The magnetic field independent regularization applied to light meson masses: the neutral ρ meson case

William R. Tavares, Sidney S. Avancini, Ricardo L. S. Farias, Varese S. Timóteo

Physics Department - UFSC

October 25, 2022

 First Section
 Second Section
 Third Section
 Results
 Final discussion

 • OO
 0000000
 0000000
 000000
 00

Outline

- Brief review of the SU(2) Nambu–Jona-Lasinio model
- Regularization procedures: The MFIR and non-MFIR regularizations
- Regularization procedures applied to ρ^0 meson
- Results
- Summary and conclusions

First Section	Second Section	Third Section	Results	Final discussion
000	000000	0000000	000000	00

Why magnetic fields?

Figure: Wei-Tian Deng and Xu-Guang Huang, Phys. Rev. C 85, 044907 (2012)

- Peripheral Heavy Ion Collisions with eB ~ 10¹⁹ G for ALICE/(LHC) and eB ~ 10¹⁸ G for RHIC/(BNL)
- Magnetars: $eB \sim 10^{16}G$
- Primordial universe: Electroweak phase transition? $eB \sim 10^{20}$ to 10^{24} G

First Section	Second Section	Third Section	Results 000000	Final discussion

What does LQCD tell us?

G. S. Bali, et al. Phys. Rev. D 86, 071502(R), 2012

Figure: Average quark condensate as a function of the temperature for different values of temperature evaluated in LQCD.

First Section	Second Section	Third Section	Results	Final discussion
000	000000	0000000	000000	00

SU(2) NJL model

The SU(2) NJL Lagrangian is given by:

$$\mathcal{L} = \overline{\psi} \left(i \not\!\!{D} - \tilde{m} \right) \psi + G \left[(\overline{\psi} \psi)^2 + (\overline{\psi} i \gamma_5 \overrightarrow{\tau} \psi)^2 \right] - \frac{1}{4} F^{\mu\nu} F_{\mu\nu}, \tag{1}$$

with the current quark masses matrix $\tilde{m} = \text{diag}(m_u, m_d)$ in the isospin symmetry approximation, $m_u = m_d = m_0$. The covariant derivative is given by $\partial^{\mu} \rightarrow D^{\mu} = (i\partial^{\mu} - QA^{\mu})$; the electromagnetic field tensor $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$; and the charge matrix $Q_q = \text{diag}(2/3, -1/3)e$. The gauge adopted is: $A_{\mu} = \delta_{\mu 2}x_1B$, $(\vec{B} = B\hat{e}_z)$;

In the mean field approximation, the Lagrangian $\mathcal L$ is denoted by

$$\mathcal{L} = \overline{\psi} \left(i \not{\!D} - M \right) \psi - G \left\langle \overline{\psi} \psi \right\rangle^2 - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} , \quad M = m_0 - 2G \left\langle \overline{\psi} \psi \right\rangle$$
(2)

First Section	Second Section	Third Section	Results	Final discussion
000	000000	0000000	000000	00

SU(2) NJL model

The quark condensate is given by

$$\langle \overline{\psi}\psi \rangle = -i \int \frac{d^4k}{(2\pi)^4} \operatorname{tr} \tilde{S}(k) ,$$
 (3)

The mean field quark propagator in coordinate space is given by $i\widetilde{S}(x, y) = \text{diag}(i\widetilde{S}_u(x, y), i\widetilde{S}_d(x, y))$ where

$$i\widetilde{S}_f(x,y) = e^{i\Phi_f(x,y)} \ i\widetilde{S}_f(x-y) \ , \ f = (u,d) \ . \tag{4}$$

