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Methods of time series analysis are classified as:

= Univariate analysis

= Bivariate analysis
— Cross Correlation
— Mutual Information
— Event synchronization
— Causality

= Multivariate analysis
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Cross-correlation

0 N—_t the two time series x(t) and y(t)
lized to zero-mean
N _ X (k are norma
Can (7) N —1 Zk(k +7)y(k) n=0 and unit variance, c=1
k=1
-1<Cyy <1
H —
CX,Y - CY,X

The maximum of Cy () indicates the lag that renders
the time series X and Y best aligned.

Pearson coefficient: p = |Cy y (0)]
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Example: response of a bistable system to an aperiodic

sighal (stochastic resonance)
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Barbay et al, PRL 85, 4652 (2000)

Cross-correlation between

input and output signal.

0.8

0.6

041

02

M cristina.masoller@upc.edu Y @cristinamasoll1

L "N .
,’E e
s o
/ .\E* )
o
. ‘e
/ L= n
d LI
¢ ilu.‘.'.‘i
‘;.
d L L | ' | | | 1
400 200 1200
Noise level
4



Lags need to be taken into account when analyzing

statistical similarities
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Fig. 6. Typical weighted and directed link in a Pearson Correlation Climate Network. (a) Node i is located on the Southwest Atlantic and node
j is in the South American continent. (b) The near surface daily air temperature anomalies for the period [2014,2018]. (c) The cross-correlation
function between the time series shown in (b). The direction of this link is from j to i with weight WI.'E =571

J. Fan et al. Phys. Rep. 896, 1 (2021).
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Cross-correlation detects linear relationships only
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Correlation is NOT causality

SENATORS

An illustrative example: the
number of sunspots and the
number of the Republicans in
the U.S. Senate Iin the years
1960 to 1986 (biannual
sampling, 14 points).

SUNSPOTS

NORMALIZED

+
( ::O 52 1960 1970 1980 1990 2000 2010

Appropriate significance test needed!

M. Palus, Contemporary Physics 48, 307 (2007).

http://tylervigen.com/spurious-correlations
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http://tylervigen.com/spurious-correlations

The Mutual Information: a nonlinear correlation measure

MI=%"Yplz,y) h}g( p(z,y) )

P p(z)p(y)

" MI(x)y) = Ml (y,x)

= p(x,y) = p(x) p(y) =Ml =0, else Ml >0

= MI can also be computed with a lag-time.

= MI can also be computed from symbolic probabilities
(e.qg., probabilities of ordinal patterns).
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Ml values are systematically overestimated
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Fig. 1. Naive estimation of the mutual information for finite data. Iarge amount
Left: The dataset consists of N = 300 artificially generated of data
independent and equdistributed random numbers. The probabilities

are estimated using a histogram which divides each axis into M, =

M, = 10 bmns. Right: The listogram of the estimated mutual

mnformation I (X, I') obtamed from 300 independent realizations.

R. Steuer et al, Bioinformatics 18, suppl 2, S231 (2002).
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Relation between cross-correlation and mutual information

= Depends on the data.

= |f the two processes are Gaussian, the Ml and the Pearson
correlation coefficient are related as

MI = -1/2 log(1-p?).
= Example: values computed from 6816 x 6816 surface air
temperature (SAT) anomaly series:

— 7.0

2D histogram; the color
" represents the number
of elements in each bin

In log scale.

Donges et al, Eur. Phys. J. Special
Topics 174, 157 (2009).
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How to find “synchronized events” in two time series”?

1 T

Rat EEG signals from right
and left cortical intracranial
electrodes. For a better
visualization, the left signal
Is plotted with an offset.
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Time (sec)

= Define “events” in each time series.

= Count c*(x]y) = number of times an event appears in x shortly
after an event appears in y. Analogous for c* (y|x).

= Calculate:

cT(y|x)+e(x]y) c"(y|x)—c(x|y)

Q,= 4=

I, NI,

m,, m, are the number of events in each time series.
= Q.=1:the events of the signals are fully synchronized.
= g, =1:the events in x always precede those iny.

