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We elucidate the mass dependence on chirality production under parity breaking electromagnetic

fields, which resolves some controversies. For strong magnetic field the pair production from the

Schwinger mechanism increments the chirality. The pair production rate is exponentially suppressed

with mass according to the Schwinger formula, while the mass dependence of chirality production

appears in a pesudo-scalar condensate in the axial Ward identity. We point out that in standard

quantum field theoretical calculus the axial anomaly is canceled by the pseudo-scalar condensate for

any mass. In a dynamical formulation with in- and out-states, we show that the axial Ward identity

leads to the chirality production rate consistent with the Schwinger formula. We illuminate that such

a formulation with in- and out-states clarifies the chiral magnetic e↵ect in and out of equilibrium

correctly, and we discuss further applications to dynamical condensates and fluctuations.

Introduction: Chirality is a topical keyword for re-
search on anomalous phenomena in physics and related
subjects. In the high-energy physics context in which the
fermion mass is often neglected, the chirality and the he-
licity are identifiable, which has also motivated a modern
redefinition of chirality in chemistry [1].

The most notable feature of chirality in relativis-
tic fermionic systems is the realization of the quantum
anomaly. Since relativistic fermionic dispersion relations
are realized in not only 2D but 3D materials, as in the
Weyl and Dirac semimetals [2–5], it is of paramount im-
portance to probe the chiral anomaly in laboratory ex-
periments, not only in quantum chromodynamics (QCD)
but also in optical environments. One proposed signa-
ture for the chiral anomaly is the negative magnetoresis-
tance [6], which signals for the chiral anomaly through
the chiral magnetic e↵ect [7]. For the first experimental
detection as well as simplified theoretical arguments, see
Ref. [8], and for the resummed field-theoretical calcula-
tion of the negative magnetoresistance, see Ref. [9].

In all ideas to access the chiral anomaly, the gener-
ation of finite chirality imbalance is indispensable. The
simplest optical setup is, as discussed in Ref. [10], parallel
electric and magnetic fields. Then, the chirality produc-
tion rate is related to the Schwinger mechanism as used
in Refs. [10, 11], and at the same time it is dictated by the
axial Ward identity as argued in Ref. [12]. Such a simple
electromagnetic configuration is also useful to test ideas
in the real-time numerical simulations [13, 14].

Even though the parallel electromagnetic fields are
such simple, there are still some controversies especially
on di↵erent manifestations of the chiral anomaly in and
out of equilibrium. In this Letter we clarify these con-
troversies by addressing the following two closely related
problems, namely:

• The e↵ect of fermion mass m; it is quite often
assumed that the mass dependent term can be
dropped from the axial Ward identity if m = 0,

but this is not always justified.

• Static and dynamical observables; the m depen-
dence is totally di↵erent depending on how to take
the expectation value in the presence of electric
fields.

Answering these questions will naturally lead us to the
correct picture of chiral dynamics. Moreover, we will
notice that our present considerations open a novel class
of future theory problems.

An enigma: We choose constant and parallel elec-
tric E and magnetic B fields in the 3-axis direction.
Then, the celebrated formula for the Schwinger mech-
anism reads,
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for the pair production rate (for a comprehensive review,
see Ref. [15]). In a particular limit of strong B (i.e.,

p
eB

being the largest mass scale in a system), the spin direc-
tion is completely aligned along B, so that particles have
definite chirality in such a reduced (1+1)-dimensional
system. The right-handed (R) particles increase and the
left-handed (L) particles decrease creating L antiparticles
under E, as sketched in Fig. 1.
A pair of R and L̄ production thus changes the chirality

by two, leading to a relation as used in Ref. [10],
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where n5 is the chiral charge density, that is an expecta-
tion value of j05 .
The right-hand side, @tn5, is dictated by the ax-

ial Ward identity, i.e., @µj
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FIG. 2: Lorentz transformation from a frame K′ in which the
electric field (E), magnetic field (B), and the current density
(j) are parallel to each other, to a frame K in which B and
j have a component perpendicular to E.

E′

z sinh η ey + B′

z cosh η ez. Since j′µ points in the z-
direction, the direction of j′µ will not change after the
boost in the x-direction. However because the boost im-
plies that t′ = t′′ cosh η + x′′ sinh η, the current density
rate is modified to ∂t′′j

′′ = 2qΓsgn(qE′

z) cosh η ez. The
current density has now also obtained a gradient in the
x-direction (∂x′′j′′ != 0). This and other inhomogeneities
in K ′′ arise because the uniform switch-on of E′ at t′i
implies an inhomogeneous switch-on of part of E′′ and
B′′ at t′′ = t′i/ cosh η − x′′ tanh η.
To arrive in frame K we have to apply a rotation

with angle θ around the x-axis such that the electric
field points in the z-direction. The angle θ follows from
Fig. 2 and satisfies sin θ = −E′′

y /Ez = B′

z sinh η/Ez and
cos θ = E′′

z /Ez = E′

z cosh η/Ez. The current density rate
becomes after the rotation
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We can eliminate η by expressing the above in terms
of the fields in K. The magnetic field is By =
E′

z sinh η cos θ+B′

z cosh η sin θ, implying that sinh(2η) =
2ByEz/(E′2
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Now we can put all our results together. After sum-
ming over colors the z-component of the current vanishes
(∂tjz = 0), implying that the only remaining compo-
nent lies in the y-direction. Using that q sgn(qE′

z)B
′

z =
|q|sgn(EzBz)b we obtain after summing over colors,
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where a and b have dependence on qEz = ± 1
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gEz and

qBz = ± 1

2
gBz. The rate of chirality production in K

becomes ∂tn5 = cosh2 η ∂t′n′

5. Inserting Eq. (2) yields
for the rate of current over chirality density generation
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FIG. 3: Rate of current (jy) over chirality density (n5) gener-
ation in a color flux tube, as a function of the perpendicular
magnetic field By . The ratio ξ = |Bz/Ez|. The curves are
valid for any value of the quark mass.

Discussion. Equation (4) clearly shows that an exter-
nal magnetic field induces a current perpendicular to the
color flux tube. To summarize our findings we display in
Fig. 3 for three different values of ξ = |Bz/Ez| the rate of
generation of this current normalized to Eq. (5), the rate
of chirality production. We will now analyze our results
and show that ∂tjy indeed behaves as the chiral magnetic
effect predicts.
First of all let us take either Ez = 0 or Bz = 0, which

implies that no chirality is generated. If Ez = 0 then
a = 0, for Bz = 0 either a = 0 or b = 0. In all these
cases ∂tjy indeed vanishes as follows from Eq. (4). This
is obvious when a = 0 since in that case no particles are
produced as follows from Eq. (1). Also as expected ∂tjy
vanishes if there is no perpendicular magnetic field which
can be seen from Fig. 3 as well.
Secondly, in the limit of qBy % gEz, gBz, we have

b & |By| so that from Eq. (5) it follows that ∂tjy =
|q|sgn(By)∂tn5. This indicates that for large magnetic
fields the current rate is indeed exactly given by the chi-
rality rate in agreement with the prediction outlined in
the introduction. Therefore the curves in Fig. 3 approach
unity for when both qBy/gEz and qBy/(gEzξ) are large.
A finite mass reduces the chirality and indeed also ∂tjy

as can be seen from Eq. (4). In fact Eq. (5) shows for any
value of the mass the current is proportional to the chiral-
ity. Hence the curves displayed in Fig. 3 are independent
of mass. Moreover let us point out that the direction
of the current is independent of the sign of the quark
charge, but does depend on the direction of the magnetic
field and the sign of the chirality, i.e. sgn(EzBz). For qBy

small compared to both gEz and gBz, we have a & | g
2qEz|

and b & | g
2qBz| so that
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FIG. 1: Schematics of the collision geometry and fields.

so-called θ angle vanishes and there is no global violation
of parity) the probability of generating either positive Q
or negative Q is equal. Using the observable proposed in
[14] the STAR collaboration has analyzed charge corre-
lations [15]. The results are qualitatively in agreement
with the predictions of the chiral magnetic effect; the
search for alternative explanations and additional mani-
festations of local parity violation is underway [16].

Several quantitative theoretical studies of the chiral
magnetic effect have appeared in the literature [9–12].
Most of the analytic studies are based on introducing a
chiral asymmetry by hand, after which the equilibrium
response to a magnetic field is studied [9, 11] (see also
[13]). In this Letter we will for the first time investigate
a situation in which the chirality is generated dynami-
cally in real-time in the presence of a magnetic field. For
this we will take the simplest Yang-Mills gauge field con-
figuration carrying topological charge, that is one which
describes a color flux tube having constant Abelian field
strength, i.e. Gµν

a = Gµνna with nana = 1 and Gµν con-
stant and homogeneous. Furthermore, we will take only
the z-components of the color electric (Ez = G0z) and
color magnetic (Bz = − 1

2
εzijGij) field nonzero. Perpen-

dicular to this field configuration we will apply an electro-
magnetic field By pointing in the y direction (see Fig. 1).
Note that hereafter we write B to denote a color mag-
netic field and B for an electromagnetic one. Such color
flux tubes, which carry topological charge and are homo-
geneous over a spatial scale ∼ Q−1

s , naturally arise in the
glasma [17], the dense gluonic state just after the colli-
sion, where Ez ∼ Bz ∼ Q2

s/g. The induced current itself
can generate electromagnetic and color fields, which can
alter the dynamics. We will ignore this back-reaction,
which can be justified as long as the induced current is
small compared to the currents that create the external
color and magnetic fields. Furthermore we will also ig-
nore the production of gluons in the color flux-tube.

