where
nonaffine fluctuations are suppressed by addition of weak
springs.

One of the signatures of criticality in magnetic sys-
tems is the relationship between the magnetization m
and the applied field h along the critical isotherm, where
m ∼ h1/δ, where δ = 3 in mean-field theory. This can be
seen as a consequence of the equation of state relating h
to m, much like the pressure-volume relation in a liquid-
gas critical system: h ' m/χ + bm3, for some constant
b. The susceptibility χ diverges at the critical point, re-
sulting in m ∼ h1/3 along the critical isotherm. Here,
the form of the equation of state is constrained by sym-
metry to have only odd terms. For bending stabilized
marginal networks, one can expect a similar relationship
between G and κ: κ ∼ G/χκ + bG2, where χκ represents
the susceptibility of G on κ. Note that this is based on
the following assumptions: i) the system is operating in
a regime where G = 0 in the absence of κ; ii) κ is a sta-
bilizing field that renders G nonzero, but small; and iii)
κ is analytic and can be expanded in powers of small G,
in analogy with other mean-field theories. Importantly,
even terms are no longer forbidden here by symmetry,
resulting in G ∼ κ1/2 at the critical point. This suggests
a simple explanation for the observation of the approx-
imate square-root dependence of G on κ in Sec. V.A.2.
This mean-field argument is general, and it suggests a
similar square-root dependence of G in the critical regime
on any stabilizing field such as κ, viscous stresses, ac-
tive internal stresses, and thermal fluctuations. Such be-
havior is consistent with other mean-field arguments and
effective medium theories (Broedersz et al., 2011; Das
et al., 2012; Mao et al., 2013a,b; Sheinman et al., 2012a;
Tighe, 2011, 2012; Wyart, 2010; Wyart et al., 2008; Yucht
et al., 2013).

Both the stabilization and associated critical behav-
ior of marginal and floppy (sub-marginal) networks have
been shown for a broad class of different networks, includ-
ing spring and fiber networks, and for range of stabilizing
fields, including external and internal stresses (Broed-

ersz and MacKintosh, 2011; Sheinman et al., 2012a), vis-
cous interactions by an embedding Newtonian fluid (An-
dreotti et al., 2012; Lerner et al., 2012a,b, 2013; Tighe,
2011, 2012; Wyart, 2010; Yucht et al., 2013), large exter-
nal strains (Sheinman et al., 2012b), and even thermal
fluctuations (Dennison et al., 2013). Although each of
these cases has interesting distinguishing features, the
general critical phenomena framework and the connec-
tion between network mechanics and strain fluctuations
applies to all. Moreover, these cases show approximate
square-root dependence of G on the corresponding stabi-
lizing field: e.g., in the presence of thermal fluctuations,
anomalous entropic elasticity is seen, in which G ∼

√
T

at finite temperature T or G ∼ √σ under applied shear
stress σ (see discussion at end of Sec. IV.D.)

One of the possible biological implications of the sta-
bilizing effect of stresses is the observation that inter-
nal stress by molecular motors can stabilize and control
the mechanics of intracellular networks (Sheinman et al.,
2012a). This can provide a simple and general mech-
anism for control of cell mechanics without the need
to change the amount or even the connectivity of cy-
toskeletal networks. Additionally, the critical nature of
the model systems suggests the possibility of exquisite
control of mechanics through the expected strong (me-
chanical) susceptibility, making such a system a highly
responsive material.

C. Effective medium theories

We now review the effective medium approach, first
formulated in (Feng et al., 1985), in its most simplest
form: for spring networks. We will then end with a brief
discussion on how this EMT approach can be extended
for various situations.

The effective medium network is an undiluted network,
with renormalized bond stiffness g̃, depending on the de-
gree of dilution p of the actual network it represents. The
EMT provides a self-consistent construction to determine
this renormalized bond stiffness from which the mechan-
ical response of the effective network can be calculated.

