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What is a game
3

• It is a situation in which two or more players compete (Ferguson
and Gould, 1975).

• It is any situation in which individuals must make strategic
decisions and in which the final result depends on what each
one decides to do (Nicholson, 1997).

• Any decision-making problem, where the payoff (that a person
obtains) depends not only on his/her own decisions but also on
the decisions of the other people participating in the game
(Maddala and Miller, 1991).



• It is a formal way of analyzing the interactions between agents 
that behave strategically.

• It is the mathematics of decision making in conflict situations

• It is applied in economics, military affairs, politics, ethology, 
sociology, ecology, and evolutionary biology.

What is game theory



Game Theory

•Explicanation
•Prediction

•Confronting players
•Strategies, decision.

GOAL OF GAME THEORY
Find the patterns of rational behavior in which the results depend
on the actions of the interacting players.

Goal of Game Theory
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Game Theory is the study of rational interactions in games i.e. it is the study of the logic of 
interaction in games. It is the study of how agents can do as well as possible in games.



The origin

• First formalized by Von Neumann and Morgenstern in 1944

The Theory of Games and Economic Behaviour.

• Has found application in economics, politics, biology, computer 

science, psychology, sociology, etc.



Elements of a game

• Agents

• Strategies

• Payoffs

Individuals, companies, groups of people,
countries, etc. They are players who make
decisions. They can choose from a set of possible
alternatives

Are action plans: anticipated decisions with
regarding the future. One strategy corresponds to
each course of action a player can choose.

Earnings Earnings correspond to the returns that 
each player gets when the game ends, 
represented by “payoff matrix” or benefits and 
losses.



Rational Choice

Decisions are made by individuals trying to maximize their benefits and minimize 
their costs.

Players make decisions about how to act (adopt a strategy) by comparing costs 
and benefits (payoff) of different actions.

"It is not from the benevolence of the butcher, the brewer, or the 
baker that we expect our dinner, but from their regard to their own 
interest."  Adam Smith (1776)

"[Political economy] does not treat the whole of man’s nature as
modified by the social state, nor of the whole conduct of man in
society. It is concerned with him solely as a being who desires to
possess wealth, and who is capable of judging the comparative efficacy
of means for obtaining that end." John Stuart Mill (1836)



Homo Economicus

20th century: Lionel Robbins' rational choice theory 
Individuals always tend to maximize their utility or benefit 
and tends to reduce costs or risks.

Ralf Dahrendorf (1958) to refer to the image of human
nature with which many sociological models try to limit the
social forces that determine individual tastes and social
values. This concept suggests that man is a tabula rasa on
which societies and cultures write their values and goals so
that their only goal is to fulfill the social role.

Homo sociologicus

Homo Economicus acts to obtain the greatest welfare for himself using all the
available information on opportunities and constraints. In a way, it suggests a
rational, selfish and effort-averse individual.



COOPERATIVE GAMES

Players can negotiate binding 
contracts. 

“They choose strategies 
together.”

Players can NOT negotiate binding 
contracts. 

“Each one chooses his optimal 
strategy independently”.

•Understand the point of view of a 
“rational” adversary. 

•Deduce own response to other actions.
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NON COOPERATIVE GAMES

Cooperative and non cooperative



Non-cooperative games:

It is not possible to negotiate and enforce a contract

binding between players.

Example: Two rival firms take each other's likely 
behavior into account as they independently set 
their prices and advertising strategies to capture 
more market share.

11
Cooperative and non cooperative



Classes of games

Zero Sum

Simultaneous vs
sequential

Simultaneous Games: Players play simultaneously or are unaware of 
other players' previous moves. 

Sequential (or dynamic) games: Last players have some knowledge 
of previous actions.

One round is played 

Repeated a known or unknown number of times ( repeated infinite 
times)

Complete vs
Incomplete 
information

Players may have all or part of their opponent's move information

Single vs
repeated

What one player wins is what the other player loses. The social, 
economic or political actors must understand the nature of this type 
of game.



The representation of a game can be done in two ways 

Extensive form - game tree 

It is a graphic representation of a strategic situation. Each node represents 
the possible courses of action for each player, at the end of the tree the 
profits obtained by each player are presented.                 

Normal Form - payoff matrix. 

It is a representation of a strategic situation through a matrix. The 
strategies of each player are presented to the left and at the top of the 
table. The winnings obtained by each of the players at the end of the 
game are presented in the inner part of the table.

