Exploring the effects of Delta Baryons in magnetars

Kauan Dalfovo Marquez

marquezkauan@gmail.com

with the collaboration of D. P. Menezes, V. Dexheimer, D. Chatterjee, M. R. Pelicer and B. C. T. Backes

25/10/2022

- DEXHEIMER, V.; MARQUEZ, K. D.; MENEZES, D. P. Delta baryons in neutron-star matter under strong magnetic fields. EUROPEAN PHYSICAL JOURNAL A 57 216, 2021. [arXiv:2103.09855]
- BACKES, B. C. T.; MARQUEZ, K. D.; MENEZES, D. P. Effects of strong magnetic fields on the hadron-quark deconfinement transition. EUROPEAN PHYSICAL JOURNAL A 57 229, 2021. [arXiv:2103.14733]
- MARQUEZ, K. D.; PELICER, M. R.; GHOSH, S.; PETERSON, J.; CHATTERJEE, D.; DEXHEIMER, V.; MENEZES, D. P. Exploring the effects of Delta Baryons in magnetars. PHYSICAL REVIEW C 106 035801, 2022. [arXiv:2205.09827]

$$(p) \qquad \mathcal{L} = \sum_{b} \bar{\psi}_{b} \left[\gamma_{\mu} \left(i\partial^{\mu} - g_{\omega b}\omega^{\mu} - g_{\phi b}\phi^{\mu} - \frac{g_{\rho b}}{2}\vec{\tau} \cdot \vec{\rho}^{\mu} \right) - M \right] \psi_{b}$$

$$+ \frac{1}{2} (\partial_{\mu}\sigma\partial^{\mu}\sigma - m_{\sigma}^{2}\sigma^{2}) - \frac{\lambda_{1}}{3}\sigma^{3} - \frac{\lambda_{2}}{4}\sigma^{4}$$

$$- \frac{1}{4}\Omega_{\mu\nu}\Omega^{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} - \frac{1}{4}\Phi_{\mu\nu}\Phi^{\mu\nu} + \frac{1}{2}m_{\phi}^{2}\phi_{\mu}\phi^{\mu}$$

$$- \frac{1}{4}\vec{R}_{\mu\nu} \cdot \vec{R}^{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\vec{\rho}_{\mu} \cdot \vec{\rho}^{\mu} + g_{\omega\rho}\omega_{\mu}\omega^{\mu}\vec{\rho}_{\mu} \cdot \vec{\rho}^{\mu},$$

$$(1)$$

Model	n ₀	B/A	K	S	L	M/m
GM1	0.153	16.33	300.5	32.5	94	0.70
$L3\omega\rho$	0.156	16.20	256	31.2	74	0.69
DDME2	0.152	16.14	251	32.3	51	0.57
Constr.	0.148-0.170	15.8-16.5	220-260	28.6-34.4	36.0-86.8	0.6-0.8

Table: symmetric nuclear matter properties at saturation density for the models employed in this work.

Relativistic effective models in compact star description

$$\mu_b = \mu_n - q_b \mu_e \tag{2}$$
$$\sum_{i=b,l} q_i n_i = 0 \tag{3}$$

$$\mu_{\rm b} = \mu_{\rm n} - q_{\rm b}\mu_{\rm e} \tag{2}$$

$$\sum_{i=b,l} q_i n_i = 0 \tag{3}$$

$$\varepsilon = \sum_{b} \frac{1}{\pi^{2}} \int_{0}^{p_{F_{b}}} dp \, p^{2} \sqrt{p^{2} + M_{b}^{2}} + \frac{1}{2} m_{\sigma}^{2} \sigma_{0}^{2} + \frac{\lambda_{1}}{3} \sigma_{0}^{3} + \frac{\lambda_{2}}{4} \sigma_{0}^{4}$$