The translationally invariant part

J. S. Schwinger, Phys. Rev. 82 (1951) 664-679.

$$\begin{split} i\widetilde{S}_{f}(x-y) &= \int \frac{d^{4}k}{(2\pi)^{4}} e^{-ik \cdot (x-y)} \ i\widetilde{S}_{f}(k), \\ i\widetilde{S}_{f}(k) &= \int_{0}^{\infty} ds \exp\left[is \left(k_{\parallel}^{2} - k_{\perp}^{2} \frac{\tan(\beta_{f}s)}{\beta_{f}s} - M^{2} + i\epsilon\right)\right] \\ &\times \left[(k_{\parallel} \cdot \gamma_{\parallel} + M) \ \Pi_{f}(s) - k_{\perp} \cdot \gamma_{\perp} \ g_{f}(s)\right], \end{split}$$
(5)

6/27

First Section	Second Section	Third Section	Results	Final discussion
000	000000	0000000	000000	00

SU(2) NJL model

The quark condensate at $eB \neq 0$ is given by

$$\langle \overline{\psi}\psi \rangle = -\frac{2MN_c}{8\pi^2} \sum_f \int_0^\infty ds \frac{e^{-sM^2}}{s} \beta_f \coth(\beta_f s), \quad \text{Schwinger Formalism}$$
$$\langle \overline{\psi}\psi \rangle = -\frac{2MN_c}{8\pi^2} \sum_f \beta_f \sum_{k=0}^\infty \alpha_k \int_{-\infty}^\infty \frac{dp_3}{\sqrt{p_3^2 + M^2 + 2\beta_f k}}, \quad \text{Landau Level basis}$$

where k are the Landau Levels and $\alpha_k = 2 - \delta_{k,0}$. Both representations are equivalent and ultraviolet divergent.

First Section	Second Section	Third Section	Results	Final discussion
000	0000000	0000000	000000	00

MFIR regularizations

The magnetic field independent regularization (MFIR) is based in the subtraction scheme of divergences from [Schwinger, 1951]. Only the first term of the $\coth(s) \sim 1/s$ when $s \to 0$ is divergent

$$\langle \overline{\psi}\psi\rangle \rightarrow \lim_{\epsilon \to 0} \frac{2MN_c}{8\pi^2} \left[\sum_f \int_0^\infty ds \frac{e^{-sM^2}}{s^{2+\epsilon}} (\beta_f s \coth(\beta_f s) - 1) + N_f \int_{\frac{1}{\Lambda}}^\infty ds \frac{e^{-sM^2}}{s} \right]$$

$$= -2MN_c [\sum_f I_f + I^0],$$
(6)

where $\beta_f = |q_f eB|$ and I^0 is the vacuum contribution that must be regularized. It is possible to show, analytically that

$$I_{f} = \frac{M^{2}}{8\pi^{2}} \left[\frac{\ln \Gamma[x_{f}]}{x_{f}} - \frac{\ln 2\pi}{2x_{f}} + 1 - \left(1 - \frac{1}{2x_{f}} \right) \ln x_{f} \right], \quad x_{f} = \frac{M^{2}}{2\beta_{f}}$$
(7)

8/27

First Section	Second Section	Third Section	Results	Final discussion
000	0000000	0000000	000000	00

non-MFIR regularizations

$$\begin{split} \left\langle \overline{\psi}\psi \right\rangle &= -\frac{2MN_c}{8\pi^2} \sum_f \int_{\frac{1}{\Lambda^2}}^{\infty} ds \frac{e^{-sM^2}}{s} \beta_f \coth(\beta_f s), \quad \text{Proper-Time regularization} \\ \left\langle \overline{\psi}\psi \right\rangle &= -\frac{2MN_c}{8\pi^2} \sum_f \beta_f \sum_{k=0}^{\infty} \alpha_k \int_{-\infty}^{\infty} \frac{U_{\Lambda}(p_3 + 2\beta_f k) dp_3}{\sqrt{p_3^2 + M^2 + 2\beta_f k}}, \quad \text{Form-Factor Regularization} \end{split}$$

where $U_{\Lambda}(p_3 + 2\beta_f k)$ is a Form-Factor function. There are several options

$$U_{\Lambda}^{LorN} = \left[1 + \left(\frac{x}{\Lambda}\right)^{N}\right]^{-1}, \quad U_{\Lambda}^{WS\alpha} = \left[1 + e^{\frac{x/\Lambda - 1}{\alpha}}\right]^{-1}, \tag{8}$$
$$U_{\Lambda}^{GR} = e^{-\frac{x^{2}}{\Lambda^{2}}}, \quad U_{\Lambda}^{FD\alpha} = \frac{1}{2}\left[1 + \tanh(\frac{x}{\Lambda} - 1)\right] \tag{9}$$