13
Game representation



Example: Prisoners’ Dilemma I

The Prisoners’ Dilemma is one of the most famous games 
studied in game theory. We will get back to it later

Two suspects are arrested for a crime

The DA wants to extract a confession so he offers each a 
deal



Example: Prisoners’ Dilemma

The Deal
“if you fink on your companion, but your companion doesn’t fink on 

you, you will be freebut your companion gets a three-year 
sentence”

“if you both fink on each other, you will each get a two-year 
sentence”

“if neither finks, we will get tried for a lesser crime and each get a 
one-year sentence”



Example: Prisoners’ Dilemma

There are 4 combinations of strategies and two payoffs for 
each combination
useful to use a game tree or a matrix to show the payoffs

 a game tree is called the extensive form

 a matrix is called the normal form



 Each node represents a 
decision point

 The dotted oval means 
that the nodes for 
player 2 are in the 
same information set

 player 2 doesn’t know 
player 1’s move

Example: Prisoners’ Dilemma
Extensive Form

1 1

2 2



Sometimes it is more convenient to represent games in 
a matrix

Example: Prisoners’ Dilemma
Normal Form

Fink Silent

Fink 2 0

Silent 3 1



A normal form game is defined by a triplet

Where 
𝐼, (𝑆𝑖)𝑖∈𝐼, (𝑢𝑖)𝑖∈𝐼

𝐼 is a finite set of palyers
𝑆𝑖 is the set of possible action for 𝑖
𝑠𝑖 ∈ 𝑆𝑖 is thes strategy adopted by 𝑖
𝑢𝑖 : 𝑆 → ℜ is the payoff 𝑜𝑓 𝑖, 𝑆 is the profile of all the possible actions

𝑠−𝑖 = sj j≠i: others´ actions

(𝑠𝑖 , 𝑠−𝑖) ∈ 𝑆 strategies profile

Dominant strategy: A strategy                 is dominant for player i if 𝑠𝑖 ∈ 𝑆𝑖

𝑢𝑖(𝑠𝑖 , 𝑠−𝑖) ≥ 𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖) ∀𝑠′𝑖 ∈ 𝑆𝑖 ∧ ∀𝑠−𝑖 ∈ 𝑆−𝑖

Dominant strategies equilibria: A strategy profile s∗ is  the dominant strategies 
equilibrium if for every player  i , si∗ is dominant. 

19Dominant Strategies



Group photo

 Wednesday after coffee break



A Nash equilibrium is reached when each player
chooses a strategy that is best option, given
what their opponents are doing. It is not
convenient for any of the players to deviate
from the chosen strategy

J. Nash

Nash equilibrium

Nash equilibrium involves strategic choices that, once made,
provide no incentives for players to alter their behavior

It is best choice for each player given the other players’ equilibrium
strategies



J. Nash

Nash equilibrium

Any game in which the players have a finite number of
possible strategies has an equilibrium in terms of
mixed strategies.

In mixed strategies, the Nash equilibrium is one in
which each agent chooses the optimal frequency with
which it will follow its strategies, given the frequency
chosen by the other.

Finding the Nash equilibrium can be tricky



Best response – Nash equlibrium
Hands On

 Generaliza PD to multiple player

 Consider a game on a network

 Compare individual vs colective game



We can use this technique in normal-form games to 
find the equilibrium:

f

f s

s 3,0

0,3

1,1

2,2

Row

Column

Eliminating Dominated Strategies



f

f s

s 3,0

0,3

1,1

2,2

For any column action, row will prefer a.

Eliminating Dominated Strategies

Fink  is a dominant strategy for row



f

f s

s 3.0

0,3

1,1

2.2

Given that row will pick a, column will pick b.
(f,f) is the unique Nash equilibrium.

Eliminating Dominated Strategies

Fink  is a dominant strategy for row



Prisoner’s Dilemma

Even though both players would be better off cooperating, 
mutual defection is the dominant strategy.

What drives this?
 One-shot game

 Inability to trust your opponent

 Perfect rationality

How do players escape this dilemma?

Play repeatedly

Find a way to ‘guarantee’ cooperation

Change payment structure



Dominated Strategies

Strict dominated strategy:  A strategy is strictly dominated for player i if
there is another strategy that verifies

𝑠𝑖 ∈ 𝑆𝑖
𝑠′𝑖 ∈ 𝑆𝑖

𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖) > 𝑢𝑖(𝑠𝑖 , 𝑠−𝑖) ∀𝑠−𝑖 ∈ 𝑆−𝑖

Weakly dominated strategy: A strategy i   s weakly dominated for player i if
there is another strategy such that

𝑠𝑖 ∈ 𝑆𝑖
𝑠′𝑖 ∈ 𝑆𝑖

𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖) ≥ 𝑢𝑖(𝑠𝑖 , 𝑠−𝑖) for some 𝑠−𝑖 ∈ 𝑆−𝑖

Dominant strategies must never be chosen and can be iterartively eliminated

La información sobre los payoff y la racionalidad resulta en una eliminación iterada 



File

Column
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Example 3x3:

No es claro cual es el equilibrio. Eliminamos las estrategias dominadas

C1 C2 C3

F1 70,20 55,40 65,30

F2 80,21 35,10 30,50

F3 30,22 60,30 55,25

Dominated strategies



File

Column

C3 dominates  C1 for player column

30

C1 C2 C3

F1 70,20 55,40 65,30

F2 80,21 35,10 30,50

F3 30,22 60,30 55,25

Dominated strategies



File

Column

F2 is dominated by F1 and F3 for player file.
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C1 C2 C3

F1 70,20 55,40 65,30

F2 80,21 35,10 30,50

F3 30,22 60,30 55,25

Dominated strategies



File

Column

C2 dominates  C3 for player column, that will always choose C2

32

C1 C2 C3

F1 70,20 55,40 65,30

F2 80,21 35,10 30,50

F3 30,22 60,30 55,25

Dominated strategies



File

Column

So file chooses F3.