Suppose the effective network is subjected to a macro-
scopic infinitesimal strain ε, deforming bond nm affinely
by r̂nmε, where r̂nm is the unit vector along bond nm.
Subsequently, replacing this effective medium bond with
stiffness g (See Fig. 25), sampled from the distribution
P (g), gives rise to an additional, nonaffine deformation
δu. The original, (uniform) deformation can be restored
by applying an additional force to the bond

f = r̂nmε(g̃ − g) (85)

Since the network is assumed to be in the linear response
regime, applying this force to an unstrained network
would have given the same deformation δu, that resulted
from substituting a bond in the strained effective network
in the absence of the force. If we had only removed the
nm bond, the effective stiffness between these two nodes
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FIG. 25 Illustration of the effective medium framework. a)
The bonds in the effective medium have a stiffness ĝ, which
are calculated self-consistently. The bond between nodes n
and m is replaced by a random bond g, which leads to a
distortion if the effective network is under strain. However,
an additional force f can be applied to counter this distortion.
b) Illustrates how the stiffness between nodes n and m can be
described by two springs in parallel. This figure is a slightly
altered version from (Feng et al., 1985).

due to the surrounding network is gEM− ĝ, where gEM is
the force on a bond in the perfect effective medium net-
work in response to a unit displacement. Then, inserting
a random bond g between nodes n and m, leads to a local
stiffness gEM − ĝ+ g (See Fig. 25b). Thus, the nonaffine
deformation that arose from the bond replacement in the
strained effective network (without the force f) can be
expressed as

δu =
r̂nmε (g̃ − g)

gEM − g̃ + g
, (86)

This deformation clearly depends on the stiffness of
the inserted bond chosen randomly from the distribution
P (g), leading to either a contraction or dilation of the
network. The stiffness of the effective medium should be
chosen such that on average, we recover the macroscopi-
cally imposed deformation, and thus, these nonaffine dis-
placements due to bond insertion should vanish on aver-
age. Hence, the self-consistency condition requires that
the local fluctuations in the deformation field in the de-
formation field must average to zero, 〈δu〉 = 0, leading
to the following implicit equation for g̃,∫ ∞

0

g − g̃
gEM + g − g̃ P (g) dg = 0. (87)

This equation can be solved by first determining g−1
EM as

the displacement in response to a unit force with wave
vector k between directed along nodes n and m, f (k) =
r̂nm

(
1− eik·̂rnm

)
, by solving the network’s equation of

motion

u (k) = −D−1 (k) · f (k) , (88)

where D (k) is the dynamical matrix of the Bravais lat-
tice, and u (k) is the displacement in k-space due to this
force. The displacement of the nm bond due to a unit

force, which is needed to solve (87), follows from

g−1
EM =

1

N
rnm ·

∑
k

u (k)
(
e−ik·rnm − 1

)
(89)

where N is the total number of nodes in the network.
For a random bond-diluted lattice with bond stiffness µ

and dilutiom p, the self-consistency condition (Eq. (87))
can be written as

p
µ− g̃

gEM + µ− g̃ − (1− p) g̃

gEM − g̃
= 0, (90)

From this it can be found that G vanishes continuously at
the CF isostatic point as G ∼ µ∆pfCF , with ∆p = p−pCF,
and the mean field results pCF = 2/3 and fCF = 1.

A more detailed discussion of this approach can be
found in (Feng et al., 1985). In this reference Feng
et al. also describe an alternative, scattering ap-
proach (Lax, 1951) using the Coherent Potential Approx-
imation (CPA), which leads to the same results as the
“static” approach discussed above.