First Section	Second Section	Third Section	Results	Final discussion
000	0000000	0000000	000000	00

Regularization at $eB \neq 0$ (MFIR) vs (non-MFIR)

Figure: Average quark condensate as a function of *eB* with the Fermi-Dirac (top) and Lorentzian (bottom) regularizations. S. Avancini, R. Farias, N. Scoccola, **W. Tavares**, Phys. Rev. D 99, 116002 (2019)

First Section	Second Section	Third Section	Results	Final discussion
000	000000	0000000	000000	00

SU(2) NJL model: MFIR Regularization

The gap equation in the MFIR scheme is given by the following expression

$$\frac{M - m_0}{2G} - 2MN_c I^0 - \frac{M^3 N_c}{4\pi^2} \sum_{f=u,d} \eta(x_f) = 0$$
(10)

where the finite magnetic contribution is given by

$$\eta(x_f) = \left[\frac{\ln\Gamma(x_f)}{x_f} - \frac{1}{2x_f}\ln 2\pi + 1 - \left(1 - \frac{1}{2x_f}\right)\ln x_f\right],\tag{11}$$

The usual divergent non-magnetic contribution is given by I_1

$$I_{1} = N_{f} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{\sqrt{k^{2} + M^{2}}} \rightarrow N_{f} \int \frac{d^{3}k}{(2\pi)^{3}} \sum_{i} c_{i} \frac{1}{\sqrt{k^{2} + M_{i}^{2}}}, \ M_{i}^{2} = M^{2} + a_{i}\Lambda^{2}.$$
(12)

where a_i and c_i are the Pauli-Villars regularization parameters.

First Section	Second Section	Third Section	Results	Final discussion
000	000000	•0000000	000000	00

SU(2) NJL model: Meson masses

The meson masses in the NJL can be evaluated in the random phase approximation (RPA)

$$\frac{-ig_{\pi qq}^2}{k^2 - m_{\pi}^2} \approx \frac{2iG}{1 - 2G\Pi_{\pi}(k^2)},$$
(13)

where $g_{\pi qq}$ is the coupling between quarks and pions. The (pole)-mass for the π meson is given by

$$1 - 2G\Pi_{\pi}(k^2)|_{k^2 = m_{\pi}^2} = 0, \tag{14}$$

$$\frac{1}{i}\Pi_{\pi} = -\int \frac{d^4p}{(2\pi)^4} Tri\gamma_5 \tau_k iS(p+\frac{1}{2}k)i\gamma_5 \tau_j iS(p-\frac{1}{2}k),$$
(15)

where τ_j are the Pauli matrices.

First Section	Second Section	Third Section	Results	Final discussion
000	0000000	0000000	000000	00

SU(2) NJL model: Meson masses

In the RPA formulation, the polarization tensors for each channel, i.e, pseudo-scalar, scalar and vector channels, are defined in coordinate space by

$$\frac{1}{i}\Pi_{\pi}(\mathbf{x},\mathbf{y}) = -\operatorname{tr}_{f,c,D}[i\gamma^{5}\tau^{a}i\tilde{S}(\mathbf{x},\mathbf{y})i\gamma^{5}\tau^{b}i\tilde{S}(\mathbf{y},\mathbf{x})], \tag{16}$$

$$\frac{1}{i}\Pi_{\sigma}(x,y) = -\operatorname{tr}_{f,c,D}[i\tilde{S}(x,y)i\tilde{S}(y,x)],$$
(17)

$$\frac{1}{i}\Pi_{\rho}^{\mu\nu,ab}(x,y) = -\operatorname{tr}_{f,c,D}[\gamma^{\mu}\tau^{a}i\tilde{S}(x,y)\gamma^{\nu}\tau^{b}i\tilde{S}(y,x)] .$$
(18)