$$- \frac{1}{2} m_{\omega}^{2} \omega_{0}^{2} - \frac{1}{2} m_{\phi}^{2} \phi_{0}^{2} - \frac{1}{2} m_{\rho}^{2} \rho_{0}^{2} - g_{\omega \rho} \omega_{0}^{2} \rho_{0}^{2} + \varepsilon_{\text{leptons}}, \qquad (4)$$

$$P = -\varepsilon + \sum_{b} \mu_{b} n_{b} \qquad (5)$$

$$\mu_{\rm b} = \mu_{\rm n} - q_{\rm b}\mu_{\rm e} \tag{2}$$

$$\sum_{i=b,l} q_i n_i = 0 \tag{3}$$

$$\varepsilon = \sum_{b} \frac{1}{\pi^{2}} \int_{0}^{p_{F_{b}}} dp \, p^{2} \sqrt{p^{2} + M_{b}^{2}} + \frac{1}{2} m_{\sigma}^{2} \sigma_{0}^{2} + \frac{\lambda_{1}}{3} \sigma_{0}^{3} + \frac{\lambda_{2}}{4} \sigma_{0}^{4}$$
$$- \frac{1}{2} m_{\omega}^{2} \omega_{0}^{2} - \frac{1}{2} m_{\phi}^{2} \phi_{0}^{2} - \frac{1}{2} m_{\rho}^{2} \rho_{0}^{2} - g_{\omega\rho} \omega_{0}^{2} \rho_{0}^{2} + \varepsilon_{\text{leptons}}, \qquad (4)$$
$$P = -\varepsilon + \sum \mu_{b} n_{b} \qquad (5)$$

b

$$\frac{dP}{dr} = -\frac{\left[\varepsilon(r) + P(r)\right] \left[m(r) + 4\pi r^3 P(r)\right]}{r\left[r - 2m(r)\right]},\tag{6}$$

$$m(r) = \int_0^r dr' 4\pi r'^2 \varepsilon(r') \,. \tag{7}$$

ICTP-SAIFR, IFT-UNESP, São Paulo, Brazil

	M _b (MeV)	$q_b(e)$	I _{3 b}	Sb	$\mu_{\rm b}/\mu_{ m N}$	$\kappa_{\rm b}/\mu_{\rm N}$
р	939	+1	+1/2	1/2	2.79	1.79
n	939	0	-1/2	1/2	-1.91	-1.91
Λ	1116	0	0	1/2	-0.61	-0.61
Σ^+	1193	+1	+1	1/2	2.46	1.67
Σ^0	1193	0	0	1/2	1.61	1.61
Σ^{-}	1193	-1	-1	1/2	-1.16	-0.37
Ξ^0	1315	0	+1/2	1/2	-1.25	-1.25
Ξ-	1315	-1	-1/2	1/2	-0.65	0.06
Δ^{++}	1232	+2	+3/2	3/2	4.99	3.47
Δ^+	1232	+1	+1/2	3/2	2.49	1.73
Δ^0	1232	0	-1/2	3/2	0.06	0.06
Δ^{-}	1232	-1	-3/2	3/2	-2.45	-1.69

$$g_{ib} = x_{ib}g_i$$

(8)

Figure 2 The $P-\dot{P}$ diagram illustrating the placement of the different isolated neutron star classes. The blue dots mark pulsars detected both in the radio and X-ray bands, the red ones those observed only at X-ray energies. The lines of constant age and magnetic field are also shown (courtesy R.P. Mignani).