The EMT framework was further developed to de-
scribe spring networks for a variety of situations. An
EMT was developed to describe “glasses” with bond-
bending forces (He and Thorpe, 1985). To describe the
nonlinear elastic response of spring networks under large
external isotropic strain (Fig 26), a perturbative ap-
proach for infinitesimal dilution was discuss in (Tang
and Thorpe, 1988), and, more recently, for arbitrary di-
lution in (Sheinman et al., 2012b). In this approach, the
EMT Hamiltonian at finite strain is expanded around
a nonlinear state for small nonaffine deformations. It
was found that the external strain shifts the isostatic
point continuously from pCF to the (lower) conductiv-
ity threshold of the network. Networks with internal
stresses (Alexander, 1998) garnished attention recently
because of their relevance for fiber networks contracted
by force-generating molecular motors (Koenderink et al.,
2009; Mizuno et al., 2007) or contractile cells (Lam et al.,
2010). An EMT approach developed for this scenario
was described in (Sheinman et al., 2012a). Such inter-
nal stresses can stabilize subisostatic networks mechani-
cally, and can even poise the network in a critical state.
Finally, EMT’s were also developed to describe the dy-
namic shear modulus of a spring network embedded in a
viscous medium (Lerner et al., 2013; Wyart, 2010; Yucht
et al., 2013).

EMTs for bond-diluted lattices with CF springs are, in
principle, straightforward because the springs reside on
an individual bond. In contrast, EMTs for lattices with
3-point bending forces are considerably more involved be-
cause such bending forces reside on two bonds, whereas
the dilution procedure only removes individual bonds one
at a time. Two such approaches have been developed to
incorporate this effect by Das et al., (Das et al., 2007,
2012) and Mao et al., (Broedersz et al., 2011; Mao et al.,
2013a,b). Given the complications of 3-point bending
forces, there is no single, obvious way to implement the
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FIG. 26 A small section of the undeformed (a) and expanded
(b) diluted triangular lattice. The average coordination num-
ber in this example is z = 3. Adapted from (Sheinman et al.,
2012b).

effective medium approach, and these two groups have
introduced two different approximations, which will not
be elaborated here. However, it is interesting to note
that one of these approaches appears to be better at cal-
culating the rigidity threshold (Das et al., 2012), while
the other does a better job of capturing the magnitude
of the elastic modulus far from this threshold (Broedersz
et al., 2011; Mao et al., 2013a,b). The latter approach
necessitated the inclusion of third-neighbor couplings not
present in the earlier approach by Das et al. (Das et al.,
2007, 2012). Thus, it still remains a challenge to con-
struct an EMT for a fiber network that can accurately
capture both the bending threshold and the mechanical
response. Furthermore, EMT approaches to describe the
nonlinear response of such networks, or their dynamic
response when coupled to a viscous liquid, should be of
considerable interest, but have not yet been reported.

1. Contractile nonaffine and marginal networks

The nonlinear mechanical response of reconstituted
biopolymer networks in many cases reflects the nonlinear
force-extension behavior of the constituting cross-links or
filaments (Broedersz et al., 2008; Gardel et al., 2004a,b;
Kasza et al., 2009; Storm et al., 2005; Wagner et al.,
2006). For such networks, both experiments and the-
oretical studies show that internal stress generation by
molecular motors can result in network stiffening in direct
analogy to an externally applied uniform stress (Head
and Mizuno, 2010; Koenderink et al., 2009; Levine and
MacKintosh, 2009; Liverpool et al., 2009; MacKintosh
and Levine, 2008; Mizuno et al., 2007). However, as
discussed above, the mechanical response of semiflexi-
ble polymers is highly anisotropic and is typically much
softer to bending than to stretching. In some cases, this
renders the network deformation highly nonaffine with
most of the energy stored in bending modes. Such non-
affinely deforming stiff polymer networks can also exhibit
a nonlinear mechanical response, even when the network
constituents are linear elastic fibers. Can internal stresses

generated, for instance, by molecular motors or contrac-
tile cells embedded in the network, stiffen such networks?