33

C1 C2 C3

F1 70,20 55,40 65,30

F2 80,21 35,10 30,50

F3 30,22 60,30 55,25

Dominated strategies



Best response – Nash equlibrium
We have n players.

Each player i adopts one strategy among a set of strategies Si

A given strategy si  Si is a best response to the strategy of the oponent so if no 
other strategy in Si gets a higher payoff

A Nash equilibrium is a strategy that is a best response to itself or a set of
strategies that are mutually bets responses one to the others,

𝑢𝑖(𝑠𝑖
∗, 𝑠−𝑖

∗ ) ≥ 𝑢𝑖(𝑠𝑖 , 𝑠−𝑖
∗ ) ∀𝑠𝑖 ∈ 𝑆𝑖

𝑢𝑖(𝑠𝑖
∗, 𝑠𝑜) ≥ 𝑢𝑖(𝑠𝑖 , 𝑠𝑜) ∀𝑠𝑖 ∈ 𝑆𝑖



Nash equilibrium
Neither player can profitably deviate given the strategies of the other players.
Therefore, in Nash equilibrium, the best responses intersect

In other words, the players' guesses are consistent: each player i chooses s*i
expecting the rest of the players to choose s*-I

The player's guess is verified in a Nash equilibrium.

This has a "steady state" feel to it. In fact, the two ways to justify Nash
Equilibrium are based on this concept



St Pa Sc

St 0, 0 -1,1 1,-1

Pa 1,-1 0,0 -1,1

Sci -1,1 1,-1 0,0

File

Column

36

Sometimes can not trivially found

Nash equilibrium



Sometimes there is more than one Nash equilibrium

Battle of sexes
A couple plans their vacation. The woman prefer to go to the beach, the man to
the mountains. Both prefer to spend their vacations together than apart

Mountain Beach

Mountain 2,1 0,0

Beach 0,0 1,2

Varón

Mujer

37Nash equilibrium



In the cases discussed above, the player chooses a specific course of action
(strategy) and sticks with it.

However, in some games there is no Nash equilibrium of pure strategies, so it is
essential to extend the concept of Nash equilibrium by incorporating the concept of
mixed strategies.
A mixed strategy is one in which the player randomly chooses between two or more
possible options, based on a pre-established distribution of probabilities.

38
Mixed strategies



“Matching pennies”

H T

H 1,-1 -1,1

T -1,1 1,-1
Jugador A

Jugador B

39

p H (1-p) T

q H 1,-1 -1,1

(1-q) T -1,1 1,-1

If there is a Nash equilibrium, the players should be able to choose an optimal
response frequency based on what the other does.

Mixed strategies



Each player plays each strategy with a certain probability, but wants his/her profit to be 
independent of what the other player does.

p-(1-p)=-p+(1-p) p=1/2

q-(1-q)=-q+(1-q) q=1/2

If A plays Heads; B wins –p+(1-p) if A plays Tails B wins p-(1-p)

Jugador A

Jugador B

40
Mixed strategies

p H (1-p) T

q H 1,-1 -1,1

(1-q) T -1,1 1,-1



Formalizing game theory

Each player has at his/her availability the same (or not) finite set of pure 
strategies.  R = {R1,R2,.... ,RN}.

For this strategies there is a payoof matrix that contains information about payoffs

We can also define a mixed strategy. A player can adopt any of the pure 

strategies or a mixed strategy p, which is defined by the probability of adopting 

each one of the pure strategies

p={p1,p2,….,pn},  1 ≥ pi ≥ 0.

Payoff Matrix 𝐴 = (𝑎𝑖𝑗)
aij is the payoff that Ri gets
when confronting Rj



Formalizing game theory

aij is the payoff that Ri gets
when confronting Rj

As the values pi represent probabilities they must satsfy

and   1 ≥ pi ≥ 0

That defines a simplex in the Rn vectorial space

The vertices of the simplex are pure strategies



Formalizing game theory

To calculate the payoff of any strategy p1 against another p2 we calculate

If we have a pure strategy Ri, its payoff when confronting p1 is

𝑒𝑖𝐴𝑝
1 =෍

𝑗

𝑝𝑗
1𝑎𝑖𝑗 ≡ 𝐴(𝑝1 )𝑖

with ഥ𝑒𝑖 = 0,0,… , 1, . . 0

𝑝1𝐴𝑝2 = ෍

𝑖,𝑗

𝑝𝑖
1𝑝𝑗

2𝑎𝑖𝑗



Formalizing game theory

A best response to a strategy p1 is a strategy p2 such that the value p2 A  p1 is 
maximum.