Calculation. Using a color rotation we can choose
only the third component of na nonvanishing. Since the
generator t3 = diag(1

2
,− 1

2
, 0) of the SU(3) Lie algebra

is diagonal, the different color components decouple. As
a result for each quark flavor separately the problem is
equivalent to a quantum electrodynamics (QED) calcu-
lation, in which the magnetic field B = (0, By, Bz) with
qBz = ± 1

2
gBz and the electric field E = (0, 0, Ez) with

qEz = ± 1

2
gEz. Here ± labels the different color compo-

nents, and q denotes the electric charge of a particular
quark. We will define K to be the coordinate frame in
which the electromagnetic field has this form.
We hence need to compute the induced electromag-

netic current density jµ = q〈ψ̄γµψ〉 in K. To do this we
will start in a different coordinate system K ′ in which
E = (0, 0, E′

z) and B = (0, 0, B′

z). In this frame it is
rather straightforward to do calculations. Then by ap-
plying a Lorentz transformation we can obtain the results
in K as is illustrated in Fig. 2. We will switch on the elec-
tric field in K ′ uniformly at a time t′i in the distant past,
i.e. E′

z(t
′) = E′

zθ(t
′ − t′i). In this way the situation in K ′

is completely homogeneous.
In K ′ particle-antiparticle pairs are produced by the

Schwinger process [4]. The rate per unit volume of this
process equals [18], (see also [19] and [20])
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The production of pairs in K ′ gives rise to an homoge-
neous electromagnetic current density j′µ. Because of
symmetry reasons the only nonvanishing component of
this current lies in the z-direction. Furthermore, each
time a pair is created the current will grow. Eventu-
ally when both components of the pair are accelerated
by the electric field to (nearly) the speed of light, the
net effect of the creation of one single pair will be that
the total current has increased by two units of q. There-
fore, sufficiently long after the switch-on, the change in
current density in the z-direction becomes 2q times the
rate per unit volume of pair-production, to be precise
∂t′j

′ = 2qΓsgn(qE′

z)ez. This equation has been verified
explicitly numerically in [21]. We have also found it to
be correct analytically, even for m %= 0 [22].
Before we compute the induced currents in K let us

point out that the rate Γ is consistent with the anomaly
equation. In the limit of a very large magnetic field
(B′

z & E′

z) all produced pairs will reside in the lowest
Landau level causing maximal chiral asymmetry. Since
each pair then produces two units of N5, the pair produc-
tion rate should then be equal to half the chirality rate.
Taking the limit B′

z & E′

z in Eq. (1) gives
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which is indeed in agreement with the anomaly equation
(see Introduction) in the limit of m = 0, since the chi-
ral current j5 vanishes because of homogeneity. It turns
out that Eq. (2) also exactly gives the chirality rate for
nonzero m and any E′

z and B′

z [22].
As is indicated in Fig. 2 we can go from frame K ′

to K ′′ by applying a boost with rapidity η in the x-
direction. In the new coordinate system K ′′ obtained
by this boost, the electric and magnetic field respec-
tively read E′′ = −B′

z sinh η ey +E′

z cosh η ez and B′′ =

3

z

y

z
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FIG. 2: Lorentz transformation from a frame K′ in which the
electric field (E), magnetic field (B), and the current density
(j) are parallel to each other, to a frame K in which B and
j have a component perpendicular to E.

E′

z sinh η ey + B′

z cosh η ez. Since j′µ points in the z-
direction, the direction of j′µ will not change after the
boost in the x-direction. However because the boost im-
plies that t′ = t′′ cosh η + x′′ sinh η, the current density
rate is modified to ∂t′′j

′′ = 2qΓsgn(qE′

z) cosh η ez. The
current density has now also obtained a gradient in the
x-direction (∂x′′j′′ != 0). This and other inhomogeneities
in K ′′ arise because the uniform switch-on of E′ at t′i
implies an inhomogeneous switch-on of part of E′′ and
B′′ at t′′ = t′i/ cosh η − x′′ tanh η.
To arrive in frame K we have to apply a rotation

with angle θ around the x-axis such that the electric
field points in the z-direction. The angle θ follows from
Fig. 2 and satisfies sin θ = −E′′

y /Ez = B′

z sinh η/Ez and
cos θ = E′′

z /Ez = E′

z cosh η/Ez. The current density rate
becomes after the rotation

∂tj = qΓ

(

sinh(2η)
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z

Ez
ey + cosh2 η
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)

sgn(qE′
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We can eliminate η by expressing the above in terms
of the fields in K. The magnetic field is By =
E′

z sinh η cos θ+B′

z cosh η sin θ, implying that sinh(2η) =
2ByEz/(E′2
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z ). Because both F = 1
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z | =
(
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F2 +H2−F)1/2, and b ≡ |B′

z| = (
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Now we can put all our results together. After sum-
ming over colors the z-component of the current vanishes
(∂tjz = 0), implying that the only remaining compo-
nent lies in the y-direction. Using that q sgn(qE′

z)B
′

z =
|q|sgn(EzBz)b we obtain after summing over colors,

∂tjy =
q2|q|By
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where a and b have dependence on qEz = ± 1

2
gEz and

qBz = ± 1
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gBz. The rate of chirality production in K

becomes ∂tn5 = cosh2 η ∂t′n′

5. Inserting Eq. (2) yields
for the rate of current over chirality density generation
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FIG. 3: Rate of current (jy) over chirality density (n5) gener-
ation in a color flux tube, as a function of the perpendicular
magnetic field By . The ratio ξ = |Bz/Ez|. The curves are
valid for any value of the quark mass.

Discussion. Equation (4) clearly shows that an exter-
nal magnetic field induces a current perpendicular to the
color flux tube. To summarize our findings we display in
Fig. 3 for three different values of ξ = |Bz/Ez| the rate of
generation of this current normalized to Eq. (5), the rate
of chirality production. We will now analyze our results
and show that ∂tjy indeed behaves as the chiral magnetic
effect predicts.
First of all let us take either Ez = 0 or Bz = 0, which

implies that no chirality is generated. If Ez = 0 then
a = 0, for Bz = 0 either a = 0 or b = 0. In all these
cases ∂tjy indeed vanishes as follows from Eq. (4). This
is obvious when a = 0 since in that case no particles are
produced as follows from Eq. (1). Also as expected ∂tjy
vanishes if there is no perpendicular magnetic field which
can be seen from Fig. 3 as well.
Secondly, in the limit of qBy % gEz, gBz, we have

b & |By| so that from Eq. (5) it follows that ∂tjy =
|q|sgn(By)∂tn5. This indicates that for large magnetic
fields the current rate is indeed exactly given by the chi-
rality rate in agreement with the prediction outlined in
the introduction. Therefore the curves in Fig. 3 approach
unity for when both qBy/gEz and qBy/(gEzξ) are large.
A finite mass reduces the chirality and indeed also ∂tjy

as can be seen from Eq. (4). In fact Eq. (5) shows for any
value of the mass the current is proportional to the chiral-
ity. Hence the curves displayed in Fig. 3 are independent
of mass. Moreover let us point out that the direction
of the current is independent of the sign of the quark
charge, but does depend on the direction of the magnetic
field and the sign of the chirality, i.e. sgn(EzBz). For qBy

small compared to both gEz and gBz, we have a & | g
2qEz|

and b & | g
2qBz| so that

∂tjy &
q2By

2π2

gEzB2
z

B2
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z
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π

)

exp

(

−
2m2π
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)

. (6)

Combination of the Lorentz boost + rotation of the axes

(In K’ frame)

(In K’’ frame)
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Schwinger formula for particle production 
vs. the axial Ward identity for chiral anomaly
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Axial Ward identity and the Schwinger mechanism
— Applications to the dynamical chiral magnetic e↵ect and condensates —

Patrick Copinger, Kenji Fukushima, and Shi Pu
Department of Physics, The University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

We elucidate the mass dependence on chirality production under parity breaking electromagnetic

fields, which resolves some controversies. For strong magnetic field the pair production from the

Schwinger mechanism increments the chirality. The pair production rate is exponentially suppressed

with mass according to the Schwinger formula, while the mass dependence of chirality production

appears in a pesudo-scalar condensate in the axial Ward identity. We point out that in standard

quantum field theoretical calculus the axial anomaly is canceled by the pseudo-scalar condensate for

any mass. In a dynamical formulation with in- and out-states, we show that the axial Ward identity

leads to the chirality production rate consistent with the Schwinger formula. We illuminate that such

a formulation with in- and out-states clarifies the chiral magnetic e↵ect in and out of equilibrium

correctly, and we discuss further applications to dynamical condensates and fluctuations.

Introduction: Chirality is a topical keyword for re-
search on anomalous phenomena in physics and related
subjects. In the high-energy physics context in which the
fermion mass is often neglected, the chirality and the he-
licity are identifiable, which has also motivated a modern
redefinition of chirality in chemistry [1].

The most notable feature of chirality in relativis-
tic fermionic systems is the realization of the quantum
anomaly. Since relativistic fermionic dispersion relations
are realized in not only 2D but 3D materials, as in the
Weyl and Dirac semimetals [2–5], it is of paramount im-
portance to probe the chiral anomaly in laboratory ex-
periments, not only in quantum chromodynamics (QCD)
but also in optical environments. One proposed signa-
ture for the chiral anomaly is the negative magnetoresis-
tance [6], which signals for the chiral anomaly through
the chiral magnetic e↵ect [7]. For the first experimental
detection as well as simplified theoretical arguments, see
Ref. [8], and for the resummed field-theoretical calcula-
tion of the negative magnetoresistance, see Ref. [9].

In all ideas to access the chiral anomaly, the gener-
ation of finite chirality imbalance is indispensable. The
simplest optical setup is, as discussed in Ref. [10], parallel
electric and magnetic fields. Then, the chirality produc-
tion rate is related to the Schwinger mechanism as used
in Refs. [10, 11], and at the same time it is dictated by the
axial Ward identity as argued in Ref. [12]. Such a simple
electromagnetic configuration is also useful to test ideas
in the real-time numerical simulations [13, 14].

Even though the parallel electromagnetic fields are
such simple, there are still some controversies especially
on di↵erent manifestations of the chiral anomaly in and
out of equilibrium. In this Letter we clarify these con-
troversies by addressing the following two closely related
problems, namely:

• The e↵ect of fermion mass m; it is quite often
assumed that the mass dependent term can be
dropped from the axial Ward identity if m = 0,

but this is not always justified.

• Static and dynamical observables; the m depen-
dence is totally di↵erent depending on how to take
the expectation value in the presence of electric
fields.

Answering these questions will naturally lead us to the
correct picture of chiral dynamics. Moreover, we will
notice that our present considerations open a novel class
of future theory problems.

An enigma: We choose constant and parallel elec-
tric E and magnetic B fields in the 3-axis direction.
Then, the celebrated formula for the Schwinger mech-
anism reads,

! =
e
2
EB

4⇡2
coth

✓
B

E
⇡

◆
exp

✓
�
⇡m

2

eE

◆
(1)

for the pair production rate (for a comprehensive review,
see Ref. [15]). In a particular limit of strong B (i.e.,

p
eB

being the largest mass scale in a system), the spin direc-
tion is completely aligned along B, so that particles have
definite chirality in such a reduced (1+1)-dimensional
system. The right-handed (R) particles increase and the
left-handed (L) particles decrease creating L antiparticles
under E, as sketched in Fig. 1.
A pair of R and L̄ production thus changes the chirality

by two, leading to a relation as used in Ref. [10],

!
B�E
�!

e
2
EB

4⇡2
exp

✓
�
⇡m

2

eE

◆
=

1

2
@tn5 , (2)

where n5 is the chiral charge density, that is an expecta-
tion value of j05 .
The right-hand side, @tn5, is dictated by the ax-

ial Ward identity, i.e., @µj
µ
5 = �

e2

16⇡2 ✏
µ⌫↵�

Fµ⌫F↵� �

2m ̄i�5 on the operator level, where ✏µ⌫↵�Fµ⌫F↵� =
�8EB for parallel E and B in the present setup. After

Mass dependence seemingly look very different?