This was studied numerically 2D networks of ather-
mal, stiff filaments using the 2D Phantom model (Broed-
ersz and MacKintosh, 2011) (also see Sec. IV.C.6). In
the absence of motors, these networks can exhibit strain
stiffening under an externally applied shear. This be-
havior has been attributed to a cross-over between two
mechanical regimes; at small strains the mechanics is gov-
erned by soft bending modes and a nonaffine deformation
field, while at larger strains the elastic response is gov-
erned by the stiffer stretch modes and an affine defor-
mation field (Onck et al., 2005). Interestingly, motors
that generate internal stresses can also stiffen the net-
work. The motors induce force dipoles leading to muscle
like contractions, which “pull out” the floppy bending
modes in the system (Broedersz and MacKintosh, 2011).
This induces a cross-over to a stiffer stretching dominated
regime. Through this mechanism, motors can lead to
network stiffening in nonaffine athermal fiber networks
in which the constituting filaments in the network are
themselves linear elements.

To obtain a better understanding of this behavior, this
was studied in more detail in 3D fiber networks based on
the diluted face centered cubic (fcc) lattice, using both
simulations and an analytical approach. Networks are
formed by crosslinked straight fibers with linear stretch-
ing and bending elasticity. These fibers are organized
on a fcc lattice in which a certain fraction of the bonds
can randomly be removed. This allows one to explore
a wide range of network connectivities, 0 ≤ z ≤ 12.
Motor activity is introduced by contractile, static and
strain-independent force dipoles acting between neigh-
boring network nodes. The shear modulus of these net-
works, with or without contractile stress, can be deter-
mined numerically by applying a small shear deforma-
tion.

It was found that motors can stabilize the elastic re-
sponse of otherwise floppy, unstable networks. The mo-
tor stress also controls the mechanics of stable networks
above a characteristic threshold in connectivity, in the
vicinity of which the network exhibits critical strain fluc-
tuations. Interestingly, the network’s stiffness is con-
trolled by a coupling of the motor induced stresses σm
to the strain fluctuations according to a constitutive re-
lation,

G = G0 + Γ(σm)× σm + σm, (91)

G0 is the shear modulus in the absence of stress, and
where prefactors in the last two terms have been left
out. The linear modulus G0 in the absence of stress may
be zero. Γ is the nonaffinity parameter proportional to
the susceptibility that controls the network response to
stress, and which may depend on the stress σm.

The coupling between stress and the nonaffine fluctu-
ations gives rise to anomalous regimes at the stability
thresholds, at which network criticality implies divergent
strain fluctuations with a power law dependences on mo-
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tor stress. This is reflected as an anomalous dependence
of the network’s shear modulus on stress. To be in such a
critical regime the network needs to be marginally stable.
This can be achieved by either tuning the network con-
nectivity such that it is close to the bending or central-
force isostatic point, or by adding a near-critical den-
sity of motors to marginally stabilize an otherwise floppy
network. Importantly, this critical density does not suffi-
ciently enhance the effective connectivity of the network
to bring it near to the bending or central-force isostatic
point. In such critical regimes, the shear modulus de-
pends nonlinearly on both motor stress and single fila-
ment elasticity (Broedersz and MacKintosh, 2011; Chen
and Shenoy, 2011; Lam et al., 2010). Interestingly, this
dependence on internal motor stress differs qualitatively
from that of an applied external stress.

VI. SUMMARY AND OUTLOOK

In this review, we discussed some of the main theo-
retical developments over roughly the last two decades
on semiflexible polymers and their assemblies as bun-
dles, solutions, and crosslinked networks. We focussed on
physical and minimal approaches that have studied the
basic principles of these systems, with some bias towards
biopolymer systems (Bausch and Kroy, 2006; Fletcher
and Mullins, 2010; Kasza et al., 2007; Lieleg et al., 2010)
and our personal interests. We have not discussed more
realistic approaches that aim to capture some of the spe-
cific molecular details of biopolymers and architectural
features of the networks they form (Kim et al., 2009).
And, we have only briefly touched upon some fascinating
recent examples of applications of some of the ideas com-
ing from various biopolymer studies to synthetic hydro-
gels (Kouwer et al., 2013) and carbon nanotubes (Fakhri
et al., 2010, 2009). Both of these examples are likely just
the tip of the iceberg: it seems there is much more to
be gained in translation of such ideas to new materials
(Bertrand et al., 2012), and one can expect much more
work in the future along these lines.