If all players have the same choice of strategies, a Nash equilibrium is a strategy 
that is the best response to itself.

And it is called strict if it is the only best answer, that is

The central question of evolutionary game theory is whether there is a profile of 
strategies, in a population, that is stable against perturbations. That is, if it is 
invaded by mutants, can they take advantage ?

𝑝𝑗𝐴𝑝𝑖 ≤ 𝑝𝑖𝐴𝑝𝑖 ∀𝑗

𝑝𝑗𝐴𝑝𝑖 < 𝑝𝑖𝐴𝑝𝑖 ∀𝑗 ≠ 𝑖



Formalizing game theory
The set of best responses to a strategy t is β(t). Suppose p belongs to β(t). 
The pAt is maximum

Suppose there exists a pair k,h such that ph and pk are >0 and

(1)

I can replace strategy p by p* so that

p*h=ph+pk, p*k =0

And now p*At > pAt, but this is absurd. So (1) cannot  hold. That means that the 
payoffs of all the pure strategies that participate in p when faced with t
is the same. Therefore, if a mixed strategy is in β(t) all the pure ones that form it 
will be. The only strict Nash equilibria are pure strategies.



Evolutionarily Stable Strategy 

Suppose a population adopts a unique strategy

By mutation or invasion, an individual (mutant) in the population adopts 

a different strategy.

If the mutant is doing better than the rest of the population, the 

population will imitate it and change the oruginal strategy.

If it goes worse, the rest of the population will ignore it

If the population adopted a strategy such that no mutant strategy can 

take advantage of the situation, that strategy is called 

Evolutionarily Stable Strategy (ESS).



An ESS should be a Strict Nash Equilibrium or be a Stable Nash Equilibrium

Evolutionarily Stable Strategy 

Suppose that the population has strategy ri and that there is a small invasion 
of individuals with strategy rj.  We need

1)                                                                                         Strict Nash Equilibrium

2)                                                                                                              Stability



Hawks and Doves

Two individuals must compete for a valuable resource

Hawk:
Always fight for the resource. If you win you receive the benefit
If he loses, he may be injured and must pay the cost of the assault.

Dove: 
Never fight for the resource.
He retreats if he is confronted by a Hawk.
Split the resource if you meet another Dove
There is no cost of aggression



Hawks and Doves



Hawks and Doves

Hawk Dove

Hawk (G-C)/2, B-C/2 B,0

Dove 0, B G/2,G/2

Payoff   Gain for obtaining the resource > 0
Cost per aggression > 0 and > G

Let us call P(A,B) the payoff received by a strategy A in a population (with strategy) B

P(H, H) > P(D,H) then H is  ESS

P(H, H) > P(D,H)   if    (G-C)/2 > 0

C < G, H is ESS



Hawks and Doves

If P(H, H) > P(D,H)   H is ESS

P(H, H) > P(D,H)  (G-C)/2 > 0

C < G,  Hawk is ESS, if C > G, it is not

Suppose the entire population behaves like Hawk. Is it an Evolutionarily Stable 
Strategy (ESS)?

Suppose the entire population behaves like Dove. Is it an Evolutionarily Stable 
Strategy (ESS)?

If P(D, D) > P(H,D)   D is ESS

P(P, P) > P(H,P)  G/2 > B, false

Dove  can not be ESS



Hawks and Doves

If C > G, neither H nor P is evolutionarily stable

We can look for an EES among the mixed strategies

Suppose then that H is adopted with probability ρ and D with probability (1- ρ)

The payoff for choosing H = ρ E(H,H) + (1 - ρ) E(H,P) = ρ[(G-C)/2] + (1 – ρ) G

The payoff for choosing D  = ρ E(P,H) + (1 - ρ) E(P,P) = ρ[0] + (1 – ρ) B/2

If I want neither H nor P to take advantage ρ[(G-C)/2] + (1 – ρ) B = (1 – ρ) B/2  ρ=G/C



Hawks and Doves



Suppose now that the population adopts the mixed strategy with ρ=B/C

And that an individual enters with a strategy (α H, (1- α)P)

The payment of this individual is

Independent of α



The previous calculation  shows us that although the chosen strategy is in the set of 
its best answers, it is not the only one, since they all are.

