Lecture 2 General Intro to Topological Mechanics (finit w) I

1. Basic concepts

 Topology: many definitions, basically, it studies
 properties of a geometric object that are preserved under continuous deformations

← number of houndles (1) remain the same

· Topological states : Phases of matter characterized by nontrivial topologies Many categories. For what we are concerned with: State of the system $e.g. \psi(\overline{r})$ Nontrial tepological space map eg. Mathematical language Mobins strip natrual for this mapping : Fiber bundle theory

2. Vector bundle theory in 10 min
[disclaimer: ... as an average physicist)
• Vector bundle:

$$V = \{V_{P} | P \in B\}$$

 $\int U = \{V_{P} | P \in B\}$
 $a vector space defined at point p$
 $\Rightarrow a "fiber" at P \in B$
 $B must be a smooth geometric object$
 $V_{P} varies smoothly on B$
• Section \vec{v} : a smooth choice of $\vec{v}(p)$
on a region $P \in \Sigma \subset B$ (local)
 $If \vec{v}(p)$ can be defined for all $P \in B$
 $\rightarrow global section.$
 $(aften requires \vec{v} \neq 0)$
Simple examples:

2D tangent space at each point p

3 Line bundle on a cylinder

@ Line bundle on a Mobius strip

$$\Rightarrow \text{ eighnmodes}:$$

$$for \ w = w_{\pm} \quad \text{let eighnmode} \quad V_{\pm} = \begin{pmatrix} 1 \\ \chi_{\pm} \end{pmatrix}$$

$$\begin{pmatrix} K & -\overline{z} \\ -\overline{z} & K \end{pmatrix} \begin{pmatrix} 1 \\ \chi_{\pm} \end{pmatrix} = m w_{\pm}^{2} \begin{pmatrix} 1 \\ \chi_{\pm} \end{pmatrix} \quad \text{(here } K = k_{1} + k_{2} \end{pmatrix}$$

$$K - \overline{z} \chi_{\pm} = m w_{\pm}^{2} = K \pm |z|$$

$$\therefore \quad \chi_{\pm} = \pm \frac{|z|}{\overline{z}} = \pm \frac{z}{|z|}$$

• Simple proof for this ID chain : see ref. number of edge modes at interface = $|v_1 - v_2|$