Quian Quiroga et al, PRE 66, 041904 (2002).
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Example

Armed-conflict risks enhanced by climate-related
disasters in ethnically fractionalized countries

Carl-Friedrich Schleussner®®<', Jonathan F. Donges®¢, Reik V. Donner?, and Hans Joachim Schellnhuber®®’

@Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany; bClimate Analytics, 10969 Berlin, Germany; “Integrative Research Institute on
Transformations of Human—Environment Systems, Humboldt University, 10099 Berlin, Germany; dStockholm Resilience Centre, Stockholm University, 114 19

Stockholm, Sweden; and ®Santa Fe Institute, Santa Fe, NM 87501
9216-9221 | PNAS | August 16,2016 | vol. 113 | no. 33

Social and political tensions keep on fueling armed conflicts around
the world. Although each conflict is the result of an individual
context-specific mixture of interconnected factors, ethnicity appears
to play a prominent and almost ubiquitous role in many of them.
This overall state of affairs is likely to be exacerbated by anthropo-
genic climate change and in particular climate-related natural disas-
ters. Ethnic divides might serve as predetermined conflict lines in case
of rapidly emerging societal tensions arising from disruptive events
like natural disasters. Here, we hypothesize that climate-related
disaster occurrence enhances armed-conflict outbreak risk in ethni-
cally fractionalized countries. Using event coincidence analysis, we
test this hypothesis based on data on armed-conflict outbreaks and
climate-related natural disasters for the period 1980-2010. Globally,
we find a coincidence rate of 9% regarding armed-conflict outbreak
and disaster occurrence such as heat waves or droughts. Our anal-

Natural Disasters ‘

12
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Granger Causality

Hypothesis: X; and X, can be described by
stationary autoregressive linear models.

past of X1 Residual
error
X,(t) = zAn,j X, (t =) + E;(t)
=

Residual
» pastofX; , pastofX, eﬁs'r Ha

X, (t) = ZAn,j Xt —j)+ ZAlz,sz(t —j)+ E'1(t)
= =

FE©) < Ew) b X, o X,

C. W. J. Granger Investigating causal relations by econometric models and cross-spectral
methods. Econometrica 37, 424-438 (1969) (> 10000 citations)
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Transfer Entropy (TE) and Directionality Index (DlI)

= TE: Is the Conditional Mutual Information, given the
“past” of one of the variables.

TE (x,y) = Ml (X, y[x,)

TE (y.x) = Ml (y, Xly,)
= MI (X,y) = MI (y,x) but TE (X,y) # TE(Y,X)

= Directionality Index: TE(X,y)-TE(y,X)
= TE and GC are equivalent for Gaussian processes.

= TE can be computed from the probabilities of symbols
(symbolic TE).

T. Schreiber, Measuring information transfer, Phys. Rev. Lett. 85, 461 (2000).
K. Hlavdackovd-Schindler et al. / Physics Reports 441 (2007) 1—-46

14
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Problems:

X Y VA X

Indirect link X—2Z27? Common driver Z

Y
17

In addition: Transfer Entropy is computationally demanding.

A “simple” solution: to use the expression that is valid for
Gaussian processes [ Ml = -1/2 log(1-p?) ]

Does this work? Check it out:

R. Silini, C. Masoller “Fast and effective pseudo

transfer entropy for bivariate data-driven causal

Inference”, Sci. Rep. 11, 8423 (2021).
https://doi.org/10.1038/541598-021-87818-3
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Data Generating Processes and significance analysis

DGPs: We know whether X and Y are independent or not.