Parity-odd condensate induced by E an B
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How to reconcile two correct formulas?

@tn5 =
e2EB

2⇡2
+ 2mh ̄i�5 i

<latexit sha1_base64="Afrt9hck11/IHtnclpp/Mq/J1XY="></latexit>

hout| ̄i�5 |ini = �e2EB

4⇡2m

<latexit sha1_base64="ZzuE2Gf/jSrmO30oUCcGxn9UY24="></latexit>

hin| ̄i�5 |ini

= �e2EB

4⇡2m

�
1� e�⇡m2/eE

�

<latexit sha1_base64="iTtRd2z1tsTo40D4fO8IGgac8sM="></latexit>

Copinger-Fukushima-Pu (2018)

No chirality 
production 
in equilibrium

Schwinger formula 
reproduced!
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B

E
jOhm = �E

jCME = (E ·B)B / B2

j = (�Ohm + �CME)E �CME / B2

Son-Spivak (2012)

Common setup for theory and experiment

(relaxation time approx. 
 is assumed to make 
 the current finite)

Configuration of “external” fields
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In theoretical calculations constant fields 
are always assumed for simplicity. 

In the real world constant fields cannot 
be found at all! 
Not only EM fields but QCD matter may 
be also very inhomogeneous. 

Frequently asked question but…
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Some Nontrivial Examples: 
Inhomogeneity in QCD
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Chemical Potential  μNuclear Superfluid B

High-density QCD matter (Quarkyonic Matter) 
→ Inhomogeneous Skyrme Crystal (in large Nc).
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FIG. 2. Pressure distribution at ✓ = ⇡/2 for various B.

Nucleon as a quantized Skyrmion: To distinguish
protons from neutrons, we seek isospin eigenstates by
varying as ⌃(t) = ei↵(t)Q⌃ e�i↵(t)Q. The Lagrangian
then reads, L = 1

2�↵̇
2 � �↵̇ � M , with � =R

d3x sin2 f sin2 g[f2
⇡ + 1

a2 (|rf |2 + |rg|2 sin2 f)], � =
qB
4⇡2

R
d3x sin ✓ sin2 f sin g(@✓f@rg � @rf@✓g), and M

being the classical mass. Introducing � ⌘ �S/�↵̇ =
↵̇�� �, we write down the Hamiltonian:

H = �↵̇� L = M +
1

2�

�
� + �

�2
. (6)

The 2⇡-periodicity of ↵(t) with the Z2 ✓-angle assigns
a half-odd-integer spectrum to �. Invoking the pseudo-
axial symmetry, Noether’s theorem gives J3 = �I3 = �.
Confirming �(B) � 0 numerically, we conclude that the
ground state is a spin-down proton |p#i, and the lowest
excitation is a spin-up neutron |n"i. We also verify that
the nucleon masses, hp#|H |p#i and hn"|H |n"i, vary
with B analogously to M(B). For weak B our result is
consistent with experimental facts that gp > 0, gn < 0,
and |gp| > |gn|. Furthermore, the mass split formula,
mn �mp = �/�, deduced from Eq. (6), is valid even for
strong B.

We note that M and � originate from S0+SSky, while
� results from SB solely. Hence, the mass split is an
e↵ect of SB which is muted classically. An illuminating
explanation hinges on T ei⇡I2 : ⌃(t) ! ⌃(�t) preserved
by S0 + SSky but violated by SB. Since T ei⇡I2 reverses
I3 and J3 simultaneously, if we did not gauge the u(1)B
sector of Q via SB, protons and neutrons would remain
degenerated.

Domain wall formation from a Skyrme Crystal: Now
we address the ⇡

0 domain wall formation. As argued in
[18] dense nuclear matter under strong B may exhibit the
CSL, which is approximately viewed as stacked layers of
the ⇡0 domain walls as illustrated in Fig. 3. Other phase
candidates [16, 17] also exhibit a multilayer structure on
account of the anisotropy induced by B. Hereafter we
focus on a single layer for simplicity.

¼0B

FIG. 3. Illustration of the CSL as approximated by the 2D
Skyrme Crystal layers.

We follow the prescription in [36] to actualize a
static 2D Skyrme Crystal on a square lattice with
pseudo-periodicity that blends crystalline translations
with ei⇡I3 . In the presence of the vector potential,
crystalline translation should incorporate appropriate
gauge transformations, i.e.,

⌧
3 ⌃(x, y, z) ⌧3 = ei�ByQ ⌃(x+2�, y, z) e�i�ByQ

,

⌧
3 ⌃(x, y, z) ⌧3 = e�i�BxQ ⌃(x, y+2�, z) ei�BxQ

,
(7)

where we introduced the lattice constant 2�. We set one
baryon in each unit cell. By imposing pseudo-reflection
symmetry ⌧

1⌃(x)⌧1 =⌃†(�x), ⌧2⌃(y)⌧2 =⌃†(�y), and
⌧
3⌃(z)⌧3 = ⌃†(�z), we can focus on a partial cell with

0  x  �, 0  y  �, and z � 0. The solution
in this octant cell is subject to the following boundary
conditions. Our vacuum convention is ⇧4(x, y,+1) = 1.
The pseudo-reflection requires ⇧1(0, y, z) = ⇧2(x, 0, z) =
⇧3(x, y, 0) = 0. The joint of the pseudo-reflection and
the pseudo-translation (7) dictates

⇧1(�, y, z) sin(
1
2�By)�⇧2(�, y, z) cos(

1
2�By) = 0 ,

⇧1(x,�, z) cos(
1
2�Bx)�⇧2(x,�, z) sin(

1
2�Bx) = 0 .

(8)

The octant cell should contain 1
8 baryon. We recast the

baryon number, NB ⌘
R
d3x j0B = 1

4⇡2

R �
d' � A

�
^�

⇧4d⇧3 � ⇧3d⇧4

�
, as a surface integral. Foregoing

conditions force it to vanish except on two edges. One
edge at x = y = 0 contributes N0 = 1

8n0, while another
at x = y = � yields N� = 1

8n�(
2
⇡�

2
B�1), where n0,� 2 Z

denotes the ⇧3,4 winding number from z = +1 to �1
along the according edge.
There are two distinct classes of solutions. The first

class is referred to as the Normal Crystal ; NB = N0 +
N� = 1

8 for unconstrained � and B demands n0 = 1 and
n� = 0. This completes our list of boundary conditions
with ⇧4(0, 0, 0) = �1 and ⇧4(�,�, 0) = 1, which signify
a regional ⇡

0 domain wall configuration. Prescribing
boundary conditions above, we formulate a Dirichlet
problem in the octant cell by minimizing the energy
functional M(⇧1,2,3,4)/8 with a Lagrange multiplier that

constrains
P4

i=1 ⇧
2
i = 1, where

M

8
=

Z
d3x

✓
f
2
⇡

2

��D⇧i

��2 + 1

4a2
��D⇧i ⇥D⇧j

��2
◆
, (9)

Single 
Layer

One Skyrmion in a “periodic” box 
can realize a Skyrme Crystal. 
(Klebanov 1985, Goldhaber-Manton 1987)

The boundary condition must be consistent with 
the discrete symmetries and the baryon number (winding).

Only two possibilities: Normal Crystal & Anomalous Crystal

Chiral Soliton Lattice by Brauner-Yamamoto: 1609.05213
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Distinct homotopy connected?

⇡3(SU(2)) = Z
<latexit sha1_base64="Ho5ao3MaSibINR7uuwuZpqDFnDg="></latexit>

⇡1(U(1)) = Z
<latexit sha1_base64="vs9KMcClUlSVib9GQehHFE7fCdE="></latexit>

B = 0
<latexit sha1_base64="nDFnBXQllnnLap7CvpFw/oKjCkQ="></latexit>

B ! 1
<latexit sha1_base64="lrJct68koC52Dzq4ofYYk5ZB1Ko="></latexit>

Without B the baryon number is given by

⇡3(SU(2)) = Z
<latexit sha1_base64="Ho5ao3MaSibINR7uuwuZpqDFnDg="></latexit>

Phase Transition

S1
<latexit sha1_base64="XalQXHlFeTNhdzFAGRmCuhQd2vI="></latexit>
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Chen-Fukushima-Qiu (2021)
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FIG. 4. Crystalline baryon mass M(⇤) for various B. The
square dots denote the location of ⇤c.

find that the specific binding energy, M(1) � M(⇤0),
grows monotonically from 6.40f⇡a�1 at B = 0 up to
a saturated value ⇠ 30f⇡a�1 with increasing B. Such
magnetically facilitated crystallization confirms our ⇡0-
dipole condensation scenario.

Second, we call the solution with 2
⇡�

2B = 1 or ⇤B =
2⇡ the Anomalous Crystal. In this case N� = 0 holds
for any n� and, we find that a transversely uniform ⇡0

domain wall with ⇧4(x, y, 0) = �1 solves the Anomalous
Crystal. Thus, our Anomalous Crystal turns out to be a
synonym of the conventional global ⇡0 domain wall [20].

Interestingly, two di↵erent boundary conditions,
⇧4(�,�, 0) = +1 and �1, signify two distinct windings,
⇡3(SU(2)) and ⇡1(U(1), respectively. In fact, the
Normal Crystal with inhomogeneous ⇧4 can sustain the
⇡3(SU(2)) linkage as shown in Fig. 3 (Right), that is a
crystalline version of winding in Fig. 1 (Left), but the
Anomalous Crystal cannot.