Matter composition under extreme magnetic fields

$$\int d^3k \rightarrow \frac{|q|\mathcal{B}}{(2\pi)^2} \sum_{\nu} \int dk_z, \quad \text{where} \quad \nu = n + \frac{1}{2} - \frac{s}{2} \frac{q_b}{|q_b|}$$
(9)

$$\nu_{\max b}(s) = \left\lfloor \frac{(E_{Fb}^* + s\kappa_b B)^2 - M_b^{*2}}{2|q_b|B} \right\rfloor$$
(10)

Matter composition under extreme magnetic fields

$$\int d^3k \rightarrow \frac{|q|B}{(2\pi)^2} \sum_{\nu} \int dk_z, \quad \text{where} \quad \nu = n + \frac{1}{2} - \frac{s}{2} \frac{q_b}{|q_b|}$$
(9)

$$\nu_{\max b}(\mathbf{s}) = \left\lfloor \frac{(E_{Fb}^* + s\kappa_b B)^2 - M_b^{*2}}{2|q_b|B} \right\rfloor$$
(10)

 $q_b = 0$:

$$k_{F,b}^{2}(s) = E_{Fb}^{*}^{2} - (M_{b}^{*} - s\kappa_{b}B)^{2}$$
(11)

$$n_{b} = \frac{1}{2\pi^{2}} \sum_{s} \left\{ \frac{k_{Fb}^{3}(s)}{3} - \frac{s\kappa_{b}B}{2} \left[(M_{b}^{*} - s\kappa_{b}B) k_{Fb}(s) E_{Fb}^{*2} \left(\arcsin\left(\frac{M_{b}^{*} - s\kappa_{b}B}{E_{Fb}^{*}}\right) - \frac{\pi}{2} \right) \right] \right\}$$
(12)

$$n_{sb} = \frac{M_b^*}{4\pi^2} \sum_{s} \left[E_{Fb}^* k_{Fb}(s) - (M_b^* - s\kappa_b B)^2 \ln \left| \frac{k_{Fb}(s) + E_{Fb}^*}{M_b^* - s\kappa_b B} \right| \right]$$
(13)

 $q_b \neq 0$:

$$k_{F,b}^{2}(\nu,s) = E_{Fb}^{*}^{2} - \left(\sqrt{M_{b}^{*2} + 2\nu|q_{b}|B} - s\kappa_{b}B\right)^{2}$$
(14)

$$n_b = \frac{|q_b|B}{2\pi^2} \sum_{\nu,s} k_{Fb}(\nu, s)$$
(15)

$$n_{s\,b} = \frac{|q_b|BM_b^*}{2\pi^2} \sum_{s,\nu} \frac{\sqrt{M_b^{*\,2} + 2\nu|q_b|B} - s\kappa_b B}{\sqrt{M_b^{*\,2} + 2\nu|q_b|B}} \ln \left| \frac{k_{Fb}(\nu,s) + E_{Fb}^*}{\sqrt{M_b^{*\,2} + 2\nu|q_b|B} - s\kappa_b B} \right|$$
(16)

K. D. MARQUEZ

ICTP-SAIFR, IFT-UNESP, São Paulo, Brazil

25/10/2022 8/17

Figure: Particle composition of neutron-star matter with Δs , with B = 0 (top panels) and magnetic field $B = 3 \times 10^{18}$ G (bottom panels), when considering (solid lines) or disregarding (dashed lines) the effects of the AMMs.

$$Y_{\rm spin} = \frac{\sum_{b,s} s n_b(s)}{\sum_{b,s} n_b(s)}, \qquad (17)$$

Figure: Spin polarization fraction as a function of baryon number density for neutron-star matter with magnetic field $B = 3 \times 10^{18}$ G, when considering (solid lines) or disregarding (dashed lines) the effects of the AMMs.

K. D. MARQUEZ

ICTP-SAIFR, IFT-UNESP, São Paulo, Brazil

Figure: Stellar mass as a function of equatorial radius for different compositions and interaction strengths, for central magnetic fields B = 0 (solid lines), $B = 5 \times 10^{17}$ G (dashed lines), and $B = 10^{18}$ G (dotted lines).

	r	n _c (fm ⁻³)	ε_{c} (MeV/fm ³)		
B (G)	N+H	N+H+∆	N+H	N+H+∆	
0	0.672	0.618 (0.614)	742	658 (657)	
$5 imes 10^{17}$	0.701	0.659 (0.653)	783	712 (708)	
$1 imes 10^{18}$	0.747	0.714 (0.707)	850	786 (783)	
0	0.629	0.625	678	672	
$5 imes 10^{17}$	0.680	0.677	747	741	
$1 imes 10^{18}$	0.749	0.746	843	837	

Table: Central baryon (n_c) and energy (ε_c) densities as a function of magnetic field strength for neutron stars of radius 12 km with $L3\omega\rho$ model for $x_{\sigma\Delta} = x_{\omega\Delta} = 1.0(1.2)$ in the top panel and CMF model in the bottom panel.