The vector interaction in the lagrangian is given by including the following term

$$\mathcal{L} = \overline{\psi} \left(i \not\!\!\!\!\!/ p - \hat{m} \right) \psi + G \left[(\overline{\psi} \psi)^2 + (\overline{\psi} i \gamma_5 \vec{\tau} \psi)^2 \right] - G_{\nu} \left[(\overline{\psi} \gamma^{\mu} \vec{\tau} \psi)^2 + (\overline{\psi} \gamma^{\mu} \gamma_5 \vec{\tau} \psi)^2 \right] - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} \,. \tag{19}$$

 First Section
 Second Section
 Third Section
 Results
 Final discussion

 000
 0000000
 0000000
 0000000
 0000000
 0000000

SU(2) NJL model: Meson masses

The general structure of the meson propagator in the vector channel, is given by the Schwinger-Dyson equation as

$$D_{ab}^{\mu\nu}(q^2) = -2G_{\nu}\delta_{ab}g^{\mu\nu} + (2G_{\nu}\delta_{ac}g^{\mu\lambda})(\Pi_{\lambda\sigma,cd})(D_{db}^{\sigma\nu}), \text{ General case}$$
$$D^{\mu\nu}(q^2) = -2G_{\nu}g^{\mu\nu} + 2G_{\nu}g^{\mu\lambda} \Pi_{\rho \ \lambda\sigma} D^{\sigma\nu}(q^2) \text{ . Neutral vector mesons, i.e., } a = b$$

 \rightarrow We consider the polarization tensor in the ρ rest frame, i.e., $q^{\mu} \equiv (q^0 = m_{\rho}, \vec{q} = \vec{0})$. \rightarrow The only non-null components of the polarization tensor in its rest frame are $\Pi^{11}_{\rho}(q^2_0) = \Pi^{22}_{\rho}(q^2_0)$ and $\Pi^{33}_{\rho}(q^2_0)$.

First Section	Second Section	Third Section	Results	Final discussion
000	000000	0000000	000000	00

SU(2) NJL model: Meson masses

The polarization function and the generalized meson propagator can be decomposed as

$$\begin{split} \Pi^{\mu\nu}_{\rho} &= \Pi^{11}_{\rho} \epsilon^{\mu}_{1} \epsilon^{*\nu}_{1} + \Pi^{22}_{\rho} \epsilon^{\mu}_{2} \epsilon^{*\nu}_{2} + \Pi^{33}_{\rho} b^{\mu} b^{\nu}, \\ D^{\mu\nu} &= D^{11} \epsilon^{\mu}_{1} \epsilon^{*\nu}_{1} + D^{22} \epsilon^{\mu}_{2} \epsilon^{*\nu}_{2} + D^{33} b^{\mu} b^{\nu}, \end{split}$$

$$\epsilon_1^{\mu} = \frac{1}{\sqrt{2}}(0, 1, i, 0),$$

$$\epsilon_2^{\mu} = \frac{1}{\sqrt{2}}(0, 1, -i, 0),$$

$$b^{\mu} = (0, 0, 0, 1),$$

$$u^{\mu} = (1, 0, 0, 0).$$

$$D^{11}(q_0^2) = \frac{-2G_v}{1 - 2G_v \Pi_\rho^{11}(q_0^2)},$$
$$D^{22}(q_0^2) = \frac{-2G_v}{1 - 2G_v \Pi_\rho^{22}(q_0^2)},$$
$$D^{33}(q_0^2) = \frac{-2G_v}{1 - 2G_v \Pi_\rho^{33}(q_0^2)}.$$