Thermodynamics and phase transition: Figure 4
indicates an optimal ⇤, but in thermodynamics we
are rather interested in a problem to locate the phase
boundary, ⇤c, where one topological phase overwhelms
the other. We can simply identify the crystalline baryon
mass M as the free energy per baryon, which is denoted
by E here to emphasize the thermodynamic nature of our
problem. For an N -baryon Normal Crystal, the total
Helmholtz free energy F (T,B,N,N⇤) ⌘ NE(T,B,⇤)
yields canonical quantities such as the intralayer pressure
� ⌘ �(@F/@(N⇤))T,B,N = �(@E/@⇤)T,B and the
chemical potential µ ⌘ (@F/@N)T,B,N⇤ = E + �⇤.
In contrast, for an N⇤-baryon Anomalous Crystal, the
constraint by ⇤ = ⇤⇤ = 2⇡/B eliminates one degree of
freedom, F ⇤(T,B,N⇤) ⌘ N⇤E⇤(T,B). We use “⇤” for
quantities of the Anomalous Crystal. The Anomalous
Crystal is incompressible at a fixed B and neither �⇤ nor
µ⇤ is defined.

At fixed T (where T = 0 in the present problem) and
B, let us consider a mixed system of two crystals and

FIG. 5. ⇤c and ⇤⇤ = 2⇡/B as functions of B. In the top left
region above 1/⇤c the Normal Crystal is favored, where a 2D
density profile is overlaid. The Anomalous Crystal appears
only on the bottom right solid line of 1/⇤⇤.

study the phase equilibration by minimizing the total
Helmholtz free energy, provided the conservation of the
total baryon number and volume (area), i.e.,

�(F + F ⇤)
��
T,B,N+N⇤,N⇤+N⇤⇤⇤ = 0 . (10)

Specifically, we have �F = µ�N � ��(N⇤) and �F ⇤ =
E⇤�N⇤. With explicit expressions of � and µ, the
equilibrium criterion is

E � E⇤ = (⇤� ⇤⇤) E 0 , (11)

where E 0 is a shorthand for (@E/@⇤)T,B . Let us define ⇤c

as the critical ⇤ that satisfies Eq. (11). To evaluate ⇤c

concretely, we note that E⇤ = 16⇡f2
⇡m⇡/B = 0 [20] in the

chiral limit and E(⇤) = M(⇤) was presented in Fig. 4.
The shape of M(⇤)-curves, with a repulsive core at small
⇤, ensures the existence of ⇤c for any B > 0. In Fig. 4,
we pinpoint ⇤c by a square dot on each M(⇤)-curve.

In Fig. 5 we plot ⇤c(B) and ⇤⇤ = 2⇡/B, that serves
as a phase diagram on the plane of the magnetic field vs.
the baryon density. The Normal Crystal manifests itself
as a dense high-pressure phase for ⇤�1 � ⇤�1

c . For a
better intuitive picture we overlay a 2D baryon density
profile (at a fixed B and ⇤) in the Normal Crystal region
in Fig. 5. The Anomalous Crystal appears only on the
line of ⇤⇤. These two topological phases characterized
by ⇡3(SU(2)) and ⇡1(U(1)) are separated by a first-order
phase transition. We have numerically verified that the
specific latent heat, E(⇤c) � E⇤, remains finite with a
minimum 61.8f⇡a�1 at B = 0.69f2

⇡a
2 (the green dot

in Fig. 4). We will report more details in a separate
publication [36].

Summary and outlooks: We investigated an isolated
baryon under B using the Skyrme model, revealing an
elliptic deformation. We formulated two 2D Skyrme
Crystals: a Normal Crystal realizes a regional ⇡0

domain wall, while an Anomalous Crystal exhibits a

 domain wallπ0

Inhomogeneous 
nuclear matter

Area inverse 
of a Skyrmion
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Single Skyrmion (baryon) under strong B is as interesting!
3

FIG. 2. Pressure distribution at ✓ = ⇡/2 for various B.

Nucleon as a quantized Skyrmion: To distinguish
protons from neutrons, we seek isospin eigenstates by
varying as ⌃(t) = ei↵(t)Q⌃ e�i↵(t)Q. The Lagrangian
then reads, L = 1

2�↵̇
2 � �↵̇ � M , with � =R

d3x sin2 f sin2 g[f2
⇡ + 1

a2 (|rf |2 + |rg|2 sin2 f)], � =
qB
4⇡2

R
d3x sin ✓ sin2 f sin g(@✓f@rg � @rf@✓g), and M

being the classical mass. Introducing � ⌘ �S/�↵̇ =
↵̇�� �, we write down the Hamiltonian:

H = �↵̇� L = M +
1

2�

�
� + �

�2
. (6)

The 2⇡-periodicity of ↵(t) with the Z2 ✓-angle assigns
a half-odd-integer spectrum to �. Invoking the pseudo-
axial symmetry, Noether’s theorem gives J3 = �I3 = �.
Confirming �(B) � 0 numerically, we conclude that the
ground state is a spin-down proton |p#i, and the lowest
excitation is a spin-up neutron |n"i. We also verify that
the nucleon masses, hp#|H |p#i and hn"|H |n"i, vary
with B analogously to M(B). For weak B our result is
consistent with experimental facts that gp > 0, gn < 0,
and |gp| > |gn|. Furthermore, the mass split formula,
mn �mp = �/�, deduced from Eq. (6), is valid even for
strong B.

We note that M and � originate from S0+SSky, while
� results from SB solely. Hence, the mass split is an
e↵ect of SB which is muted classically. An illuminating
explanation hinges on T ei⇡I2 : ⌃(t) ! ⌃(�t) preserved
by S0 + SSky but violated by SB. Since T ei⇡I2 reverses
I3 and J3 simultaneously, if we did not gauge the u(1)B
sector of Q via SB, protons and neutrons would remain
degenerated.

Domain wall formation from a Skyrme Crystal: Now
we address the ⇡

0 domain wall formation. As argued in
[18] dense nuclear matter under strong B may exhibit the
CSL, which is approximately viewed as stacked layers of
the ⇡0 domain walls as illustrated in Fig. 3. Other phase
candidates [16, 17] also exhibit a multilayer structure on
account of the anisotropy induced by B. Hereafter we
focus on a single layer for simplicity.

FIG. 3. Illustration of the CSL as approximated by the 2D
Skyrme Crystal layers.

We follow the prescription in [36] to actualize a
static 2D Skyrme Crystal on a square lattice with
pseudo-periodicity that blends crystalline translations
with ei⇡I3 . In the presence of the vector potential,
crystalline translation should incorporate appropriate
gauge transformations, i.e.,

⌧
3 ⌃(x, y, z) ⌧3 = ei�ByQ ⌃(x+2�, y, z) e�i�ByQ

,

⌧
3 ⌃(x, y, z) ⌧3 = e�i�BxQ ⌃(x, y+2�, z) ei�BxQ

,
(7)

where we introduced the lattice constant 2�. We set one
baryon in each unit cell. By imposing pseudo-reflection
symmetry ⌧

1⌃(x)⌧1 =⌃†(�x), ⌧2⌃(y)⌧2 =⌃†(�y), and
⌧
3⌃(z)⌧3 = ⌃†(�z), we can focus on a partial cell with

0  x  �, 0  y  �, and z � 0. The solution
in this octant cell is subject to the following boundary
conditions. Our vacuum convention is ⇧4(x, y,+1) = 1.
The pseudo-reflection requires ⇧1(0, y, z) = ⇧2(x, 0, z) =
⇧3(x, y, 0) = 0. The joint of the pseudo-reflection and
the pseudo-translation (7) dictates

⇧1(�, y, z) sin(
1
2�By)�⇧2(�, y, z) cos(

1
2�By) = 0 ,

⇧1(x,�, z) cos(
1
2�Bx)�⇧2(x,�, z) sin(

1
2�Bx) = 0 .

(8)

The octant cell should contain 1
8 baryon. We recast the

baryon number, NB ⌘
R
d3x j0B = 1

4⇡2

R �
d' � A

�
^�

⇧4d⇧3 � ⇧3d⇧4

�
, as a surface integral. Foregoing

conditions force it to vanish except on two edges. One
edge at x = y = 0 contributes N0 = 1

8n0, while another
at x = y = � yields N� = 1

8n�(
2
⇡�

2
B�1), where n0,� 2 Z

denotes the ⇧3,4 winding number from z = +1 to �1
along the according edge.
There are two distinct classes of solutions. The first

class is referred to as the Normal Crystal ; NB = N0 +
N� = 1

8 for unconstrained � and B demands n0 = 1 and
n� = 0. This completes our list of boundary conditions
with ⇧4(0, 0, 0) = �1 and ⇧4(�,�, 0) = 1, which signify
a regional ⇡

0 domain wall configuration. Prescribing
boundary conditions above, we formulate a Dirichlet
problem in the octant cell by minimizing the energy
functional M(⇧1,2,3,4)/8 with a Lagrange multiplier that

constrains
P4

i=1 ⇧
2
i = 1, where

M

8
=

Z
d3x

✓
f
2
⇡

2

��D⇧i

��2 + 1

4a2
��D⇧i ⇥D⇧j

��2
◆
, (9)

[Pressure Distribution]
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Confinement force is 
probed in EIC.

3

FIG. 2. Pressure distribution at ✓ = ⇡/2 for various B.

Nucleon as a quantized Skyrmion: To distinguish
protons from neutrons, we seek isospin eigenstates by
varying as ⌃(t) = ei↵(t)Q⌃ e�i↵(t)Q. The Lagrangian
then reads, L = 1

2�↵̇
2 � �↵̇ � M , with � =R

d3x sin2 f sin2 g[f2
⇡ + 1

a2 (|rf |2 + |rg|2 sin2 f)], � =
qB
4⇡2

R
d3x sin ✓ sin2 f sin g(@✓f@rg � @rf@✓g), and M

being the classical mass. Introducing � ⌘ �S/�↵̇ =
↵̇�� �, we write down the Hamiltonian:

H = �↵̇� L = M +
1

2�

�
� + �

�2
. (6)

The 2⇡-periodicity of ↵(t) with the Z2 ✓-angle assigns
a half-odd-integer spectrum to �. Invoking the pseudo-
axial symmetry, Noether’s theorem gives J3 = �I3 = �.
Confirming �(B) � 0 numerically, we conclude that the
ground state is a spin-down proton |p#i, and the lowest
excitation is a spin-up neutron |n"i. We also verify that
the nucleon masses, hp#|H |p#i and hn"|H |n"i, vary
with B analogously to M(B). For weak B our result is
consistent with experimental facts that gp > 0, gn < 0,
and |gp| > |gn|. Furthermore, the mass split formula,
mn �mp = �/�, deduced from Eq. (6), is valid even for
strong B.

We note that M and � originate from S0+SSky, while
� results from SB solely. Hence, the mass split is an
e↵ect of SB which is muted classically. An illuminating
explanation hinges on T ei⇡I2 : ⌃(t) ! ⌃(�t) preserved
by S0 + SSky but violated by SB. Since T ei⇡I2 reverses
I3 and J3 simultaneously, if we did not gauge the u(1)B
sector of Q via SB, protons and neutrons would remain
degenerated.