Figure: Magnetic field distribution inside a neutron star of mass 1.8 M_{\odot} and central magnetic field of $B = 5 \times 10^{17}$ G. Solid, dashed, dashed-dotted and dotted are, respectively, the first four even multipoles of the magnetic field norm (l = 0, 2, 4, 6).

Figure: Magnetic field distribution inside a neutron star of mass 1.8 M_{\odot} and central magnetic field of $B = 5 \times 10^{17}$ G. Solid, dashed and dotted are the dominant monopolar (l = 0) term at the polar ($\theta = 0$), intermediate ($\theta = \pi/4$) and equatorial ($\theta = \pi/2$) orientations.

Figure: Mass-radius diagram for hybrid EoS with chemical equilibrium in both phases, showing results without magnetic field effects.

$$m_i = m_{i0} + \frac{D}{n_b^{1/3}} + C n_b^{1/3} = m_{i0} + m_l,$$
 (18)

	B = 0	B = 3×10^{18} G	B-W
<i>C</i> = 0	no crossing	no crossing	yes
\sqrt{D} = 155 MeV			
<i>C</i> = 0	μ_0 = 960	μ_0 = 958	yes
\sqrt{D} = 158.5 MeV	p ₀ = 1.55	p ₀ = 1.80	
<i>C</i> = 0	μ_0 = 1062	μ_0 = 1066	no
\sqrt{D} = 165 MeV	p ₀ = 21.98	$p_0 = 24.70$	
C = 0.23	μ_0 = 1130	μ_{0} = 1145	no
\sqrt{D} = 155 MeV	p ₀ = 43.62	$p_0 = 51.32$	
C = 0.365	μ_0 = 1105	μ_0 = 1109	yes
\sqrt{D} = 142 MeV	p ₀ = 34.98	$p_0 = 38.30$	
<i>C</i> = 0.5	μ ₀ = 1202	μ_0 = 1242	yes
\sqrt{D} = 135.75 MeV	p ₀ = 72.66	p ₀ = 94.93	
C = 0.68	μ ₀ = 1440	μ_{0} = 1475	yes
\sqrt{D} = 130 MeV	$p_0 = 215.50$	p ₀ = 247.53	

Table: Values for μ_0 (in MeV) and p_0 (in MeV/fm³) for which the conditions of phase coexistence are satisfied at T = 0. The latter column specifies whether or not the Bodmer-Witten conjecture is satisfied.

- The understanding of the meson-delta coupling parameters can be refined by symmetry group considerations, as it is made for the hyperon coupling schemes.
- The magnetic field effects on △-admixed matter can be more robustly understood by having the complete solution of the spin-3/2 Rarita-Schwinger equation under a magnetic field.

- The understanding of the meson-delta coupling parameters can be refined by symmetry group considerations, as it is made for the hyperon coupling schemes.
- The magnetic field effects on Δ-admixed matter can be more robustly understood by having the complete solution of the spin-3/2 Rarita-Schwinger equation under a magnetic field.

Muito Obrigado!

Kauan Dalfovo Marquez marquezkauan@gmail.com

Exploring the effects of Delta Baryons in magnetars

Kauan Dalfovo Marquez

marquezkauan@gmail.com

with the collaboration of D. P. Menezes, V. Dexheimer, D. Chatterjee, M. R. Pelicer and B. C. T. Backes

25/10/2022