1. **ID chain → general 2-band models**

 For the ID chain we had

 $$ D(\mathbf{k}) = \begin{pmatrix} k_1 + k_2 & -k_1 - k_2 e^{-i\mathbf{k} \cdot \mathbf{a}} \\ -k_1 - k_2 e^{i\mathbf{k} \cdot \mathbf{a}} & k_1 + k_2 \end{pmatrix} $$

 All hermitian 2×2 matrices can be written as

 $$ D(\mathbf{k}) = d_0(\mathbf{k}) \hat{I} + dx(\mathbf{k}) \sigma_x + dy(\mathbf{k}) \sigma_y + dz(\mathbf{k}) \sigma_z $$

 where

 $$ \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} $$

 Here:

 $d_0 = k_1 + k_2$ \quad ← unimportant, shift

 $dx = -k_1 - k_2 \cos \mathbf{k} \cdot \mathbf{a}$

 $dy = -k_2 \sin \mathbf{k} \cdot \mathbf{a}$

 $dz = 0$

 This form is sometimes called a “Dirac Hamiltonian”

 (only applicable to 2-band models)

 Why this representation is useful: *general formula for Berry curvature*.

2. **The Berry phase**
Remember we defined Berry connection
\[
\vec{A} = i \langle \Psi(\vec{x}) | \nabla_{\vec{x}} | \Psi(\vec{x}) \rangle
\]

The Berry phase: the contour integral of \(\vec{A} \)
\[
\gamma = \oint \vec{d}\vec{x} \cdot \vec{A}(\vec{x}) \quad \text{(Phase winding of } \Psi(\vec{x}) \text{ over a closed path calculated for the 1D chain is an example of } \gamma \text{.)}
\]

Use Stoke's formula
\[
\gamma = \oint \vec{d}\vec{x} \cdot \vec{A}(\vec{x}) = \int d^2\vec{x} \cdot (\nabla \times \vec{A})
\]
\(\vec{B} \): Berry curvature

We can do this in \(\mathbb{R}^2 \) space
\[
\vec{A}(\vec{x}) = i \langle \Psi(\vec{x}) | \nabla_{\vec{x}} | \Psi(\vec{x}) \rangle
\]

With a little more math, a nice formula \(\Rightarrow \)
\[
\vec{B}(\vec{x}) = \pm \frac{\vec{d}}{2|\vec{d}|^3} \quad : \text{"magnetic monopole"}
\]

\(\Rightarrow \)
\[
\gamma = \int_{S^2} d^2\vec{x} \cdot \vec{B}(\vec{x}) = \frac{1}{2} \Omega(S)
\]

solid angle on \(S^2 \)
Physics picture of $\gamma \neq 0$:

Obstruction of finding a global gauge on S_2

Complex phase of $\Psi(\mathcal{J})$ → tangent bundle on S_2

If there is a global gauge → $\gamma = 0$

Big picture:

Closed path in \mathcal{J} space (IBZ)

\[\gamma = \int d^2 \mathcal{J} \cdot B(\mathcal{J}) = \frac{1}{2} \Omega(S) \]

\[\approx \frac{1}{2} \int d\mathcal{J} \cdot \mathcal{A}(\mathcal{J}) \]

(Jacobian cancels)

\[\gamma x = \int d\mathcal{R} \cdot \mathcal{A}(\mathcal{R}) \]

In the case of the 1D chain model

\[d_2 = 0 \quad \Rightarrow \quad \mathcal{A}(\mathcal{R}) \text{ always on equator} \]
Note: this topological winding is "protected by symmetry"

\[\gamma = 0 \rightarrow \nu = 0 \]

\[\gamma = \pi \rightarrow \nu = 1 \]

If we allow \(d_z \neq 0 \)

This is an example of a "symmetry protected topological state"

Disorder that breaks this symmetry (e.g. \(m_z \neq m_x \)) will destroy the topological protection of the edge states.
The case of 2D lattices:

What controls the edge states is the “Chern number”

\[C = \frac{1}{2\pi} \int_{2D \text{ BZ}} d^2 \mathbf{k} \text{B} (\mathbf{k}) \]

= degree of map \(\mathbf{k} \rightarrow \mathbf{\hat{d}(k)} \)

How many different ways (equivalence class) can we wrap \(T^2 \) onto \(S^2 \)?

This is described by “homotopy theory.”

In this case → all integers \(\mathbb{Z} \)

\(C \) of 2D systems: integers.
Maxwell lattice topological mechanics and topological soft modes in disordered materials

Xiaoming Mao
University of Michigan
Outline

• Recap from Lectures 2 & 3
• Selected examples of $\omega > 0$ TMMs (topological mechanical metamaterials)
• Maxwell lattice TMMs
 – Fundamental theories (recap from Tom’s lectures)
 – Selected new advances
• Aperiodic Maxwell network topological mechanics
 – Fiber networks
 – Reciprocal diagrams and a mechanical duality theorem
 – Quasicrystals
Recap from Lectures 2&3

• Basic concepts of topology and fiber bundle models

• 1D mechanical chain
 - Bulk spectra, gap
 - Band inversion and winding number
 - Edge states

• General 2-band models
 - Dirac Hamiltonian
 - The Berry phase and the Chern number

Main references:
• Topological insulators and geometry of vector bundles, Sergeev, arXiv:2011.05004 [cond-mat.mes-hall]