Domain wall formation from a Skyrme Crystal: Now
we address the ⇡

0 domain wall formation. As argued in
[18] dense nuclear matter under strong B may exhibit the
CSL, which is approximately viewed as stacked layers of
the ⇡0 domain walls as illustrated in Fig. 3. Other phase
candidates [16, 17] also exhibit a multilayer structure on
account of the anisotropy induced by B. Hereafter we
focus on a single layer for simplicity.

FIG. 3. Illustration of the CSL as approximated by the 2D
Skyrme Crystal layers.

We follow the prescription in [36] to actualize a
static 2D Skyrme Crystal on a square lattice with
pseudo-periodicity that blends crystalline translations
with ei⇡I3 . In the presence of the vector potential,
crystalline translation should incorporate appropriate
gauge transformations, i.e.,

⌧
3 ⌃(x, y, z) ⌧3 = ei�ByQ ⌃(x+2�, y, z) e�i�ByQ

,

⌧
3 ⌃(x, y, z) ⌧3 = e�i�BxQ ⌃(x, y+2�, z) ei�BxQ

,
(7)

where we introduced the lattice constant 2�. We set one
baryon in each unit cell. By imposing pseudo-reflection
symmetry ⌧

1⌃(x)⌧1 =⌃†(�x), ⌧2⌃(y)⌧2 =⌃†(�y), and
⌧
3⌃(z)⌧3 = ⌃†(�z), we can focus on a partial cell with

0  x  �, 0  y  �, and z � 0. The solution
in this octant cell is subject to the following boundary
conditions. Our vacuum convention is ⇧4(x, y,+1) = 1.
The pseudo-reflection requires ⇧1(0, y, z) = ⇧2(x, 0, z) =
⇧3(x, y, 0) = 0. The joint of the pseudo-reflection and
the pseudo-translation (7) dictates

⇧1(�, y, z) sin(
1
2�By)�⇧2(�, y, z) cos(

1
2�By) = 0 ,

⇧1(x,�, z) cos(
1
2�Bx)�⇧2(x,�, z) sin(

1
2�Bx) = 0 .

(8)

The octant cell should contain 1
8 baryon. We recast the

baryon number, NB ⌘
R
d3x j0B = 1

4⇡2

R �
d' � A

�
^�

⇧4d⇧3 � ⇧3d⇧4

�
, as a surface integral. Foregoing

conditions force it to vanish except on two edges. One
edge at x = y = 0 contributes N0 = 1

8n0, while another
at x = y = � yields N� = 1

8n�(
2
⇡�

2
B�1), where n0,� 2 Z

denotes the ⇧3,4 winding number from z = +1 to �1
along the according edge.
There are two distinct classes of solutions. The first

class is referred to as the Normal Crystal ; NB = N0 +
N� = 1

8 for unconstrained � and B demands n0 = 1 and
n� = 0. This completes our list of boundary conditions
with ⇧4(0, 0, 0) = �1 and ⇧4(�,�, 0) = 1, which signify
a regional ⇡

0 domain wall configuration. Prescribing
boundary conditions above, we formulate a Dirichlet
problem in the octant cell by minimizing the energy
functional M(⇧1,2,3,4)/8 with a Lagrange multiplier that

constrains
P4

i=1 ⇧
2
i = 1, where

M

8
=

Z
d3x

✓
f
2
⇡

2

��D⇧i

��2 + 1

4a2
��D⇧i ⇥D⇧j

��2
◆
, (9)

Extra confining force from 
the external B!?

∫ d3xP(x) = −
2
3

m ⋅ B
Chen-Fukushima-Qiu (soon)
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For another example, the physical system is always finite, 
and as soon as the boundary condition in a finite box is 
imposed, you cannot avoid inhomogeneity!5

because the induced e↵ective chemical potential (i.e. the
rotational energy shift) is always smaller than the low-
est energy gap p0,1. Once eB becomes bigger than the
squared system-size inverse (that is, ↵ & 10 from Fig. 2),
however, the energy gap is significantly reduced and the
anomalous coupling between magnetic field and rotation
is then manifested [14, 21].

IV. INTEGRATION MEASURE AND
REWEIGHTED WAVE-FUNCTIONS

Because the radial momenta are discretized, we replace
the transverse momentum integration with the sums over
quantum numbers, l and k, i.e.

Z
dpxdpy

(2⇡)2
�! 1

⇡R2

1X

l=�1

1X

k=1

1

N
2
l,k

, (18)

where Nl,k represents a weight factor which corresponds
to the integration measure in finite-size systems. In the
B = 0 case, as discussed in Ref. [18], the weight factor
is deduced from the Bessel-Fourier expansion, that is, we
know that in the limit of ↵ ! 0,

N
2
l,k �! 2

R2

Z R

0
rdr

⇥
Jl(pl,kr)

⇤2 (19)

with discretized momentum pl,k in Eq. (16). From the re-
lation in Eq. (8), we extrapolate the above identification
to non-zero ↵ as

N
2
l,k =

2

R2

Z R

0
rdr

⇥
�l(�l,k,

1
2eBr

2)
⇤2

=

Z 1

0
dx

⇥
�l(�l,k,↵x)

⇤2
.

(20)

We can easily confirm that Nl,k defined as above satisfies
the asymptotic behavior in Eq. (19) in the ↵ ! 0 limit.
Moreover, we can readily understand that N

2
l,k goes to

1/↵ in the opposite limit of ↵ ! 1. Then, this exactly
accounts for the appearance of the Landau degeneracy
factor, ↵/(⇡R2) = eB/(2⇡), in Eq. (18) in the strong
magnetic field limit, which also validates Eq. (20). Inter-
estingly, as it should be so, we can prove,
Z 1

0
dx

⇥
�l(�l,k,↵x)

⇤2
=

Z 1

0
dx

⇥
�l+1(�l,k � 1,↵x)

⇤2
.

(21)
This is an important relation; thanks to this equality, we
can commonly use Nl,k to normalize the four component
spinors with both �l,k and 'l,k.

As we see in the next section, the propagator involves
a spinor matrix that is a product of two wave-functions
and, in general, 1/N2

l,k appears together with the propa-
gator. Thus, the physical meaning of Nl,k would become
more transparent if we define reweighted wave-functions
by Nl,k, i.e.

e�l,k ⌘ �l,kp
⇡R2Nl,k

, e'l,k ⌘ 'l,kp
⇡R2Nl,k

(22)

FIG. 3. Radial profiles of |e�l,1| (solid lines) and |e'l,1| (dashed
lines), which are wave-functions normalized by

p
⇡R2Nl,1,

where all the quantities are given in the unit of R. The upper
and the lower panels show the wave-functions for l = 0 and
l = 20, respectively.

for a certain R.

Let us explain the interpretation of the reweighted
wave-functions, e�l,k and e'l,k. We solved the Dirac equa-
tion and gave definitions for �l,k and 'l,k, but they are
not yet properly normalized, where we simply fixed the
overall normalization to reproduce the conventional ex-
pressions in the limit of no boundary e↵ect. The impor-
tant point here is that, for l > 0, 'l,k may penetrate
outside of r > R while only �l,k vanishes at r = R; nev-
ertheless, there is no communication across r = R due
to the no flux condition. Therefore, we should normal-
ize the wave-functions within 0  r  R only. In other
words, we can just presume that the system is empty for
r > R; owing to the no flux condition, even in this sharp
boundary case, there appears no singularity at r = R.
To avoid confusion, we must stress that the above de-
scription is just an interpretation, and the denominator
in Eq. (22) is anyway uniquely fixed in the replacement
of the integration with the discrete sum in Eq. (18).
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for a certain R.

Let us explain the interpretation of the reweighted
wave-functions, e�l,k and e'l,k. We solved the Dirac equa-
tion and gave definitions for �l,k and 'l,k, but they are
not yet properly normalized, where we simply fixed the
overall normalization to reproduce the conventional ex-
pressions in the limit of no boundary e↵ect. The impor-
tant point here is that, for l > 0, 'l,k may penetrate
outside of r > R while only �l,k vanishes at r = R; nev-
ertheless, there is no communication across r = R due
to the no flux condition. Therefore, we should normal-
ize the wave-functions within 0  r  R only. In other
words, we can just presume that the system is empty for
r > R; owing to the no flux condition, even in this sharp
boundary case, there appears no singularity at r = R.
To avoid confusion, we must stress that the above de-
scription is just an interpretation, and the denominator
in Eq. (22) is anyway uniquely fixed in the replacement
of the integration with the discrete sum in Eq. (18).

Centrifugal force pushes the wave-functions farer.
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Magnetic catalysis is inhomogeneous in a box. 7

In the mean-field approximation (which is justified when
there are infinitely many fermion species), the gap equa-
tion or the condition to minimize the thermodynamic
potential is written down as

m = G tr[S(x, x)] . (27)

Since translation invariance is lost along the radial di-
rection, the dynamical mass has the r-dependence, and
thus we should regard Eq. (27) as a functional equation
to determine a function m(r). It is, however, numeri-
cally demanding to solve this functional equation self-
consistently. Besides, our present purpose is not to quan-
tify the e↵ects but to demonstrate robust features of the
surface e↵ects. So, we reasonably simplify the problem
by employing the local density approximation under an
assumption of |@rm(r)| ⌧ m(r)2 [19]. Then, we can ap-
proximately treat the energy dispersion relation as sim-
ple as "(r) =

p
2eB�l,k + p2z +m(r)2. Utilizing Eq. (23)

and inserting a ultraviolet regulator, we write the explicit
form of the gap equation as

m(r)

G
= m(r)

Z 1

�1

dpz

2⇡

1X

l=�1

1X

k=1

f(p ;⇤, �⇤)

⇡R2N2
l,k

⇥
⇥
�l(�l,k,

1
2eBr

2)
⇤2

+
⇥
�l+1(�l,k � 1, 1

2eBr
2)
⇤2

"(r)
.