Let's see if the payoff of (B/C H, (1-B/C)P) against (α H, (1- α)P) is greater than that 
of the latter against itself



Hawks and Doves

Diversity : 2 Variants

1.   Coexistence of individuals with two different behaviors. The 
population is composed of ρ*Hawks and , (1 – ρ*) Doves 

2.   Adoption of mixed strategies. Each individual has the same mixed 
strategy, which makes him choose Hawk with frequency ρ



Evolutionary games

Behavior can be defined by trial and error. Adaptation and learning are key factors 

Rational behavior constraint can be relaxed 

Games are played in a population, where each individual receives a score 

Strategies that perform better than average spread while the others disappear 

The initial assignment of strategies is random Each player plays with all his 
neighbors (mean field vs spatial distribution) and his payoff from him is the 
sum of the payoffs 

The success of each player determines the number of followers or descendants in 
the next step (Selection) The descendants or imitators inherit or copy the 
strategy with some error (Mutation) If the (global) Nash equilibrium is reached, 
no other strategy can invade



Allowed dynamics

Any dynamics should lead to a possible strategy.  It must leave the 

simplex invariant. The dynamics will give us equations for ሶ𝑥𝑖.

Zero must be a fix point of ሶ𝑥𝑖

If we call 𝑆 = σ𝑖 𝑥𝑖

Then 1 must be a fix point of ሶ𝑆 = σ𝑖 ሶ𝑥𝑖

𝑦𝑖
.

= 𝑦𝑖(𝑓𝑖(𝑦)

− 𝑓(𝑦)),



Replicator dynamics

The replicator equation describes the evolution of phenotype 

frequencies in a population with selection proportional to fitness.

If we call xi the frequency of the phenotype i, and fi  to its fitness 

the equation is
ሶ𝑥𝑖 = 𝑥𝑖(𝑓𝑖 ҧ𝑥 − ҧ𝑓( ҧ𝑥))

where

ҧ𝑓( ҧ𝑥) = σ𝑖 𝑥𝑖𝑓𝑖 ҧ𝑥𝑦𝑖
.

= 𝑦𝑖(𝑓𝑖(𝑦)

− 𝑓(𝑦)),

𝑓(𝑦) =෍

𝑖

𝑦𝑖𝑓𝑖(𝑦)



Replicator  dynamics

Zero must be a fix point of ሶ𝑥𝑖

ሶ𝑥𝑖 = 𝑥𝑖(𝑓𝑖 ҧ𝑥 − ҧ𝑓( ҧ𝑥))

1 must be a fix point of ሶ𝑆 = σ𝑖 ሶ𝑥𝑖= σ𝑖 𝑥𝑖(𝑓𝑖 ҧ𝑥 − ҧ𝑓( ҧ𝑥))

ሶ𝑆= σ𝑖 𝑥𝑖𝑓𝑖 ҧ𝑥 − ҧ𝑓( ҧ𝑥) σ𝑖 𝑥𝑖 = ҧ𝑓( ҧ𝑥) (1 − 𝑆)
𝑦𝑖
.

= 𝑦𝑖(𝑓𝑖(𝑦)

− 𝑓(𝑦)),



Replicator dynamics

Payoff matrix 𝐴 = {𝑎𝑖𝑗}

ҧ𝑥 = 𝑥1, 𝑥2, … . , 𝑥𝑁

෍

𝑖

𝑥𝑖 = 1

ഥ𝑒𝑖 = 0,0,… , 1, . . 0

𝑓𝑖( ҧ𝑥) = 𝑒𝑖𝐴 ҧ𝑥

ҧ𝑓( ҧ𝑥) = ҧ𝑥𝐴 ҧ𝑥

𝑦𝑖
.

= 𝑦𝑖(𝑓𝑖(𝑦)

− 𝑓(𝑦)),



Simple evolutionary game simulations

 Everyone starts with a random strategy

 Everyone population plays game against everyone else

 The payoffs are added up

 The total payoff determines the number of offspring (Selection)

 Offspring inherit approximately the strategy of their parents 
(Mutation)

 [Note similarity to genetic algorithms.]

 [Nash equilibrium in a population setting- no other strategy can 
invade]



Hawks and Doves

Payoff Hawk

𝑓𝐻 = 1,0 𝐴
𝑥

1 − 𝑥
𝑓𝑃 = 0,1 𝐴

𝑥
1 − 𝑥

Payoff Dove

𝑓
___

= 𝑥, 1 − 𝑥 𝐴
𝑥

1 − 𝑥
Mean payoff

Replicator equation 𝑑𝑥

𝑑𝑡
= 𝑥 𝑓𝐻 − 𝑓

___



Hawks and Doves

𝑑𝑥

𝑑𝑡
= 𝑥(𝑓𝐻 − 𝑓

___

)