We started off with a discussion of the properties of
single semiflexible polymers. A defining characteristic
of semiflexible polymers is that thermal energy only ex-
cites small bending fluctuations around their straight
zero-temperature conformation. As a result, their me-
chanical response is highly anisotropic: Buckling under
compression, stiffening entropically under even modest
extensions, while bending easily. Moreover, the entropic
stretch modulus of a semiflexible polymer governed by its
bending rigidity, and is inversely proportional to temper-
ature (Kroy and Frey, 1996; MacKintosh et al., 1995), in
contrast to a flexible polymer which has an entropic mod-
ulus proportional to temperature (Rubinstein and Colby,
2003). Thus, while flexible polymers are completely dom-
inated by entropy, the properties of semiflexible polymers
reflect a competition between the entropy and the bend-
ing energy. The important role of bending also has impli-

cations for the dynamics of semiflexible filaments, which
exhibit a much stronger wavelength dependence of relax-
ation than for flexible polymers.

The competition between entropy and bending energy
in semiflexible polymers has interesting consequences for
the assemblies they form. We discussed the intriguing
properties of semiflexible bundles (Bathe et al., 2008;
Claessens et al., 2006; Heussinger et al., 2007a, 2010)
and solutions (Gittes et al., 1997; Hinner et al., 1998;
Isambert and Maggs, 1996; Morse, 1998a,b; Schnurr
et al., 1997). Various experiments indicate that semi-
flexible polymer solutions such as entangled actin net-
works (Semmrich et al., 2007) and living cells (Deng
et al., 2006; Fabry et al., 2001) exhibit soft glassy be-
havior (Sollich et al., 1997), e.g., a weak power-law de-
pendence of the dynamic shear modulus on frequency.
The glassy worm like chain model has offered various im-
portant insights into such behavior (Kroy, 2008; Kroy
and Glaser, 2007), but in its current form, this is a phe-
nomenological approach. Thus, the construction of a mi-
croscopic theory for glassy semiflexible polymer systems
remains an important challenge.

Networks with dynamic crossllinks have aspects
of both solutions and permanently crosslinked net-
works (Broedersz et al., 2010a; Heussinger, 2011; Lie-
leg et al., 2008; Strehle et al., 2011). However, these
transiently crosslinked networks exhibit a dynamic rhe-
ological response distinct from solutions or permanent
networks, with a surprising dependence on stress (Lieleg
et al., 2009; Norstrom and Gardel, 2011; Yao et al., 2013).
Experiment on reconstituted actin networks indicate that
the onset of stress relaxation shifts to lower frequency
in the presence of stress, suggesting that the crosslinks
may actually become more stable under an applied force.
This may have implications in biological processes such
as mechanosensing (Luo et al., 2013).

The affine model constitutes the simplest analytical ap-
proach to describe the mechanical response of a perma-
nently crosslinked semiflexible polymer network (MacK-
intosh et al., 1995; Morse, 1998b,c; Storm et al., 2005),
and this model captures various experiments on recon-
stituted biopolymer networks (Gardel et al., 2004a,b;
Koenderink et al., 2006; Lin et al., 2010a,b; Tharmann
et al., 2007; Yao et al., 2010) and synthetic stiff poly-
mers (Kouwer et al., 2013). However, the low connectiv-
ity (<∼ 4) of many biopolymer networks implies that net-
works are only weakly constrained (especially in 3D), and
could deform through nonaffine bending modes (Head
et al., 2003a,b; Wilhelm and Frey, 2003). In addition,
semiflexible polymers are softer to bending deformations
than to stretching deformations, which begs the ques-
tion: Why would the network not always favor nonaffine
deformations? Nonaffine bending deformations can be
“leveraged” by filament length, and thus become large
and energetically less favorable than the affine stretching
deformations in the high molecular weight limit (Head
et al., 2003a,b; Heussinger and Frey, 2006a; Heussinger
et al., 2007b). Hence, even 3D networks with connectiv-



42

ities <∼ 4 can be tuned into a mechanical regime where
the shear modulus is governed by affine stretching de-
formations (Broedersz et al., 2012; Stenull and Luben-
sky, 2011). We have summarized the main predictions of
affine and nonaffine filamentous networks in Fig. 27a-c.