(28)

Here, we note that the choice of the ultraviolet regu-
lator is a part of the model definition, and in our nu-
merical calculations presented below, we adopt a smooth
3-momentum cuto↵ function as follows [14];

f(p ;⇤, �⇤) =
sinh(⇤/�⇤)

cosh(p/�⇤) + cosh(⇤/�⇤)
(29)

with p =
p

2eB�l,k + p2z. To discuss the magnetic catal-
ysis, the proper-time regularization [26] and the Pauli-
Villars regularization would be a common choice in the
NJL model studies (e.g. see Refs. [5]). It is, however,
known that a näıve momentum cuto↵ with a step func-
tion could also give a qualitatively correct result as long
as the smearing parameter �⇤ is not too small [27].
Therefore, the above simple f(p;⇤, �⇤) should su�ce for
our present purpose of qualitative analysis. For the nu-
merical calculation we chose the model parameters as

G = 12⇤�2
, �⇤ = 0.05⇤ . (30)

Here we can trivially scale out ⇤ by measuring all the
quantities in the unit of ⇤. It should be mentioned that
the above chosen G is intentionally below the onset of
the spontaneous symmetry breaking. In fact, in the unit
of ⇤, in this model with B = 0 and R ! 1, the critical
coupling is,

Gc = 19.65⇤ , (31)

FIG. 4. Dynamical mass as a function of the radial coordi-
nate r for the choice of R = 30⇤�1. Near the boundary the
dynamical mass rapidly increases due to the accumulation of
the boundary modes.

which is greater than the present G. For our demonstra-
tion we chose this setup without the spontaneous symme-
try breaking to see the magnetic catalysis directly. Then,
we fix the system size to be,

R = 30⇤�1
. (32)

This value itself is not relevant for our discussions. For
⇤ ' 1GeV (that is a QCD scale), the above choice of the
system size R = 30⇤�1 corresponds to the typical radial
scale of heavy ions, R ' 6 fm.
In Fig. 4 we show the dynamical massm(r) solved from

the gap equation in the local density approximation. We
see from Fig. 4 that the magnetic field e↵ect is minor
for ↵ = 4.5. The r-dependence of the dynamical mass is
flat up to r ' 0.7R, and then m(r) becomes oscillatory
for r & 0.7R. Such oscillation results from the boundary
e↵ect and its exact form depends on the regularization
f(p;⇤, �⇤) as well as the system size. Actually, for larger
R, the discretized momentum spacing is smaller (which is
/ 1/R), and thus the oscillating period should be smaller
accordingly. For even larger r ' R, eventually, the dy-
namical mass vanishes. This oscillating and vanishing
behavior of m(r) is quite similar to what is observed in
the B = 0 case (see Fig. 1 in Ref. [18]). We also make
a comment on the validity of the local density approx-
imation. The required condition, |@rm(r)| ⌧ m(r)2 is
satisfied for almost all r except the region very close to
R.

In contrast to ↵ = 4.5, the dynamical mass behavior
for stronger magnetic fields (↵ = 22.5 and 45 in Fig. 4)
is qualitatively di↵erent. As long as r is away from the
boundary, a flat plateau continues, until oscillations ap-
pear around r ' 0.7R. Then, m(r) does not vanish but is
pushed up as r approaches R. This abnormally enhanced
magnetic catalysis (called the surface magnetic catalysis
in this work) is a consequence from the interplay between
the magnetic field and the boundary e↵ect.

3

It should be mentioned that the functions (5) and (7)
reduce to familiar Bessel functions at zero magnetic field,
B ! 0, as [18]

�l(�l,k,
1
2eBr

2) �! Jl(
p

2eB�l,k r) ,

�l+1(�l,k � 1, 1
2eBr

2) �! Jl+1(
p

2eB�l,k r) .
(8)

Also, the negative-energy solutions with the total angular
momentum j = l + 1/2 are written down as

 = v+ =
e
i"t�ipzz

p
"+m

0

BB@

�i
p

2eB�l,k�l,k
�pz'l,k

0
("+m)'l,k

1

CCA , (9)

 = v� =
e
i"t�ipzz

p
"+m

0

BB@

�pz�l,k

�i
p

2eB�l,k'l,k

�("+m)�l,k
0

1

CCA . (10)

In Appendix A we give the detailed derivation for these
solutions (2), (3), (9), and (10). Here, some explanations
are needed for the consistency with Ref. [18] in which we
required v± = i�

2
u
⇤
±. This relation between u± and v±

makes the physical interpretation of anti-particles clear
as long as charge conjugation symmetry C is exact. How-
ever, in the presence of external B, such a näıve construc-
tion of v± does not satisfy the Dirac equation; under the
replacement of l ! �l � 1, we see that �l,k ! ��l�1,k

which would be equal to '⇤
l,k if B = 0. Then, only in this

case of B = 0, v± in Eqs. (9) and (10) coincide exactly
with the ones from v± = i�

2
u
⇤
± in Ref. [18]. Later we

will return to this point to discuss how to fix �l,k.

III. NON-DEGENERATE LANDAU LEVELS

In finite-size systems, momenta are generally dis-
cretized due to the boundary e↵ect. As already intro-
duced in the previous section, we specifically consider a
cylindrical system with the radius R and assume transla-
tional invariance in the longitudinal direction along the z
axis. In this setup, while pz is continuous, the transverse
momenta are discretized as a function of R. For scalar
fields, for instance, we can impose the Dirichlet bound-
ary condition at r = R, so that we can readily obtain
the discretized momenta [16]. Such a simple treatment
is, however, not applicable to fermionic fields. This is be-
cause Dirac spinors involve spin-up and spin-down com-
ponents for which the zeros of the wave-functions appear
di↵erently, as is understood in Eq. (4).

A possible boundary condition which we will employ
here is the “zero flux constraint” at r = R. That is, all
the fermionic fluxes built with u± and v± should be zero
at r = R, and we express this condition explicitly as [18]

Z 1

�1
dz

Z 2⇡

0
d✓  ̄�

r
 

�����
r=R

= 0 , (11)

where we defined �r ⌘ �
1 cos ✓ + �

2 sin ✓. We note that
Eq. (11) is not a unique choice but other boundary con-
ditions for fermionic fields are also possible. For exam-
ple, the MIT-bag type condition leads to a di↵erent type
of momentum discretization, but finite size e↵ects on
fermionic fields are qualitatively unchanged [17, 20].
After performing the integration with respect to ✓, we

see that the integrand in Eq. (11) would be vanishing if

�l(�l,k,↵)�l+1(�l,k0 � 1,↵) = 0 (12)

for arbitrary l, k, and k
0 is satisfied. Here ↵ is the di-

mensionless parameter defined by

↵ ⌘ 1

2
eBR

2
. (13)

Instead of eB or R, in this paper, we will frequently refer
to ↵ that is a dimensionless ratio between the magnetic
length lB = 1/

p
eB and the system size lsystem = R.

Moreover, this quantity ↵ corresponds to the conven-
tional Landau degeneracy factor, i.e. eB(⇡R2)/(2⇡) with-
out boundary distortion.
Now, unlike Ref. [18], the choice of �l,k from Eq. (11)

is not unique; this non-uniqueness is related to v± as
we mentioned below Eqs. (9) and (10). In Ref. [18] we
required v± = i�

2
u
⇤
± from the beginning so that we can

keep charge conjugation symmetry C. This symmetry
property gives another constraint of invariance under l $
�l � 1. In the present case with B 6= 0, there is no way
to keep such symmetry; nevertheless, it is convenient to
adopt a su�cient condition for Eq. (12) in such a way
connected to the B = 0 limit smoothly, that is,

�l(�l,k,↵) = 0 for l � 0 ,

�l+1(�l,k � 1,↵) = 0 for l  �1 .
(14)

From the definition of the scalar function �l(�, x) given
in Eqs. (5) and (7), we obtain the transverse momenta
discretized as pl,k =

p
2eB�l,k with

�l,k =

(
⇠l,k for l � 0 ,

⇠�l�1,k � l for l  �1 ,
(15)

where ⇠l,k denotes the k-th zero of 1F1(�⇠, l + 1,↵) as
a function of ⇠. We note that �l,k depends on ↵; in
other words, the discretized momenta are functions of
the magnetic field B as well as R.
It would be instructive to think of the momentum dis-

cretization in the B = 0 limit. From the asymptotic
relations (8), we find that the no flux condition (11) with
Eq. (14) leads to the following discretization:

pl,k �!
eB!0

(
⇣l,k/R for l � 0 ,

⇣�l�1,k/R for l  �1 ,
(16)

where ⇣l,k is the kth zero of the Bessel function Jl(⇣),
which recovers the preceding studies [17, 18]. We point

Chen-Fukushima-Huang-Mameda (2017)
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Inhomogeneous EM?  Of course Yes!
One unknown example, for which we are now working 
very hard : Fukushima-Yu (soon).
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Production of twisted particles in heavy-ion collisions
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Abstract

A prevalence of production of twisted (vortex) particles in noncentral heavy-ion collisions is

shown. In such collisions, photons emitted due to the rotation of charges are highly twisted.

Charged particles are produced in nonspreading multiwave states and have significant orbital an-

gular momenta. It can be expected that an emission of any twisted particles manifesting themselves

in specific effects is rather ubiquitous.
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Photons can carry not only the helicity but also 
the twisted wave-function (with orbital angular 
momentum) ← Paraxial Photons
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polarized waves, as in Eq. (2.4). Its direct relation to the helicity density (2.12) is revealed 
below. 
 

 
Fig. 2. Longitudinal spin and orbital angular momenta (2.18) and (III), (IV) in a paraxial optical 
beam (2.15) [1–14]. The beam carries integral momentum P  determined by its mean wave 

vector  k  kz . The spin AM S  is generated by the circular polarization and determined 

by its helicity parameter σ , whereas the orbital AM L  is produced by the helical phase, 

i.e., optical vortex of charge   . The instantaneous electric and magnetic fields  E z,0( )  and 

 H z,0( )  are shown in (a) for the right-hand circular polarization (parameter m = i , i.e., 
σ = 1). The constant-phase surface  Φ = kz + ϕ = 0  is shown in (b) for the vortex with 
  = 2 . 

 
Substituting the field (2.15) into the general equations (2.8)–(2.12), we obtain the energy, 

momentum, spin AM, orbital AM, and helicity densities in the paraxial beam: 

  W  g A
2ω ,     

 
P  W

ω
kz + 

ρ
ϕ

⎛
⎝⎜

⎞
⎠⎟

,     
 
L  W

ω
−ρkϕ + z( ) ,  

 
 
S  W

ω
σ z ,     

 
K  W

ω
σ . (2.17) 

Equations (2.17) show a natural and intuitively clear picture of the beam properties, all 
proportional to the same intensity factor g A 2 . First, we note that the beam has an energy 
density W  proportional to the frequency ω  and the longitudinal momentum density Pz  
proportional to the wave number k =ω / c . Second, the beam carries the longitudinal spin AM 
density S =σ z , similar to that for the plane wave, Eqs. (2.4)–(2.6) (Fig. 2a). The helicity density 

Bliokh-Nori (2015)

Polarization

Photon vortex beam 
with finite orbital angular mom.
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Fukushima-Yu (soon) 5

FIG. 1. Schematic of the stimulated emission of electron vortices. In this system, an vortical photon beam and a non-vortical
photon beam counter-propagate against each other. An electron plane wave incident into the system. After interact with the
photons, it obtain orbital angular momentum via stimulated emission process, and leave the system as an electron vortex. The
gray arrow in the figure represents the direction of propagation of the particles.