Replicator equation

𝑓
___

= 𝑥𝑓𝐻 + 1 − 𝑥 𝑓𝐷

𝑑𝑥

𝑑𝑡
= 𝑥 1 − 𝑥 𝑓𝐻 − 𝑓𝐷

𝑑𝑥

𝑑𝑡
=
1

2
𝑥 1 − 𝑥 𝐺 − 𝐶𝑥

𝑑𝑥

𝑑𝑡
= 0 ⇒ 𝑥 = 0 ∨ 𝑥 = 1 ∨ 𝑥 =

𝐺

𝐶



Hawks and Doves

G<C, dimorphic equilibrium

G>C, pure hawk equilibrium

𝑥∗ =
𝐺

𝐶

𝑥∗ = 1



Stone, Paper, Scissors

Stone Paper Scissors

Stone 0, 0 -1,1 1,-1

Paper 1,-1 0,0 -1,1

Scissors -1,1 1,-1 0,0



Stone, Paper, Scissors

𝑑𝑥

𝑑𝑡
= 𝑥 𝑦 − 𝑧

𝑑𝑦

𝑑𝑡
= 𝑦 𝑧 − 𝑥

𝑑𝑧

𝑑𝑡
= 𝑧 𝑥 − 𝑦

𝑑𝑥

𝑑𝑡
= −𝑥 + 𝑥2 + 2𝑥𝑦

𝑑𝑦

𝑑𝑡
= 𝑦 − 𝑦2 − 2𝑥𝑦



Stone, Paper, Scissors

Equilibria

(1,0,0)
(0,1,0)             Saddle
(0,0,1)

Center1

3
,
1

3
,
1

3



Stone, Paper, Scissors
𝑑𝑥

𝑑𝑡
= 𝑥(−1 + 𝑥 + 2𝑦)

𝑑𝑦

𝑑𝑡
= 𝑦(1 − 𝑦 − 2𝑥)

𝑑(𝑥∗ + 𝜀)

𝑑𝑡
=
𝑑𝜀

𝑑𝑡
= (𝑥∗ + 𝜀)(−1 + 𝑥∗ + 𝜀 + 2(𝑦∗ + 𝛿))

𝑑(𝑦∗ + 𝛿)

𝑑𝑡
=
𝑑𝛿

𝑑𝑡
= (𝑦∗ + 𝛿)(1 − 𝑦∗ − 𝛿 − 2(𝑥∗ + 𝜀))

𝑥 = 𝑥∗ + 𝜀
𝑦 = 𝑦∗ + 𝛿

𝑑𝜀

𝑑𝑡
= 𝑥∗(−1 + 𝑥∗ + 2𝑦∗) + 𝑥∗(𝜀 + 2𝛿) + 𝜀(−1 + 𝑥∗ + 2𝑦∗)

𝑑𝛿

𝑑𝑡
= 𝑦∗(1 − 𝑦∗ − 2𝑥∗) − 𝑦∗(2𝜀 + 𝛿) + 𝛿(1 − 𝑦∗ − 2𝑥∗)

(
𝑑𝜀

𝑑𝑡
,
𝑑𝛿

𝑑𝑡
) =

𝑎 𝑏
𝑐 𝑑

𝜀
𝛿

𝑎 = 2(𝑥∗ + 𝑦∗) − 1
𝑏 = 2𝑥∗

𝑐 = −2𝑦∗

𝑑 = 1 − 2(𝑥∗ + 𝑦∗)



Stone, Paper, Scissors

−1 0
0 1

𝑥∗ = 0
𝑦∗ = 0

𝜆1 = 1
𝜆2 = −1

1 0
−2 −1

𝑥∗ = 0
𝑦∗ = 1

𝜆1 = 1
𝜆2 = −1

1 2
0 −1

𝑥∗ = 1
𝑦∗ = 0

𝜆1 = 1
𝜆2 = −1

1

3

2

3

−
2

3
−
1

3

𝑥∗ = 1/3
𝑦∗ = 1/3

𝜆1 = 𝑖 3

𝜆2 = −𝑖 3



Extended hawks and doves

Retaliator: behaves like a dove in front of a dove and like a hawk in front of a hawk. 
Fight if brought to fight

Hawk Dove Retaliator

Hawk (G-C)/2, (G-C)/2 G,0 (G-C)/2, (G-C)/2

Dove 0, G G/2, G/2 G/2, G/2

Retaliator (G-C)/2, (G-C)/2 G/2, G/2 G/2, G/2
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Extended hawks and doves II

Bully - Behaves like a hawk in front of dove, but cowers in front of a hawk. Avoid 
the fight if he is brought to fight

Hawk Dove Bully

Hawk (G-C)/2, (G-C)/2 G,0 G, 0

Dove 0, G G/2, G/2 0, G

Bully 0, G G, 0 G/2, G/2
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2x2 Symmetric Games

𝐴 =
𝑎 𝑏
𝑐 𝑑

E1 E2

E1 a,a b,c

E2 c,b d,d

75

𝑑𝑥

𝑑𝑡
= 𝑥(𝑓1 − 𝑓

___

) = 𝑥(1 − 𝑥)(𝑥(𝑎 − 𝑏 − 𝑐 + 𝑑) + (𝑏 − 𝑑))