We discussed various approaches to describe the non-
affine regime, and the crossover to affine behavior in
athermal filamentous networks (Broedersz et al., 2012;
Head et al., 2003a,b; Heussinger and Frey, 2006a; Stenull
and Lubensky, 2011; Wilhelm and Frey, 2003). Many,
if not all, of the elastic regimes of these networks have
now been identified and understood, at least at the
level of scaling theory. However, a comprehensive an-
alytical theory that describes fiber networks over the
full range of behaviors, including the rigidity percola-
tion regime, the length-controlled bending regime, and
the affine regime still remains elusive. Theoretical stud-
ies have recently started exploring nonlinear (Broedersz
et al., 2012; Broedersz and MacKintosh, 2011; Conti and
MacKintosh, 2009; Heussinger et al., 2007b; Onck et al.,
2005), dynamic (Huisman et al., 2010b), and thermal ef-
fects in nonaffine fibrous networks (Carrillo et al., 2013),
but these effects still remain poorly understood. More-
over, experiments have still provided little direct evi-
dence for nonaffine mechanical behavior (Lieleg et al.,
2007; Stein et al., 2011), in part probably because un-
ambiguous theoretical predictions have been lacking. To
address nonaffine behavior in fibrous networks, various
groups have now started combining macroscopic rheo-
logical methods with a microscopic visualization of the
strain field in the network (Basu et al., 2011; Liu et al.,
2007; Münster et al., 2013; Schmoller et al., 2010; Wen
et al., 2012).

Nonaffine deformations become paramount when a
fiber network becomes marginally stable (Broedersz
et al., 2011; Wyart et al., 2008). This represents and
interesting and promising connection between the ba-
sic physics of elastic networks and jamming (van Hecke,
2010; Liu and Nagel, 1998, 2010). Depending on con-
nectivity, networks can be poised near a marginally sta-
ble state analogous to that of granular packings. And,
much as compression can stabilize such packings, fiber or
biopolymer networks can be stabilized by various inter-
actions or fields, including applied stress, strain, internal
molecular motor activity, and even thermal fluctuations,
leading to rich critical phenomena (Broedersz et al., 2011;
Dennison et al., 2013; Sheinman et al., 2012a,b,b; Sun
et al., 2012; Tighe, 2012; Vitelli, 2012; Wyart et al.,
2008). Theoretically, marginally stable fiber networks
are predicted to exhibit rich critical behavior, including
large, or even divergent, nonaffine strain fluctuations and
anomalous elasticity (Fig. 27d,e), with close connections
to the field of rigidity percolation (Feng et al., 1984; He
and Thorpe, 1985; Schwartz et al., 1985; Thorpe, 1985,
1983), as well as jamming. However, easily tunable ex-
perimental fibrous systems to study this behavior are still
lacking, and to date, there is little direct evidence on
marginal or critical behavior in real biopolymer systems.

Recently, however, several groups have begun to study
networks in which molecular motors drive the system to
effectively lower connectivity (Köhler et al., 2011; Murrell
and Gardel, 2012; Soares e Silva et al., 2011), and even to
a state resembling a critical point (Alvarado et al., 2013).
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(1997), Phys. Rev. Lett. 78, 2020.