Model

Mo
Y X { M1
M2

- M3
Mg
M5
Mé
My

Y =X = M8

Mg

Mi1o

Mai1

Miz2

Mai3

YsX 4w,

x, = (0.014+05x2 ) +E; y:=05y,_1+ Ey

Xt = 0.6 Xt—1 + 0.5 YVe-1 + Elt Ve = 0.5 V-1 + EZt

xt - 015 xt_]_ + 07 yt—l + Elt
Ve = 0.1 Ye-1 + 0.8 Xt—1 + EZt

Significance analysis: time-shifted surrogates (cheap for causality testing)
Quiroga et al., Phys. Rev. E 65, 041903 (2002).
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Results

Power: there is causality and we find causality (True Positives)
Size: there is no causality but we find causality (False Positives)

Model

Mo 3.8 3.9
Y X { M1 2.3 2.6 J

Ma 4.2 4.7
M3 100 45
Mg 80.7 3.8
Ms 100 29
Mé 100 1.8 ‘/
My 100 2.8
Y—=X 9 w 100 4.5
Mo 100 0.1
Mi1o 62.6 34 x
M1 46.1 43.1
L Mo 99.9 1.0
v

Mi3 100 100
(_
Y S X { M14 100 100
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Comparison with Granger Causality and Transfer Entropy

Model plE GC TE DI

Y—X X—=Y Y —X X—=Y Y —-X X—=Y pTE GC TE

Mo 3.8 3.9 5.1 5.0 4.4 4.4 —0.01 0.01 0.00

Y X { M1 2.3 2.6 3.3 3.1 100 100 —0.06 0.03 0.00
M2 4.2 4.7 5.5 5.9 4.7 4.9 —0.06 —0.04 —0.02

- M3 100 4.5 100 4.8 70.2 5.6 0.91 0.91 0.85

Mg 80.7 3.8 84.2 4.9 926.0 4.7 0.91 0.89 0.21

M5 100 2.2 100 3.1 100 3.8 0.96 0.24 0.93

Mé6 100 1.8 100 2.8 100 4.3 0.96 0.95 0.92

Y —)X B My 100 2.8 100 3.4 100 4.0 0.95 0.93 0.92
M8 100 4.5 100 5.6 100 100 0.91 0.89 0.00

Mo 100 0.1 100 0.1 100 100 1.00 1.00 0.00

Mio 62.6 3.1 67.3 4.3 12.2 4.5 0.91 0.88 0.46
Mi1 46.1 43.1 53.1 49.8 37.8 45.0 0.03 0.03 —0.09

— Mi2 99.9 1.0 100 0.9 100 0 1.0 1.0 1.0

Mi3 100 100 100 100 100 100 0.00 0.00 0.00

Y = X { M4 100 100 100 100 100 100 0.00 0.00 0.00
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Application to real data NINO3.4 € - All India Rainfall

Yearly Monthly

5 sampled @52 Ssampled (1836)
NINO3.4 — AIR NINO3.4 < AIR
| 0.045 B oss
NINO3.4— AIR NINO3.4<—— AIR
B oss B oo
NINO3.4 < AIR NINO3.4 < AIR 40»
I 1 - . 68s
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How much time we save by using the “pseudo Transfer Entropy”?

For two time-series of 500 data points (1 data point
per month, 40 years):

TE:112 ms but pTE: 4 ms

s| 8000 grid points (high resolution)
L = 64 x 10° pairs

= 829 days (TE) vs. 29 days (pTE).

B (without “surrogate” analysis)
But, there is a price to pay, no “free lunch”.

https://github.com/riccardosilini/pTE

20
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Besides Granger causality and transfer entropy, many
methods have proposed (and extensively used in
social, economic and financial data).

Symbolic Transfer Entropy
Partial Correlation

Partial Directed Coherence
Cross Mapping

Partial Cross Mapping

Etc.

Read more: A. Krakovska et al., Comparison of six
methods for the detection of causality in a bivariate
time series, Phys. Rev. E 97, 042207 (2018)

21
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Example

RESEARCH ARTICLE

INFORMATION SCIENCE 2016 © The Authors, some

exclusive licensee American

The dynamics of information-driven coordination e ncementof scen

under a Creative Commons

. H NonCommercial License 4.(
phenomena: A transfer entropy analysis onCommeril Licens
Javier Borge-Holthoefer,'*" Nicola Perra,?* Bruno Goncalves,>* Sandra Gonzalez-Bailon,* Alex Arenas,’*
Yamir Moreno,®”®* Alessandro Vespignani®®°*