𝑓1 = 𝑥𝑎 + (1 − 𝑥)𝑏

𝑓
___

= 𝑥[𝑥𝑎 + (1 − 𝑥)𝑏] + (1 − 𝑥)[𝑥𝑐 + (1 − 𝑥)𝑑]

Each player can choose between two available strategies 

Consider a population that plays E1 with prob. x and E2 with prob. (1-x)

𝑓2 = 𝑥𝑐 + (1 − 𝑥)𝑑



2x2 Symmetric Games

𝐴 =
𝑎 𝑏
𝑐 𝑑
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𝑑𝑥

𝑑𝑡
= 𝑥(𝑓1 − 𝑓

___

) = 𝑥(𝑥(𝑎 − 𝑐) − [𝑥2(𝑎 − 𝑐) + (1 − 𝑥)2(𝑑 − 𝑏)]

𝑎 − 𝑐 0
0 𝑑 − 𝑏

𝑓
___

= 𝑥(𝑎 − 𝑐) + (1 − 𝑥)(𝑑 − 𝑏)

𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝑥)[𝑥(𝑎 − 𝑐) − (1 − 𝑥)(𝑑 − 𝑏)] = 𝑥(1 − 𝑥)[𝑥(𝑎 − 𝑏 − 𝑐 + 𝑑) + (𝑏 − 𝑑)]



2x2 Symmetric Games

𝐴 =
𝑎1 0
0 𝑎2

E1 E2

E1 a1, a1 0,0

E2 0,0 a2,a2
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𝑓1 = 𝑥𝑎 + (1 − 𝑥)𝑏

Each player can choose between two available strategies 

Consider a population that plays E1 with prob. x and E2 with prob. (1-x)

𝑓2 = 𝑥𝑐 + (1 − 𝑥)𝑑

𝑑𝑥

𝑑𝑡
= 𝑥(𝑓1( Ԧ𝑥) − 𝑓( Ԧ𝑥)) = 𝑥(1 − 𝑥)(𝑥𝑎1 − (1 − 𝑥)𝑎2)

𝑑𝑥

𝑑𝑡
= 0 ⇒ 𝑥 = 1, 𝑥 = 0, 𝑥 =

𝑎2
𝑎1 + 𝑎2

Steady states



2x2 Symmetric Games

𝑥1
.
= 𝑥1(1 − 𝑥1)(𝑥1𝑎1 − (1 − 𝑥1)𝑎2) 𝑥1

∗ =
𝑎2

𝑎1 + 𝑎2

0                                                          1

0                                                          1

If  a1 > 0 and  a2 < 0, the flux is always

If a1 < 0 and a2 > 0, the flux is always 
𝑥1
∗ > 1



𝑥1
.
= 𝑥1(1 − 𝑥1)(𝑥1𝑎1 − (1 − 𝑥1)𝑎2) 𝑥1

∗ =
𝑎2

𝑎1 + 𝑎2

If  a1 > 0 and  a2 > 0, the flux close to x* , where the derivative is null 

If a1 < 0 and a2 < 0, the flux close to x* , where the derivative is null 

0                        x* 1

0                        x* 1

2x2 Symmetric Games



2x2 Symmetric Games

𝐴 =
𝑎1 0
0 𝑎2

Games type I (IV) : a1 < 0 y a2 > 0 (a1 > 0 y a2 < 0) 

Games type II: a1 > 0 y a2 > 0

Games type III: a1 < 0 y a2 < 0

Prisoner’s dilemma

Coordination Games

Hawks and doves

There are three (four) types of 2x2 Symmetric Games



Suppose there is a replication error.

The probability that a type j mutates to a type i is considered.

The replicator equation with mutation is

𝑥𝑖
.
= ෍

𝑗

𝑥𝑗𝑓𝑗( Ԧ𝑥)𝑞𝑗𝑖 − 𝑓( റ𝑥)𝑥𝑖

Replicator equation with mutation

𝑞𝑗𝑖



Adaptive dynamics

The game contemplates a continuous space of strategies

The population is homogeneous, everyone adopts the same 
strategy

Mutation generates strategic variants close to that of the 
population

If the mutant is better than the resident strategy, it is adopted by 
the population, if not it is rejected

It is used to find evolutionarily stable strategies



Adaptive dynamics

 Strategies are described by continuous parameters :

 Expected score of mutant                           against S is given by 
E(S’,S)

 The adaptive dynamics flow in the direction which maximises the 
score:

𝑆(𝑝1, 𝑝2, . . . . , 𝑝𝑛)

𝑆′(𝑝1
′ , 𝑝2

′ , . . . . , 𝑝𝑛
′ )

ሶ𝑝𝑖 = ቤ
𝜕𝐸 𝑆′, 𝑆

𝜕𝑝𝑖
′

𝑆′→𝑆

, 𝑖 = 1, … , 𝑛



Prisoner’s dilemma

Cooperation is much more
frequent than suggested
by models based on
rational behavior
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Prisoner’s dilemma

R    REWARD for mutual cooperation
S     SUCKER’s payoff
T     TEMPTATION    to defect
P     PENALTY     for mutual defection

With T>R>P>S    and      R > (T+S)/2

Cooperate Defect

Cooperate R, R S, T

Defect T, S P, P
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Prisoner’s dilemma
DP Iterative PD vs. P.S. simple

In simple instances, rational decision prevails. Always desert. However, in the 
iterative, defecting is always not optimal since mutual cooperation can cause a 
net gain for both agents.