Soven, P. (1969), Physical Review 178 (3), 1136.
Stein, A. M., D. A. Vader, D. A. Weitz, and L. M. Sander

(2011), Complexity 16 (4), 22.
Stenull, O., and T. Lubensky (2011), arXiv preprint

arXiv:1108.4328 .
Storm, C., J. J. Pastore, F. C. MacKintosh, T. C. Lubensky,

and P. A. Janmey (2005), Nature 435 (7039), 191.
Straley, J. (1976), J. Phys. C: Solid State Phys. 9, 783.
Strehle, D., J. Schnau, C. Heussinger, J. Alvarado, M. Bathe,

J. Käs, and B. Gentry (2011), European Biophysics Jour-
nal 40 (1), 93.

Sun, K., A. Souslov, X. Mao, and T. Lubensky (2012), Pro-
ceedings of the National Academy of Sciences 109 (31),
12369.

Tang, W., and M. F. Thorpe (1988), Phys. Rev. B 37, 5539.
Taute, K. M., F. Pampaloni, E. Frey, and E.-L. Florin (2008),

Phys. Rev. Lett. 100, 028102.
Tharmann, R., M. Claessens, and A. Bausch (2007), Physical

Review Letters 98 (8), 088103.
Thorpe, M. (1985), Journal of Non-Crystalline Solids 76 (1),

109.
Thorpe, M. F. (1983), Journal of Non-Crystalline Solids

57 (3), 355.
Tighe, B. P. (2011), Phys. Rev. Lett. 107, 158303.
Tighe, B. P. (2012), Phys. Rev. Lett. 109, 168303.
Vitelli, V. (2012), Proceedings of the National Academy of

Sciences 109 (31), 12266.
Wagner, B., R. Tharmann, I. Haase, M. Fischer, and

A. Bausch (2006), Proceedings of the National Academy
of Sciences 103 (38), 13974.

Wall, F. T., and P. J. Flory (1951), The Journal of Chemical
Physics 19 (12), 1435.

Ward, S. M. V., A. Weins, M. R. Pollak, and D. A. Weitz
(2008), Biophysical journal 95 (10), 4915.

Waterman-Storer, C. M., and E. Salmon (1997), The Journal
of Cell Biology 139 (2), 417.

Wen, Q., A. Basu, P. A. Janmey, and A. G. Yodh (2012),
Soft matter 8 (31), 8039.

Wiggins, C. H., D. Riveline, A. Ott, and R. E. Goldstein
(1998), Biophysical Journal 74 (2), 1043.

Wilhelm, J., and E. Frey (1996), Physical Review Letters
77 (12), 2581.

Wilhelm, J., and E. Frey (2003), Physical Review Letters
91 (10), 108103.

Wolff, L., P. Fernandez, and K. Kroy (2010), New Journal of
Physics 12 (5), 053024.

Wolff, L., and K. Kroy (2010b), arXiv preprint
arXiv:1010.6264 .

Wolff, L., and K. Kroy (2012), Phys. Rev. E 86, 040901.
Wyart, M. (2010), EPL (Europhysics Letters) 89 (6), 64001.
Wyart, M., H. Liang, A. Kabla, and L. Mahadevan (2008),

Physical Review Letters 101 (21), 215501.
Yao, N. Y., D. J. Becker, C. P. Broedersz, M. Depken, F. C.

MacKintosh, M. R. Pollak, and D. A. Weitz (2011), Jour-
nal Of Molecular Biology 411 (5), 1062.

Yao, N. Y., C. P. Broedersz, M. Depken, D. J. Becker, M. R.
Pollak, F. C. MacKintosh, and D. A. Weitz (2013), Phys.
Rev. Lett. 110, 018103.

Yao, N. Y., C. P. Broedersz, Y.-C. Lin, K. E. Kasza, F. C.
MacKintosh, and D. A. Weitz (2010), Biophysical Journal
98 (10), 2147.

Yucht, M. G., M. Sheinman, and C. P. Broedersz (2013), Soft
Matter 9, 7000.

Zilman, A., and S. Safran (2003), EPL (Europhysics Letters)
63 (1), 139.


