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Methods of time series analysis are classified as:

 Univariate analysis

 Bivariate analysis

‒ Cross Correlation

‒ Mutual Information

‒ Event synchronization

‒ Causality

 Multivariate analysis



Cross-correlation
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 -1  CX,Y  1

 CX,Y = CY,X

 The maximum of CX,Y() indicates the lag that renders 

the time series X and Y best aligned.

 Pearson coefficient:  = |CX,Y (0)|

the two time series x(t) and y(t) 

are normalized to zero-mean 

=0 and unit variance, =1



Example: response of a bistable system to an aperiodic 

signal (stochastic resonance)
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Barbay et al, PRL 85, 4652 (2000)

Cross-correlation between 

input and output signal.



Lags need to be taken into account when analyzing 

statistical similarities
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J. Fan et al. Phys. Rep. 896, 1 (2021).



Cross-correlation detects linear relationships only
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Source: wikipedia
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Correlation is NOT causality
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An illustrative example: the 

number of sunspots and the 

number of the Republicans in 

the U.S. Senate in the years 

1960 to 1986 (biannual 

sampling, 14 points).

C=0.52

M. Palus, Contemporary Physics 48, 307 (2007).

http://tylervigen.com/spurious-correlations

Appropriate significance test needed!

http://tylervigen.com/spurious-correlations


 MI (x,y) = MI (y,x)

 p(x,y) = p(x) p(y)  MI = 0, else MI >0

 MI can also be computed with a lag-time.

 MI can also be computed from symbolic probabilities 

(e.g., probabilities of ordinal patterns).

The Mutual Information: a nonlinear correlation measure
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MI values are systematically overestimated 
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R. Steuer et al, Bioinformatics 18, suppl 2, S231 (2002).

Main 

problem: a 

reliable 

estimation of 

MI requires a 

large amount 

of data



 Depends on the data.

 If the two processes are Gaussian, the MI and the Pearson 

correlation coefficient are related as

MI = -1/2 log(1-2).

 Example: values computed from 6816 x 6816 surface air 

temperature (SAT) anomaly series:

Relation between cross-correlation and mutual information
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MI



2D histogram; the color 

represents the number 

of elements in each bin 

in log scale.
Donges et al, Eur. Phys. J. Special 

Topics 174, 157 (2009).



 Define “events” in each time series. 

 Count c (x|y) = number of times an event appears in x shortly 

after an event appears in y. Analogous for c (y|x).

 Calculate:

How to find “synchronized events” in two time series?
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mx, my are the number of events in each time series.

 Q = 1 : the events of the signals are fully synchronized. 

 q =1 : the events in x always precede those in y.

Quian Quiroga et al, PRE 66, 041904 (2002).

Rat EEG signals from right 

and left cortical intracranial 

electrodes. For a better 

visualization, the left signal 

is plotted with an offset.

Time (sec)



Example
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C. W. J. Granger

past of 𝑋1
Residual 

error

𝑋2 → 𝑋1

Hypothesis: X1 and X2 can be described by 

stationary autoregressive linear models.

If ൻ ۧ𝐸′
1(𝑡) < ۦ ۧ𝐸1(𝑡)

C. W. J. Granger Investigating causal relations by econometric models and cross-spectral 

methods. Econometrica 37, 424–438 (1969) (> 10000 citations)

Granger Causality
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past of 𝑋1 past of 𝑋2
Residual 

error
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 TE: is the Conditional Mutual Information, given the 

“past” of one of the variables.

Transfer Entropy (TE) and Directionality Index (DI)
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TE (x,y) = MI (x, y|x)

TE (y,x) = MI (y, x|y)

 MI (x,y) = MI (y,x)  but TE (x,y)  TE(y,x)

 Directionality Index:  TE(x,y)-TE(y,x)

 TE and GC are equivalent for Gaussian processes.

 TE can be computed from the probabilities of symbols 

(symbolic TE).

T. Schreiber, Measuring information transfer, Phys. Rev. Lett. 85, 461 (2000).



Problems:

15

In addition: Transfer Entropy is computationally demanding.

A “simple” solution: to use the expression that is valid for 

Gaussian processes [ MI = -1/2 log(1-2) ] 

Does this work? Check it out:

https://doi.org/10.1038/s41598-021-87818-3

R. Silini, C. Masoller “Fast and effective pseudo

transfer entropy for bivariate data-driven causal 

inference”, Sci. Rep. 11, 8423 (2021).

X Y Z X
Y

Z
↕ ?