In this system, one possible process is that the electron absorbs one vortical photon, and then under the action
of the other photon beam, emits a non-vortical photon through stimulated emission process, thus obtaining a net
angular momentum quantum and becoming a vortical state. To us, this process is very interesting because it involves
the angular momentum exchange among electrons and photons. Furthermore, as stated in the Sec. I, this process
may e↵ectively generate relativistic electron vortices with a narrow angular momentum distribution, which is what
we need for chiral magnetic e↵ect experiment [33–35].

To start the investigation of the system, let us first assumes that all initial particles are paraxial. Later, we can
recover the general out-state (the state after scattering) by using Eq. (14) to sum up the contributions from di↵erent
paraxial electron vortical modes. Under this assumption, the parameters for the vortical photon beam are: photon
number n, paraxial momentum !i1, polarization �i1 = ±1 (for right-handed and left-handed circular polarization,
respectively), orbital angular momentum li1 = 1, and radial quantum number pi1 = 0. For the non-vortical photon
beam, the same parameters are: m, �!i2, �i2, li2 = 0, pi2 = 0. For the electron, the initial parameters are: the
paraxial momentum qi0, the spin s, the orbital angular momentum li0, and the radial quantum number pi0.

To write down the states of the system concisely, we also introduce a symbol to represent the quantum num-
bers of paraxial states: ↵ = {s, l, p} or {�, l, p}, depending on whether it describes electron or photon. For ex-
ample, ↵i0 = {si0, li0, pi0}, and ↵i1 = {si1, li1, pi1}. Then, the initial state described in the above paragraph is

b̂↵i0†
qi0 |n↵i1,!i1 ,m↵i2,�!i2 > (here, state vectors like |n↵,!,m↵0,!0 > are defined as 1/

p
n!m!(â↵†! )n(â↵

0†
!0 )m|0 >, where

â↵†! and â↵
0†

!0 are the creation operators of the paraxial photon states).
Using such notation and the parameters defined above, we can calculate the out-state of the system using the

standard scattering matrix technology and the Feynman rules established in Sec. III, the result is:

|f > = b̂↵i0†
qi0 |n↵i1,!i1 ,m↵i2,�!i2 > +
X

j=1,2

X

↵f ,↵0
f

A1(↵f ,↵
0
f , j;↵i0,↵i1,↵i2)b̂

↵f†
q(j)
f

(!i1)
â
↵0

f†
k(j)
f

(!i1)
|(n� 1)↵i1,!i1 ,m↵i2,�!i2 > +

X

j=1,2

X

↵f ,↵0
f

A2(↵f ,↵
0
f , j;↵i0,↵i1,↵i2)b̂

↵f†
q(j)
f

(�!i2)
â
↵0

f†
k(j)
f

(�!i2)
|n↵i1,!i1 , (m� 1)↵i2,�!i2 > (17)

In the above equation, q(j)f (ki) and k(j)f (ki) are the momenta of the electron and photon after the electron scatters with
a photon of paraxial momentum ki, where j = 1, 2 labels two possible solutions of the energy-momentum conservation
equation. The definition of each symbols can be found in Appendix A.

From Eq. (17), we notice that when k(2)f (!i1) = �!i2, the scattering of the electron with the vortex photon generates
a photon identical to those in the non-vortical photon beam, and the scattering with the non-vortical photon generates
a photon identical to those in the vortex photon beam. Hence, due to the relation â↵†k |n↵,k >=

p
n+ 1|(n+ 1)↵,k >,

We considered a scattering process 
of two paraxial photons to produce a pair of 
fermions, confirming finite chirality production.

New (and more convenient) probe to the chiral anomaly
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Simple Modeling of 
Local Parity Violation
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By

z

y x
Ez
Bz

Possibly, it appears from 
the Glasma initial condition 
with parallel chromo-E/B.

QCD (QED) is a parity conserving theory, 
and the parity is not broken in the whole system.

Violation is only local  →  Local Parity Violation
<latexit sha1_base64="zoAkP9K0cWLFtaxeuRiY7C36ht8="></latexit>

E ·B 6= 0

Z
d3xE ·B = 0 Very inhomogeneous
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Usually, the electromagnetic waves (as solutions of 
the free/source-less Maxwell equations) have 
propagating E and B perpendicular to each other.

<latexit sha1_base64="4lincQe75riO/sypwXarq000rDQ="></latexit>

E ·B = 0
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They found a family of solutions:

F and G are arbitrary 
functions of z+t and z-t

These are not general 
solutions, and other types 
of solutions do exist.

Parity-odd domains (local parity violation) may occur 
locally but its spatial average is zero not to break parity.

Standing Wave
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A particularly interesting example:

F =
k

2
(z + t) G = �k

2
(z � t)

<latexit sha1_base64="2QiorgngOKXGKy05O+V0aKrRAIw="></latexit>

One can introduce a vector potential reproducing the above electric and magnetic fields
(Taya potential) are

A0 = 0, (2.14)

A =
a

ω
(− cosωz sinωt, cosωz cosωt, 0), (2.15)

3 Weyl fermion in a standing wave background

The Lagrangian of a right-handed fermion is given as

L = η†σµiDµη, (3.1)

where Dµ := ∂µ + ieAµ is the covariant derivative and σµ = (1,σi) with Pauli matrices σi.
The equation of motion reads

(
iDt + iDz iDx +Dy

iDx −Dy iDt − iDz

)(
η+
η−

)

=

(
i∂t + i∂z i∂x + ∂y − ie a

ωe
−iωt cosωz

i∂x − ∂y + ie a
ωe

iωt cosωz i∂t − i∂z

)(
η+
η−

)
= 0, (3.2)

or equivalently,

i∂t

(
η+
η−

)
=

(
−i∂z −i∂x − ∂y + ie a

ωe
−iωt cosωz

−i∂x + ∂y − ie a
ωe

iωt cosωz i∂z

)(
η+
η−

)
= 0. (3.3)

We look for a steady state solution that has the form,

η = e−iε̃t+ipxx+ipyy+ip̃zz

(
η̃+(p, t, z)

η̃−(p, t, z)

)
, (3.4)

where −ω/2 ≤ p̃z ≤ ω/2, and ηp± are periodic functions, ηp±(t, z + 2π/ω) = ηp±(t, z).

i∂t

(
η+
η−

)
=

(
p̃z − i∂z p̄⊥ − ᾱ(e−iω(t−z) + e−iω(t+z))

p⊥ − α(eiω(t+z) + eiω(t−z)) −p̃z + i∂z

)(
η+
η−

)
= 0. (3.5)

where p⊥ := px + ipy and p̄⊥ := px − ipy, α := iea/(2ω), and ᾱ := −iea/(2ω).
Fourier transform of z leads to

i∂t

(
c+m
c−m

)
=

(
0 −ᾱe−iωt p̃z + ωm p̄⊥ 0 −ᾱe−iωt

−αeiωt 0 p⊥ −p̃z − ωm −αeiωt 0

)





c+m+1

c−m+1

c+m
c−m
c+m−1

c−m−1





= 0. (3.6)

η± =
∑

m∈Z

∫ ω/2

−ω/2

dp̃z
2π

ei(p̃+ωm)z+ip⊥·x⊥c±m (3.7)

– 2 –
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Fourier transform of z leads to

i∂t

(
c+m
c−m

)
=

(
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An example of the vector potential (giving E and B)
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1 Introduction

2 Standing waves

We consider the following configuration of electric and magnetic fields:

Ex = a cosωz cosωt, (2.1)
Ey = a cosωz sinωt, (2.2)
Ez = 0, (2.3)
Bx = a sinωz cosωt, (2.4)
By = a sinωz sinωt, (2.5)
Bz = 0, (2.6)

which are a solution of Maxwell equations:

∇ ·E = ρ, (2.7)
−∂tE +∇×B = j, (2.8)

∇ ·B = 0, (2.9)
∂tB +∇×E = 0, (2.10)

with ρ = 0 and j = 0. There are two Lorentz scalars,

E ·B =
a2

2
sin 2ωz, (2.11)

(E2 −B2) = a2 cos 2ωz, (2.12)

which are time independent. The Hamiltonian density

H =
1

2
(E2 +B2) =

1

2
a2 (2.13)

is also time-independent.

– 1 –
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1 Introduction

2 Standing waves

We consider the following configuration of electric and magnetic fields:

Ex = a cosωz cosωt, (2.1)
Ey = a cosωz sinωt, (2.2)
Ez = 0, (2.3)
Bx = a sinωz cosωt, (2.4)
By = a sinωz sinωt, (2.5)
Bz = 0, (2.6)

which are a solution of Maxwell equations:

∇ ·E = ρ, (2.7)
−∂tE +∇×B = j, (2.8)

∇ ·B = 0, (2.9)
∂tB +∇×E = 0, (2.10)

with ρ = 0 and j = 0. There are two Lorentz scalars,

E ·B =
a2

2
sin 2ωz, (2.11)

(E2 −B2) = a2 cos 2ωz, (2.12)

which are time independent. The Hamiltonian density

H =
1

2
(E2 +B2) =

1

2
a2 (2.13)

is also time-independent.

– 1 –

Twisted-modes: Evtuhov-Siegman (1965) / Chu-Ohkawa (1982)

Helical Standing Wave
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@µj
µ
5 =

e2

2⇡2
E ·B 6= 0

<latexit sha1_base64="8zZFLuwOgiPdiSrrWE14AMY1gBw="></latexit>

Particle Production?