Data from social media provide unprecedented opportunities to investigate the processes that govern the
dynamics of collective social phenomena. We consider an information theoretical approach to define and mea-
sure the temporal and structural signatures typical of collective social events as they arise and gain promi-
nence. We use the symbolic transfer entropy analysis of microblogging time series to extract directed
networks of influence among geolocalized subunits in social systems. This methodology captures the emer-
gence of system-level dynamics close to the onset of socially relevant collective phenomena. The framework
is validated against a detailed empirical analysis of five case studies. In particular, we identify a change in the
characteristic time scale of the information transfer that flags the onset of information-driven collective
phenomena. Furthermore, our approach identifies an order-disorder transition in the directed network of in-

Borge-Holthoefer et al. Sci. Adv. 2, 1501158 (2016).

22
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Methods of time series analysis are classified as:

= Univariate analysis

= Bivariate analysis

= Multivariate analysis
— Functional networks
— Network inference
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“Functional networks” are obtained by using bivariate
correlation or causality measures

Example: brain functional network

1CDDN/ l }J‘,‘Nw)l"r\'\ M’] {\‘,fqﬂﬂ\ A r-\u»\W w‘\,’v‘« UL‘W \ |
L”\"VUW\MJM/‘\' \J W,/“\J'MW“ M1

A i M ne , PP
200 400 500 g0 1000
T;me (sec)

o

rwl

N,

The adjacency
matrix is obtained
by “thresholding”

P SR l-f-l
1 N

Correlation Matrix Thresholded

Matrix

~ J

Network Extracted

V. M. Eqguiluz et al, Phys. Rev. Lett. 94, 018102 (2005).
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Example: functional network constructed from extreme
rainfall events, using the “event synchronization” measure

A

Standard deviations above mean

Teleconnection pattern for south-central Asia for events above
the 95th percentile (with a maximum delay of ten days). Links
shorter (longer) than 2,500 km are shown in red (blue).

N. Boers et al, “Complex networks reveal global pattern of

extreme-rainfall teleconnections”, Nature 566, 373 (2019).

25
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How to characterize the graph?

Begin with the degree distribution
Degree of node I: k= % A;

Random Scalt?—free

>NV
T,

—

S ”1]” “[hh_“ S r >

K k log(k)
S. H. Strogatz, Nature 410, 268 (2001).
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How to characterize the degree distribution?

Mean degree: u

Variance: o =Var (X) = E[(X-1)?]

X—p

g

Skewness: Z = S = E[Z3]

Kurtosis: measures the "talledness” of the distribution.
Are there “hubs’, i.e., nodes with lots of links?

K = E[Z4]

M cristina.masoller@upc.edu Y @cristinamasoll1
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How to compare two distributions?

Distance between two distributions P and P,

Euclidean DelP,R.I= HP B PeHE - Z(pi - pi,e)2

Kullback DK[P’ Pe] — K[P‘Pe] =1 [Pe]_ | [P]

K|P|P, |+ K[P,|P]
2

Jensen divergence D,[P,P,]=

S-H Cha: Comprehensive Survey on Distance/Similarity Measures between
Probability Density Functions, Int. J of. Math. Models and Meth. 1, 300 (2007).
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Other distributions that characterize a network
(unweighted and undirected)

= Clustering coefficient: measures the fraction of a node’s
neighbors that are neighbors also among themselves

OR, 1 i: Z’"f: R, is the number of
(= — = _ Aij Al Al connected pairs in the
ki(ki —1)  ki(ki —1) =1 1=1 set of neighbors of node i

= Assortativity: measures the tendency of a node with high/low
degree to be connected to other nodes with high/low degree

1 &
a; = - Z Aijk;
1 .
7=1

29
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Number of connected components (“communities”)

L]

A graph with three connected components.
Source: Wikipedia
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Problems with networks obtained by thresholding

similarity

O TR TR LTI T

R RID SRR ‘
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.
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P
<

= The variation of the number of connected components with
the threshold reveals different structures.

= Thresholding near the dotted lines would suggest
Inaccurately that these two networks have similar structures.

= Persistent “features” are "true" features.