The neutral ρ mass for the three spin projections are given by

$$\begin{split} &1 - 2G_{\nu}\Pi^{11}_{\rho}(q^2_0) = 0, (s_z = \pm 1), \\ &1 - 2G_{\nu}\Pi^{33}_{\rho}(q^2_0) = 0, (s_z = 0). \end{split}$$

 First Section
 Second Section
 Third Section
 Results
 Final discussion

 000
 0000000
 0000000
 0000000
 0000000
 0000000

NJL model: ρ^0 meson at eB = 0 :vacuum contribution

The regularized polarization tensor in the Pauli-Villars scheme is given by

$$\frac{1}{i}\Pi_{\rho}^{\mu\nu}(q^{2},0) = 4N_{c}N_{f}\sum_{i}c_{i}\int_{0}^{1}dx\int\frac{d^{4}k}{(2\pi)^{4}}\frac{-2q^{2}x(1-x)}{(k^{2}-\overline{M}_{i}^{2}+i\epsilon)^{2}}\left(-g^{\mu\nu}+\frac{q^{\mu}q^{\nu}}{q^{2}}\right),$$

$$\overline{M}_{i}^{2} = M^{2}-x(1-x)q_{0}^{2}+a_{i}\Lambda^{2}.$$
(20)

The integral in dk can be calculated analytically yielding the regularized expression for the polarization Π_{ρ}^{11} in the limit $q^{\mu} \rightarrow (q_0, 0)$

$$\Pi_{\rho}^{11}(q_0^2,0) = -\frac{N_c N_f q_0^2}{2\pi^2} \int_0^1 dx \; x(1-x) \left[\log\left(1 + \frac{2\Lambda^2}{\overline{M}^2}\right) - 2\log\left(1 + \frac{\Lambda^2}{\overline{M}^2}\right) \right]. \tag{21}$$

 First Section
 Second Section
 Third Section
 Results
 Final discussion

 000
 000000
 0000000
 000000
 00
 00

NJL model: ρ^{0} meson at $eB \neq 0$: $s_{z} = \pm 1$

For the neutral ho meson with $s_z=\pm$ 1, we have

$$\Pi_{\rho}^{11}(q_{0}^{2},\beta_{f}) = \frac{N_{c}\beta_{f}}{4\pi^{2}} \int_{0}^{1} dx \int_{0}^{\infty} dv \ e^{-v\frac{\bar{\mathcal{M}}_{+}^{2}}{\beta_{f}}} \left(\frac{1}{v} + \frac{\bar{\mathcal{M}}_{-}^{2}}{\beta_{f}}\right) \Phi(v,x)$$

$$\Phi(v,x) = \left\{\frac{1-\tanh\left[v(1-x)\right] \ \tanh\left(vx\right)}{\tanh\left[v(1-x)\right] + \tanh\left(vx\right)}\right\},$$

$$\bar{\mathcal{M}}_{\pm}^{2} = M^{2} \pm q_{4}^{2} \ x(1-x) = M^{2} \mp \ x(1-x) \ q_{0}^{2}.$$
(22)

For the regularization in the MFIR scheme we note that for $v=eta_f y\sim$ 0:

$$\Phi(\beta_f y, x) \approx \frac{1}{\beta_f y} + \left(\frac{1}{3} - 2x(1-x)\right)\beta_f y + \mathcal{O}((\beta_f y)^3), \ (\nu \ll 1).$$
(23)

Just the first term of the expansion contributes with divergence in $\Pi_{\rho}^{11}(q_0^2, \beta_f)$.