While cooperation is collectively rational behavior, from the individual point of 
view desertion is appropriate.

T > R > P > S and R > (T+S)/2. The condition R > (T+S)/2 is important when the game 
is repeated. This ensures that individuals do better cooperating with each other 
than alternating between cooperating and not cooperating.

The lack of cooperation is the tragedy of the commons. A situation in which several 
individuals, motivated only by self-interest and acting independently but 
rationally, end up destroying a limited shared resource—the common—even 
though it is clearly the case that it is not in their interest—either as individuals 
or altogether—for such destruction to take place.
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Axelrod’ s Tournament

Made in the early 80's

Axelrod invited game theory researchers to propose strategies to play the 
iterated D.P.

Each strategy had to compete against all the others, including itself and a 
strategy that randomly cooperated or betrayed

TFT won the first tournament and the second, which was held after having 
informed the competitors of the result of the first.
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Tit For Tat - cooperate in the first game, and then repeat the opponent's last choice.
Tit For Tat and Random - Replays the opponent's last choice biased by random adjustment
Tit For Two Tats - Like TFT, except the opponent must make the same choice twice in a row before 

it is reciprocated
Naive Prober (Tit For Tat with D Random) – Plays TFT, but sometimes plays D randomly
Remorseful Prober (Tit For Tat with Random Defection) – As above, but if the opponent responds 

D to the taunt, they show remorse and re-cooperate
Naive Peace Maker (Tit For Tat con Random Cooperation) – TFT but from time to time tries to 

make peace and cooperate
True Peace Maker (Hybrid of TFT and TF2T and Random Cooperation) – Starts TF2T, plays D once, 

but sometimes cooperates when he must defraud
Random - 50% chance of C or D.
Always Defect
Always Cooperate
Grudger (Cooperate, but only support a D) - Cooperate until the opponent plays D, then always D
Pavlov- repeat last choice if good
Pavlov and Random
Gradual – Cooperate until the opponent defrauds, and play D the same number of times your 

opponent did in the game. Cooperate again twice.
Suspicious Tit For Tat - Like TFT but starts with D.

Strategies



Iterated PD
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Altruistic Fish
Until now an exact representation of the conditions of the prisoner's dilemma 
has not been identified in nature.

Predator inspection in gregarious fish is close, but the stage is debatable

A pair of fish may break away from the group to swim close by and inspect the 
predator chasing the school

They receive a payment in the form of gaining knowledge about the predator

Two fish can move closer to the predator, so they benefit from cooperation

Also, one can "defect" benefit from the knowledge without risk So T>R>P>S is 
satisfied, but... Can they recognize previous deserters in order to punish them? 
Do they really prefer to approach in pairs? Does an inspector share information 
with the group?



Altruistic Fish



Altruistic Fish

Fish get closer with
parallel mirrors than with
oblique mirrors



Altruistic Vampire
Vampires: Desmodus rotundus, studied by Gerald Wilkinson in Trinidad

They live in groups

There are various degrees of kinship, sometimes 0

Sometimes vampires go out and get nothing

Other times, they get a cow and come back with a stomach full of blood.

They regurgitate blood to their companions

They do it with reciprocity, even in the absence of kinship



Altruistic Vampire



Altruistic Vampire



Stone, Paper, Scissors
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Stone, Paper, Scissors

Male spotted flank lizards, Uta stansburiana, can exhibit one of three different 
reproductive strategies.
It lives in the arid zones of the southern USA and northern Mexico.

The three strategies in question are associated with males whose bodies have throats 
colored orange, blue or yellow

Orange-throated males have more testosterone and are the most aggressive, defending 
large territories and invading territories of blue-throated males.
In turn, the blue ones are less aggressive and defend smaller territories, they are less 
polygamous than the orange ones and they particularly defend certain females.

On the other hand, the males with yellow lines on their throats are furtive because they 
are confused with the females whose throat also has yellow lines; they even behave like 
them, and thus manage to go unnoticed by the territorial males and copulate with the 
females.



Stone, Paper, Scissors



Stone, Paper, Scissors



Mechanisms for the Evolution of 
Cooperation

Kin selection: I cooperate with genetic relatives.

Direct reciprocity: I help you, you help me.

Indirect Reciprocity: I help you, someone will help me.

Spatial Reciprocity: Neighbors help each other.

Group Selection: Groups of cooperators have better performance
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Mechanisms for the Evolution of 
Cooperation

b = benefit   c= cost