Xiaoming Mao, Department of Physics, University of Michigan
Topological mechanics of gyroscopic metamaterials

Lisa M. Nash, Dustín Kleckner, Alismari Read, Vincenzo Vitelli, Ari M. Turner, and William T. M. Irvine

*James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL 60637; †Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, 2300 RA Leiden, The Netherlands; and ‡Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218

Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved October 13, 2015 (received for review April 17, 2015)

PRL 115, 104302 (2015) PHYSICAL REVIEW LETTERS week ending 4 SEPTEMBER 2015

Topological Phononic Crystals with One-Way Elastic Edge Waves

Pai Wang, Ling Lu, and Katia Bertoldi

1Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Physics, MIT, Cambridge, Massachusetts 02139, USA
3Kavli Institute, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 3 April 2015; published 4 September 2015)
EOM of one gyroscope ($\vec{\ell}$ is the principal axis of gyroscope):

$$\dot{\vec{\ell}} = \frac{\ell^2}{I\omega} (\vec{\ell} \times \vec{F})$$

Complex notation:

- Site displacements: $\psi \rightarrow \delta_x + i\delta_y$
- Site forces: $F \rightarrow F_x + iF_y$

EOM for lattice site p:

$$i \frac{d\psi_p}{dt} = \Omega_g \psi_p + \frac{\Omega_k}{2} \sum_{q}^{nn} \left((\psi_p - \psi_q) + e^{2i\theta_{pq}} (\psi_p^* - \psi_q^*) \right)$$

4*4 Hamiltonian $H(k)$

- 2 middle bands
- Gap permitted by broken time-reversal symmetry

Xiaoming Mao, Department of Physics, University of Michigan
2D Valley Hall TMMs: without breaking TRS

PHYSICAL REVIEW B 96, 134307 (2017)

Observation of topological valley modes in an elastic hexagonal lattice

Javier Vila* and Raj Kumar Pal
School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
Massimo Ruzzene
School of Aerospace Engineering and School of Mechanical Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332, USA
(Received 14 May 2017; revised manuscript received 29 August 2017; published 17 October 2017)

Dirac cones open when $\gamma \neq 0$
AAH (Aubry-Andre-Harper) Model: Concept

Electron tight-binding model with a periodic potential

\[-t \psi_{n+1} - t \psi_{n-1} - E_0 \cos(n\theta + \phi)\psi_n = E\psi_n\]

Maps to 2D quantum Hall states on a lattice

\[g(m + 1) + g(m - 1) + 2 \cos(2\pi m \alpha - \nu)g(m) = \epsilon g(m)\]

Momentum in y

Magnetic field \(\alpha = a^2H / 2\pi(\hbar c/e)\)

“Hofstadter butterfly”:
AAH Model: Adiabatic Pumping

- Adiabatic pumping in AAH model \(-t\psi_{n+1} - t\psi_{n-1} - E_0 \cos(n\theta + \phi)\psi_n = E\psi_n\)

![Diagram showing adiabatic pumping in AAH model with associated equations and plots.

Cut at a given \(\theta\)

\(\alpha \leftrightarrow \theta\)

gapless edge states at the right edge

gapless edge states at the left edge

bulk modes

Xiaoming Mao, Department of Physics, University of Michigan
Experimental Demonstration of Dynamic Topological Pumping across Incommensurate Bilayered Acoustic Metamaterials

Wenting Cheng, Emil Prodan, and Camelia Prodan

1Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
2Department of Physics, Yeshiva University, New York, New York 10016, USA

Xiaoming Mao, Department of Physics, University of Michigan
More TMMs

• TMM is an explosive field. I’ve left out $10^2 \sim 10^3$ papers
• I only showed you a tiny tiny fraction of all topological states
• Good reviews on topological mechanics:
Maxwell lattice TMMs

• Maxwell lattices
 – DOF = constraints in the bulk
 – $C(q)$ and $Q(q)$ matrices are square

$$\mathcal{H} = \begin{pmatrix} 0 & Q \\ Q^T & 0 \end{pmatrix}; \quad \mathcal{H}^2 = \begin{pmatrix} QQ^T & 0 \\ 0 & Q^TQ \end{pmatrix}$$

Eigenstates: $\psi = \begin{pmatrix} t \\ u \end{pmatrix}$
 - Bond tensions
 - Site displacements

Chiral (particle-hole) symmetry: $\{\mathcal{H}, \tau^z\} = 0$

Time-reversal symmetry: $\mathcal{H} = \mathcal{H}^*$

Class BDI: topological invariant in 1D

$C \cdot \vec{u} = 0$
$Q \cdot \vec{t} = 0$

Kane-Lubensky topological index for Maxwell lattices

Corresponding edge modes: ZMs and SSSs

Maxwell-Calladine index theorem

$n_i = \frac{1}{2 \pi i} \oint_{C_i} dk \cdot \text{Tr} \left[Q(k)^{-1} \nabla_k Q(k) \right] = \frac{1}{2 \pi} \oint_{C_i} dk \cdot \nabla_k \phi(k)$

$n \in \mathbb{Z}$

$$N_0 - N_S = N_d - N_b = 0$$

• C. L. Kane and T. C. Lubensky, Nat. Phys. 10, 39 (2014).

Xiaoming Mao, Department of Physics, University of Michigan