Giusti et al., J. Comput. Neurosci. 4, 1 (2016).
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Network inference: How to reconstruct the network from
observations?

Sij>Th = A;=1else A=0

= How to select the “optimal” threshold?
= How to keep weak-but-significant links?
= A classification problem:

— the interaction exists (is significant)
— the interaction does not exists (or is not significant)

32
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Confusion matrix Predicted: NO | Predicted: YES
Actual: NO TN FP
Actual: YES FN TP

Accuracy: How often is the classifier correct? (TP+TN)/total
Misclassification (Error Rate): How often is it wrong? (FP+FN)/total

True Positive Rate (TPR, Sensitivity or Recall): When it's yes, how often
does it predict yes? TP/actual yes

False Positive Rate (FPR) : When it's no, how often does it predict yes?
FP/actual no

Specificity (1 — FPR) : When it's no, how often it predicts no? TN/actual no
Precision: When it predicts yes, how often is it correct? TP/predicted yes

Negative Predictive Value: When it predicts no, how often is it correct?
TN/predicted no

Prevalence: How often does the yes condition actually occur in the sample?
actual yes/total

33
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Receiver operating characteristic (ROC curve) and
Precision-Recall (PR curve)

0.8 —J_j

0.6

Similarity measure 1
Similarity measure 2
Similarity measure 3

<
=

True positive rate

Source: Wikipedia

1 1 | 1 | 1
0.2 0.4 0.6 0.8 |
False positive rate

FN

For reconstructing sparse networks (with a small % of links) the “Precision-Recall”
curve is more informative because it does not depend on the # of true negatives.
Precision =TP / predicted yes (TP+FP)
Recall = TP / actual yes (TP+FN)

34
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How to compare the performance of different statistical
similarity measures for inferring interactions from data?

= Use a “toy model” where we know the “ground truth”, i.e.,
we know the underlying equations and interactions and so
we can check the performance of the different measures
In inferring the interactions.

® Problem: results will depend on the “toy model” used as
the performance of the statistical similarity measure
depends on the characteristics of the data.

35
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Kuramoto oscillators in arandom network

A Is a symmetric
random matrix;

e Z A;isin(0; — 0;)dt + D AW/ N=12 time-series, each
=1

Phases (0)
True positives

1 —— 1

08 - 08

FPR

0.4

0 | | 0
0 5 10 16 20 25 30

. aEd
06 |
oz,m 02 |

pt—

CC Ml MIOP

False positives

0

I I

5 10 16 20 25 30

with 10 data points.

“Observable” Y=sin(0)

True positives False positives

1 T I ] I I 1

08 — 08
06 |- o 0.6 |-
0.4

0.4

0.2 0.2

TPR
T I
| ; § g'_
FPR
I I
Wf I ‘

0 | | | | | 0 | | | | |
Cc 5 10 15 20 25 30 O 5 10 15 20 25 30

Results of a 100 simulations with different oscillators’ frequencies, random
matrices, noise realizations and initial conditions.

For each K, the threshold was varied to obtain optimal reconstruction.
G. Tirabassi et al, Sci. Rep. 5 10829 (2015).
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Instantaneous frequencies (d6/dt)

1 1

0.8 08 -

CC MI MIOP

0.6

TPR

0.4

0.2

Perfect network inference is possible!
BUT
« the number of oscillators is small (12),
 the coupling is symmetric ( = only 66 possible links) and
 the data sets are long (10* points)

G. Tirabassi et al, Sci. Rep. 5 10829 (2015).
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Complicated structures (such as multilayer networks), require
of advanced methods for characterization / reconstruction.

(a) -----------------

Facebook ECCS '13

. Workshop
Twitter in Oxford

------------
wet®
ot
.
.'
*
-

.
o
.