Indirect link XZ? Common driver
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Y    X

Y    X

Ç√

𝑥𝑡 = (0.01 + 0.5 𝑥𝑡−1
2 )0.5+ 𝐸1𝑡 𝑦𝑡 = 0.5 𝑦𝑡−1 + 𝐸2𝑡

𝑥𝑡 = 0.6 𝑥𝑡−1 + 0.5 𝑦𝑡−1 + 𝐸1𝑡 𝑦𝑡 = 0.5 𝑦𝑡−1 + 𝐸2𝑡

𝑥𝑡 = 0.15 𝑥𝑡−1 + 0.7 𝑦𝑡−1 + 𝐸1𝑡

𝑦𝑡 = 0.1 𝑦𝑡−1 + 0.8 𝑥𝑡−1 + 𝐸2𝑡

Data Generating Processes and significance analysis

DGPs: We know whether X and Y are independent or not.

Significance analysis: time-shifted surrogates (cheap for causality testing)
Quiroga et al., Phys. Rev. E 65, 041903 (2002).



Y    X

Y    X

Y    X

Ç√

Results







Power: there is causality and we find causality (True Positives)

Size: there is no causality but we find causality (False Positives)



Y    X

Y    X

Y    X

Data Generating Processes

Comparison with Granger Causality and Transfer Entropy



a b a ba b

NINO3.4 AIR

Yearly 

sampled (152)

Monthly 

sampled (1836)

pTE

GC

TE

0.04 s

NINO3.4 AIR
0.5 s

NINO3.4 AIR NINO3.4 AIR
0.4 s 0.9 s

NINO3.4 AIR NINO3.4 AIR
1 s 68 s

40/9
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Application to real data  NINO3.4  All India Rainfall



For two time-series of 500 data points (1 data point 

per month, 40 years):

TE:112 ms but pTE: 4 ms

How much time we save by using the “pseudo Transfer Entropy”?
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8000 grid points (high resolution)

 64 x 106 pairs

 829 days (TE) vs. 29 days (pTE).

(without “surrogate” analysis)

But, there is a price to pay, no “free lunch”.

https://github.com/riccardosilini/pTE



 Symbolic Transfer Entropy

 Partial Correlation

 Partial Directed Coherence

 Cross Mapping

 Partial Cross Mapping

 Etc.

Read more: A. Krakovska et al., Comparison of six 

methods for the detection of causality in a bivariate 

time series, Phys. Rev. E 97, 042207 (2018)

Besides Granger causality and transfer entropy, many 

methods have proposed (and extensively used in 

social, economic and financial data). 

21



Example
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Borge-Holthoefer et al. Sci. Adv. 2, e1501158 (2016).



Methods of time series analysis are classified as:

 Univariate analysis

 Bivariate analysis

 Multivariate analysis

‒ Functional networks

‒ Network inference



V. M. Eguiluz et al, Phys. Rev. Lett. 94, 018102 (2005).

Sij > Th

 Aij = 1, 

else Aij=0

The adjacency

matrix is obtained 

by “thresholding”

“Functional networks” are obtained by using bivariate 

correlation or causality measures

Example: brain functional network



Example: functional network constructed from extreme 

rainfall events, using the “event synchronization” measure
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Teleconnection pattern for south-central Asia for events above

the 95th percentile (with a maximum delay of ten days). Links 

shorter (longer) than 2,500 km are shown in red (blue).

N. Boers et al, “Complex networks reveal global pattern of 

extreme-rainfall teleconnections”, Nature 566, 373 (2019).



How to characterize the graph? 

Regular Random
Scale-free

S. H. Strogatz, Nature 410, 268 (2001).

Begin with the degree distribution

Degree of node i: ki = j Aij



 Mean degree: 

 Variance: 2 =Var (X) = E[(X-)2]

 Skewness: 

 Kurtosis: measures the "tailedness“ of the distribution. 

Are there “hubs”, i.e., nodes with lots of links?

How to characterize the degree distribution?  
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S = E[Z3]

K = E[Z4]



  
i

eiiEeeE ppPPPPD
2

,],[

   PIPIPPKPPD eeeK  ][],[

   
2

],[
PPKPPK

PPD
ee

eJ




How to compare two distributions?

Distance between two distributions P and Pe

S-H Cha: Comprehensive Survey on Distance/Similarity Measures between 

Probability Density Functions,  Int. J of. Math. Models and Meth. 1, 300 (2007).

Euclidean

Kullback

Jensen divergence



 Clustering coefficient: measures the fraction of a node’s 

neighbors that are neighbors also among themselves

Other distributions that characterize a network 

(unweighted and undirected)
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Ri is the number of 

connected pairs in the 

set of neighbors of node i

 Assortativity: measures the tendency of a node with high/low 

degree to be connected to other nodes with high/low degree



Number of connected components (“communities”)
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A graph with three connected components.

Source: Wikipedia



Problems with networks obtained by thresholding
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 The variation of the number of connected components with 

the threshold reveals different structures.