First Section	Second Section	Third Section	Results	Final discussion
000	000000	00000000	000000	00

NJL model: Meson Masses at $eB \neq 0$: $s_z = \pm 1$

We obtain the finite pure magnetic term of Π_{ρ}^{11} in the MFIR scheme as

$$\Pi_{\rho,f}^{11}(q_0^2,\beta_f) = \frac{N_c \beta_f}{4\pi^2} \int_0^1 dx \int_0^\infty d\nu \ e^{-\nu \frac{\bar{\mathcal{M}}_+^2}{\beta_f}} \left(\frac{1}{\nu} + \frac{\bar{\mathcal{M}}_-^2}{\beta_f}\right) \Phi(\nu,x)_R , \qquad (24)$$

where we define

$$\Phi_{R}(v,x) = \left\{ \frac{1 - \tanh[v(1-x)]\tanh(vx)}{\tanh[v(1-x)] + \tanh(vx)} - \frac{1}{v} \right\}.$$
(25)

The final regularized expression for Π_{ρ}^{11} is now given by

$$\Pi^{11}_{\rho,R}(q_0^2, eB) = \Pi^{11}_{\rho}(q_0^2, 0) + \sum_{f=u,d} \Pi^{11}_{\rho,f}(q_0^2, \beta_f),$$
(26)

In the last equation, the contribution of eB = 0 is

$$\Pi_{\rho}^{11}(q_0^2,\beta_f=0) = \lim_{\beta_f\to 0} \Pi_{\rho}^{11}(q_0^2,\beta_f) = \frac{N_c}{4\pi^2} \int_0^1 dx \int_0^\infty dy \ e^{-y\bar{\mathcal{M}}_+^2} \left(\frac{1}{y} + \bar{\mathcal{M}}_-^2\right) \frac{1}{y} \ . \tag{27}$$

First Section	Second Section	Third Section	Results	Final discussion
000	000000	0000000	000000	00

NJL model: Meson Masses at $eB \neq 0$: $s_z = 0$

We obtain the finite pure magnetic term of Π_{ρ}^{33} in the MFIR scheme as

$$\Pi_{\rho}^{33}(q_0^2,\beta_f) = \frac{N_c \beta_f^2}{4\pi^2} \int_0^1 dx \int_0^\infty dy \ e^{-y \bar{\mathcal{M}}_+^2} \left[\frac{\bar{\mathcal{M}}_-^2}{\beta_f} \coth(\beta_f y) + \sinh^{-2}(\beta_f y) \right] , \qquad (28)$$

where we identify

$$\cosh \nu \sim \frac{1}{\nu} + \frac{\nu}{3} + \mathcal{O}(\nu^3) ,$$

$$\sinh^{-2} \nu \sim \frac{1}{\nu^2} - \frac{1}{3} + \mathcal{O}(\nu^2)$$
 (29)

in the final regularized expression for Π_{ρ}^{33} is now given by.

$$\Pi^{33}_{\rho,R}(q_0^2, eB) = \Pi^{33}_{\rho}(q_0^2, 0) + \sum_{f=u,d} \Pi^{33}_{\rho,f}(q_0^2, \beta_f) , \qquad (30)$$

First Section	Second Section	Third Section	Results	Final discussion
000	000000	0000000	00000	00

Results

The parameter set is given by:

Λ	G	т	Gv	$\langle \overline{u}u \rangle^{1/3}$	f_{π}	m_{π}
761.22 MeV	3.576/Λ²	6.565 MeV	1.3 G	-250 MeV	107 MeV	135 MeV

Table: Parameters of the PV Regularization.

The set of Pauli-Villars regularizartion coefficients are

c ₀	<i>c</i> ₁	c ₂	ao	a ₁	az
1	-2	1	0	1	2

Table: Pauli-Villars coefficients.

Effective quark mass and ρ^0 meson: what did we see earlier?

From SU(2) NJL model with non-MFIR regularization:

Hao Liu, Lang Yu, Mei Huang, Phys.Rev.D 91 (2015) 1, 014017.

4.0 1.2 Up to LL=0 3.5 Up to LL=3 1.0 3.0 Up to LL=5 $S_z = \pm 1$ for ρ^0 $M_{\rho}^{2}[\text{GeV}^{2}]$ 0.8 Up to LL=8 2.5 M[GeV] \cdots S_z=0 for ρ^0 Jp to LL=1 \cdots S_z=0 for ρ^{\pm} 2.0 0.6 1.5 0.4 1.0 0.2 0.5 0.0 0.2 0.8 0.4 0.6 1.0 0.3 0.4 0.0 0.1 0.2 eB[GeV²] eB[GeV²]

FIG. 3 (color online). Quark constitute mass M as a function of eB with different Landau levels included in the numerical calculations.