-----------
- -
....
Y
-t
o

Linkedin NetSci'13 i
Went to a talk
by the other

Talked to
each other

Kivela et al, J. Complex Netw. 2, 203 (2014).
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Multilayer networks in social systems and economy

Resume of topics and references

Field

Topic

References

Social

Online communities

Internet

Citation networks

Other social networks

Pardus: [63, 421-424]

Netflix: [425, 426]

Flickr: [66, 88, 427]

Facebook: |68, 428-430|

Youtube: [431]

Other online communities: [54, 89, 432]

Merging multiple communities: [122, 123, 433, 434]

[109, 110, 435]

DBLP: [31, 33, 436-441]

Scottish Community Alliance: [442]
Politics: |68, 443)|

Terrorism: [23]

Bible: [444]

Mobile communication: [445]

Economy

Trade networks

Interbank market

Organizational networks

International Trade Network: [70, 71, 450]
Maritime flows: [45]1]

[452]

[453-455]

Boccaletti et al., Phys. Reps. 544, 1 (2014).
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How similar are two graphs?

N
- - 1 2
- Hammlng distance dHamming (}’1«. J’g) - Z {AE}’ | #AE"_ q
[ #]

= Can be used to compare two graphs of the same size.
= Main problem: not all the links have the same importance.

G1 @ G2 . 3 .

@ e @0. @ o

o g ® o g o ® o ¢ o °®

o2 @0 o 9o o @0
< o) '. o '. ®
o© o © o ©

= A‘dissimilarity” measure that can be used to compare graphs with different
sizes, based in the comparison of distributions extracted from the graphs:
Schieber et al, Nat. Comm. 8, 13928 (2017).
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A basic limitation of network analysis

= Links represent interactions between pairs of nodes.

= Simplicial complexes represent interactions among several
nodes.

O-simplex

1-simplex

d b o
& %
D. 2-simplex
‘ 3-simplex
Example:

1| .
i/

time matrix complex

Giusti et al., J Comput Neurosci 41, 1 (2016).
Battiston et al., Phys. Rep. 874, 1-92 (2020).
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Summary

= Multivariate analysis uncovers inter-relationships in
datasets

= Different similarity measures are available for inferring
the connectivity of a complex system from observations.

= Different measures can uncover different properties.
= Thresholding, unobserved variables, hidden “nodes”
can difficult or make impossible the inference of the

network structure.

= Network science: fast evolving field, with many
applications and challenges!

M cristina.masoller@upc.edu , @cristinamasoll1



Collaborators, references and announcement

Wi
Andrés Aragoneses Carlos Quintero Riccardo Silini  Giulio Tirabassi

G. Tirabassi et al, Sci. Rep. 5 10829 (2015).

A. Aragoneses et al., Phys. Rev. Lett. 116, 033902 (2016).

M. Panozzo, C. Quintero-Quiroz et al, Chaos 27, 114315 (2017).
C. Quintero-Quiroz et al., Chaos 28, 106307 (2018).

R. Silini and C. Masoller, Sci. Rep. 11, 8423 (2021).

http://www.fisica.edu.uy/~cris/

MEDYFINOL Conference,
- s ,//)\\ |CREA E "s geme wEme.  Colonia del Sacramento,
Uruguay, Dec. 8-10, 2022.
UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

M cristina.masoller@upc.edu Y @cristinamasoll1

\\\\




Hands-on exercise 4. analyze a random network of
chaotic Rossler-like electronic oscillators

VNI AL o PC

Al'l
Al 2
Al 3

. Y AT 26
. K NN /N : C a2t
s W = W™ . Coupler X9C104 I DA
: WL | | ysB-6363

, i 4 | Q|| Po.
24 18 — 13 / " K(y] _yl)\ Cu/d a P0.0

,/ g A— <)J_ﬁ | PO.1 |

Reference: Data in Brief 7 (2016)1185-1189

1. Represent graphically the structural network.

2. Calculate the degree distribution of the structural network.

3. Reconstruct the network using the Pearson coefficient (p=|CC(0)|) as
statistical similarity measure, keeping only the 10% strongest links.
Reconstruct the network using the threshold condition p>0.5.
Calculate the mean degree as a function of the threshold p,, = 0...1.

ok
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https://www.sciencedirect.com/science/article/pii/S2352340916302050

G = graph(matrix)
Plot(G)
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Mean degree = number of links / number of node§0_
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