 Thresholding near the dotted lines would suggest 

inaccurately that these two networks have similar structures.

 Persistent “features” are "true" features.

Giusti et al., J. Comput. Neurosci. 4, 1 (2016).



 How to select the “optimal” threshold?

 How to keep weak-but-significant links?

 A classification problem: 

− the interaction exists (is significant)

− the interaction does not exists (or is not significant)

Network inference: How to reconstruct the network from 

observations?
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Sij > Th  Aij = 1 else Aij=0



 Accuracy: How often is the classifier correct? (TP+TN)/total

 Misclassification (Error Rate): How often is it wrong? (FP+FN)/total

 True Positive Rate (TPR, Sensitivity or Recall): When it's yes, how often 

does it predict yes? TP/actual yes

 False Positive Rate (FPR) : When it's no, how often does it predict yes? 

FP/actual no

 Specificity (1 – FPR) : When it's no, how often it predicts no? TN/actual no

 Precision: When it predicts yes, how often is it correct? TP/predicted yes

 Negative Predictive Value: When it predicts no, how often is it correct? 

TN/predicted no

 Prevalence: How often does the yes condition actually occur in the sample? 

actual yes/total

Confusion matrix
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Receiver operating characteristic (ROC curve) and 

Precision-Recall (PR curve)
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Similarity measure 1

Similarity measure 2

Similarity measure 3

Source: Wikipedia

For reconstructing sparse networks (with a small % of links) the “Precision-Recall” 

curve is more informative because it does not depend on the # of true negatives.

Precision =TP / predicted yes (TP+FP)

Recall = TP / actual yes (TP+FN)



 Use a “toy model” where we know the “ground truth”, i.e., 

we know the underlying equations and interactions and so 

we can check the performance of the different measures 

in inferring the interactions.

 Problem: results will depend on the “toy model” used as 

the performance of the statistical similarity measure 

depends on the characteristics of the data.

How to compare the performance of different statistical 

similarity measures for inferring interactions from data? 
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Kuramoto oscillators in a random network

Phases () CC MI MIOP

Aij is a symmetric 

random matrix; 

N=12 time-series, each 

with 104 data points.

“Observable” Y=sin()

True positives False positives True positives False positives

Results of a 100 simulations with different oscillators’ frequencies, random 

matrices, noise realizations and initial conditions.

For each K, the threshold was varied to obtain optimal reconstruction.
G. Tirabassi et al, Sci. Rep. 5 10829 (2015). 



Instantaneous frequencies (d/dt)

CC MI MIOP

Perfect network inference is possible! 

BUT 

• the number of oscillators is small (12), 

• the coupling is symmetric (  only 66 possible links) and

• the data sets are long (104 points)

G. Tirabassi et al, Sci. Rep. 5 10829 (2015). 



Complicated structures (such as multilayer networks), require 

of advanced methods for characterization / reconstruction.
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Kivela et al, J. Complex Netw. 2, 203 (2014).

Facebook

Twitter

Linkedin



Multilayer networks in social systems and economy
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Boccaletti et al., Phys. Reps. 544, 1 (2014).



 Hamming distance

How similar are two graphs? 
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 Can be used to compare two graphs of the same size.

 Main problem: not all the links have the same importance.

 A “dissimilarity” measure that can be used to compare graphs with different 

sizes, based in the comparison of distributions extracted from the graphs: 

Schieber et al, Nat. Comm. 8, 13928 (2017).



 Links represent interactions between pairs of nodes.

 Simplicial complexes represent interactions among several 

nodes.

A basic limitation of network analysis
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Example:

Giusti et al., J Comput Neurosci 41, 1 (2016).

Battiston et al., Phys. Rep. 874, 1–92 (2020).



 Multivariate analysis uncovers inter-relationships in 

datasets

 Different similarity measures are available for inferring 

the connectivity of a complex system from observations.

 Different measures can uncover different properties.

 Thresholding, unobserved variables, hidden “nodes” 

can difficult or make impossible the inference of the 

network structure.

 Network science: fast evolving field, with many 

applications and challenges!

Summary
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Hands-on exercise 4: analyze a random network of 

chaotic Rossler-like electronic oscillators
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Reference: Data in Brief 7 (2016)1185–1189 

1. Represent graphically the structural network.

2. Calculate the degree distribution of the structural network.

3. Reconstruct the network using the Pearson coefficient (=|CC(0)|) as 

statistical similarity measure, keeping only the 10% strongest links.

4. Reconstruct the network using the threshold condition >0.5.

5. Calculate the mean degree as a function of the threshold th = 0…1.

https://www.sciencedirect.com/science/article/pii/S2352340916302050
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Mean degree = number of links / number of nodes

Ts_25, only first 5000 datapoints

G = graph(matrix)

Plot(G)