FIG. 5 (color online). Masses of the charged vector meson ρ^{\pm} with $s_z = 0$ and neutral vector meson ρ_0 with $s_z = 0, \pm 1$ as functions of magnetic field *eB*.

0.5

0.6

0.7

 First Section
 Second Section
 Third Section
 Results
 Final discussion

 000
 0000000
 0000000
 0000000
 0000000

Effective quark mass and ρ^0 meson: Our results.

From SU(2) NJL model with

MFIR regularization: S. Avancini, R. Farias, **W. Tavares**, V. Timóteo, Nucl.Phys.B 981 (2022) 115862.

Figure: Left: Effective quark mass as function of the magnetic field. Right: ρ^0 meson as function of the magnetic field for different spin projections.

Obs: Unpolarized meson mass is evaluated with: $m_{\rho^0}^{Unp} = (m_{\rho_{s_z=0}^0} + m_{\rho_{s_z=+1}^0} + m_{\rho_{s_z=-1}^0})/3.$

First Section
 $\infty = 0$ Second Section
 $\infty = 0$ Third Section
 $\infty = 0$ Results
 $\infty = 0$ Final discussion
 $\infty = 0$ Effective quark mass and ρ^0 meson: Our results.

From SU(2) NJL model with

MFIR regularization:

S. Avancini, R. Farias, W. Tavares, V. Timóteo, Nucl. Phys. B 981 (2022) 115862.

Figure: ρ^0 meson as function of the magnetic field with $s_z = 0$ (left) and $s_z = \pm 1$ (right).

 First Section
 Second Section
 Third Section
 Results
 Final discussion

 000
 0000000
 0000000
 0000000
 0000000

Effective quark mass and ρ^0 meson: **Our results**.

From SU(2) NJL model with Hau MFIR regularization: S. Avancini,

Hao Liu, Lang Yu, Mei Huang, Phys.Rev.D 91 (2015) 1, 014017.

rization: S. Avancini, R. Farias, **W. Tavares**, V. Timóteo, Nucl.Phys.B 981 (2022) 115862.

Figure: ρ^0 meson mass squared as function of the magnetic field with $s_z = 0$ (left) and $s_z = \pm 1$ (right).

 First Section
 Second Section
 Third Section
 Results
 Final discussion

 000
 0000000
 0000000
 000000
 00

Effective quark mass and ρ^0 meson: **Our results**.

From SU(2) NJL model with

MFIR regularization:

 m_{ρ^0} [GeV]

Figure: Left: The ρ^0 meson mas as function of the magnetic field with $s_z = \pm 1$ for different values of G_{ν} . Right: Proportionality factor, $G_{\nu} = \alpha G$ as function of the magnetic field.

Final discussion

- At T = 0 and eB ≠ 0, there are several different regularization prescriptions, but the ones based in the MFIR can avoid nonphysical results (e.g., chiral condensate and meson masses) : Sidney S. Avancini et al., Phys. Rev. D 99, 116002 (2019);
- There is an alternative regularization method called vacuum magnetic regularization (VMR), based in the MFIR procedure, proper to study QCD phase phase diagram and its thermodynamics. See: S. Avancini et al. Phys. Rev. D 103 (2021) 5, 056009
- The MFIR procedure can clear the discussion in some cases: ρ[±] meson condensation ? see: J.P. Carlomagno, D. Gomez Dumm, M.F. Izzo Villafañe, S. Noguera, N.N. Scoccola, arXiv:2209.10679.
- There are several possibilities to explore: magnetized vector mesons at finite temperature and chemical potential, extensions beyond mean field approximation of NJL model and etc.

First Section

Second Section

Third Section

Results

Final discussion

Thanks for your attention!