No particle production (no real-time physics)
We can compute the Chern-Simons current:

Kµ =
e2

4⇡2
"µ⌫⇢�A⌫@⇢A�

<latexit sha1_base64="N04XfKKDuvMWtfy3wHNQBD2QiHA="></latexit>

@µ(j
µ
5 �Kµ) = 0

<latexit sha1_base64="CKcdsAMk9ZUV1rZOQbUyQilPoc4="></latexit>

so that

In particular
Z

d3xK0

<latexit sha1_base64="CoF8vslI8C2AXugvIdNyCHIbzBI="></latexit>

is gauge inv. (magnetic helicity)

K0 = 0 Kz =
e2

4⇡2

a2

!
cos2 !z

<latexit sha1_base64="lTfLXf25du8E1Ymip6Eka0cV8rU="></latexit>

Only spatial current!?
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How to proceed…?
One can introduce a vector potential reproducing the above electric and magnetic fields

(Taya potential) are

A0 = 0, (2.14)

A =
a

ω
(− cosωz sinωt, cosωz cosωt, 0), (2.15)

3 Weyl fermion in a standing wave background

The Lagrangian of a right-handed fermion is given as

L = η†σµiDµη, (3.1)

where Dµ := ∂µ + ieAµ is the covariant derivative and σµ = (1,σi) with Pauli matrices σi.
The equation of motion reads

(
iDt + iDz iDx +Dy

iDx −Dy iDt − iDz

)(
η+
η−

)

=

(
i∂t + i∂z i∂x + ∂y − ie a

ωe
−iωt cosωz

i∂x − ∂y + ie a
ωe

iωt cosωz i∂t − i∂z

)(
η+
η−

)
= 0, (3.2)

or equivalently,

i∂t

(
η+
η−

)
=

(
−i∂z −i∂x − ∂y + ie a

ωe
−iωt cosωz

−i∂x + ∂y − ie a
ωe

iωt cosωz i∂z

)(
η+
η−

)
= 0. (3.3)

We look for a steady state solution that has the form,

η = e−iε̃t+ipxx+ipyy+ip̃zz

(
η̃+(p, t, z)

η̃−(p, t, z)

)
, (3.4)

where −ω/2 ≤ p̃z ≤ ω/2, and ηp± are periodic functions, ηp±(t, z + 2π/ω) = ηp±(t, z).

i∂t

(
η+
η−

)
=

(
p̃z − i∂z p̄⊥ − ᾱ(e−iω(t−z) + e−iω(t+z))

p⊥ − α(eiω(t+z) + eiω(t−z)) −p̃z + i∂z

)(
η+
η−

)
= 0. (3.5)

where p⊥ := px + ipy and p̄⊥ := px − ipy, α := iea/(2ω), and ᾱ := −iea/(2ω).
Fourier transform of z leads to

i∂t

(
c+m
c−m

)
=

(
0 −ᾱe−iωt p̃z + ωm p̄⊥ 0 −ᾱe−iωt

−αeiωt 0 p⊥ −p̃z − ωm −αeiωt 0

)





c+m+1

c−m+1

c+m
c−m
c+m−1

c−m−1





= 0. (3.6)

η± =
∑

m∈Z

∫ ω/2

−ω/2

dp̃z
2π

ei(p̃+ωm)z+ip⊥·x⊥c±m (3.7)

– 2 –

We tried to find analytical solutions, but it seems to be 
impossible (or very difficult).

This is a space-time dependent external potential.

Time-periodically driven system!

A very good theoretical approach is known: Floquet
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Floquet Theorem:

For periodic Hamiltonians:  
The time evolution operator is decomposed into:

H(t + T ) = H(t)

Kick operator 
(t-periodic to moving on a 
“co-rotating” bases) Floquet Hamiltonian 

t-independent physics!

→  Floquet Engineering

In the covariant form, Eq. (7) is expressed as

@µJ
µ

5 ⇠ eE(t, x)

⇡
e�

⇡m2

|eE(t,x)| . (8)

One may then determine the pseudo-scalar condensate P , so that the chiral anomaly
relation is satisfied:

P
slow limit������!� eE(t, x)

⇡

1� e
�⇡m2

|eE(t,x)|

2m
, (9)

Therefore, the breakdown of the chiral anomaly in the slow-frequency limit reads [20]

eE

⇡|{z}
topological charge

slow limit������! eE

⇡
e�

⇡m2

|eE|

| {z }
chirality production @µJ

µ
5

+
eE

⇡

✓
1� e

�⇡m2

|eE|

◆

| {z }
pseudo-scalar condensate 2mP

. (10)

The breakdown of the massive chiral anomaly relation (4) depends on details of the
applied electric field. In other words, the estimate (8) is valid only in the slow limit. In the
high-frequency limit, i.e., when the electric field is varying rapidly, the pair production
is no longer driven by the Schwinger mechanism because the electric field behaves like
dynamical photons, similarly to the photoelectric e↵ect [24, 45–49]. Moreover, when the
frequency is high enough compared the typical lifetime of virtual particles �t ⇠ 1/m,
one may not distinguish real and virtual particles. Therefore, the physics picture of the
spectral flow of real particles followed by the Schwinger mechanism is not valid in the
high-frequency regime and contributions from virtual particles (e.g., the Zitterbewegung
e↵ect) need to be included.

2.2. Floquet theory and van Vleck expansion

We are interested in a periodic system such that

H(t) = H(t+ T ). (11)

The Floquet theorem [50] states that there exist a constant operator HF, called Floquet
Hamiltonian, and a periodic operator K(t) = K(t+ T ), called kick operator, with which
the unitary time-translation operator U(t, t0) (which evolves the system from time t to
t
0) is expressed as

U(t, t0) = e�iK(t0)e+iHF(t�t
0)e+iK(t)

. (12)

Note that H
†

F = HF and K
† = K. Since the time-translation operator U satisfies

�i@tU(t, t0) = U(t, t0)H(t0) and 1 = U(t, t), it follows that

U(t, t0)H(t) = �ie�iK(t0)e+iHF(t�t
0) @e

+iK(t)

@t
+ e�iK(t0)

HFe
+iHF(t�t

0)e+iK(t)
. (13)

Rearranging this expression, we find

HF = e+iK(t)
H(t)e�iK(t) + i

@e+iK(t)

@t
e�iK(t)

. (14)
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Construction of K and HF

The existence is guaranteed, but the actual calculation 
is a different story… a well-developed approach is a 
systematic expansion in terms of 1/ω

Decomposition is not unique and a sort of “gauge fixing” 
is necessary.

→ Different schemes for the high-freq. (Magnus) expansion. 
     (We adopt the van Vleck expansion.)
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A question:

Floquet Hamiltonian is static. 

Theory drops information along the time axis… 
How it is possible to retain the chiral anomaly 
that can exist in (3+1) dimensions, but NOT in 
(3+0) dimensions…???

We can understand this by solving everything explicitly 
for the chiral anomaly in (1+1) dimensions. 
(It does not exist in (1+0) dimensions, either.)
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Let us consider a simpler problem in (1+1)D.
Fukushima-Hidaka-Shimazaki-Taya (soon)

Arbitrary background fields satisfying:

4. Massive Dirac fermions

We turn to discuss the chiral anomaly for massive Dirac fermions in (1+1) dimensions
based on the van Vleck high-frequency expansion. We for the first time present analytical
expressions for the chiral current and the pseudo-scalar condensate for massive Dirac
fermions in the high-frequency limit (with or without spatial inhomogeneity) such that
kHkT ⌧ 1, or 1/m, 1/

p
|eE|, L � T . Our results cover the opposite parameter regime

that the previous studies have covered, i.e., low-frequency electric fields [20]. We find
that the mass e↵ects are suppressed strongly in the high-frequency limit. Accordingly,
the chirality production is free from the exponential suppression, in contrast to the low-
frequency limit. Also, the chiral anomaly is saturated by the contribution from the
chirality production and that from the pseudo-scalar condensate is inessential, which is
the opposite situation compared to the low-frequency limit. We also demonstrate that
the chiral anomaly can be reproduced precisely with the low-order truncation of the
van Vleck high-frequency expansion, similarly to the Weyl-fermion case.

4.1. Dirac equation and Hamiltonian

Throughout this section, we take the axial gauge,

A
1 = 0, (63)

and assume that the zero-mode of A0 is vanishing,

Ã
0
0 = 0, (64)

for calculational simplicity. We also assume periodicity in the time-direction,

A
0(t+ T, x) = A

0(t, x). (65)

We assign a power counting E = O("0) so that A
0 = �

R
x
dx0

E(t, x0) = O("0). The
spatial dependence is arbitrary, as long as the typical length scale of the electric field
L is large enough T/L ⌧ 1 so that the van Vleck expansion in the time direction is
convergent. To get a convergent result for T/L � 1, one may, for example, enjoy the
Floquet analysis in the spatial direction, instead of the time direction, as suggested by
the higher-order analysis of the Weyl fermion (see Sec. 3.2).

We adopt the following representations for the gamma matrices �µ:

�
0 := �x =

✓
0 1
1 0

◆
, �

1 := �i�y =

✓
0 �1
1 0

◆
, �5 := �

0
�
1 = �z =

✓
1 0
0 �1

◆
. (66)

The Dirac equation 0 = [i�µ(@µ + ieAµ)�m] can then be expressed as

i@t (t, x) = H(t, x) (t, x), (67)

where

H = �i@x�z +m�x + eA
0 =

+1X

l=�1

ei
2⇡l
T t

h
(�i@x�z +m�x)| {z }

=H̃0

�0,l + eÃ
0
l|{z}

=H̃l 6=0

i
. (68)

Note that one may decompose the Dirac field  into right- and left-handed components
as  = t(�R,�L) and can confirm that the Dirac equation (67) reduces to the Weyl
equation (27) in the massless limit m ! 0.
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The answer is already known:

left-handed chirality, respectively. Suppose that the Fermi surface is located at E = 0.
After applying an electric field, the fermions in the Dirac sea shall be accelerated in
the electric-field direction to obtain momentum �p =

R
t
dt0E(t0). Thus, right- and left-

handed fermions can occupy the band spectrum up to the energy level E  +�p and
��p, respectively. This means that the number of right- and left-handed fermions is in-

creased and decreased, respectively, by the amount of �n =
R
±�p

0
dp
2⇡ = ± 1

2⇡

R
t
dt0eE(t0),

i.e., @tnR/L = ±eE/2⇡, which is precisely equals to the topological Chern-Simons charge.
In the covariant form, the increase/decrease of the particle number is expressed as

@µJ
µ

R = �@µJµ

L = �"
µ⌫
Fµ⌫

4⇡
=

eE

2⇡
. (3)

This is the anomaly relation for Weyl fermions in (1+1) dimensions [3, 4].
For massive Dirac fermions, the anomaly relation (3) is modified by finite mass con-

tributions. Namely, when the Dirac mass is nonzero, right- and left-handed fermions are
coupled with each other, which explicitly breaks the chiral symmetry and gives rise to
an extra contribution

@µJ
µ

5 =
eE

⇡
+ 2mP, (4)

where  ̂ is the Dirac field and

J
µ

5 := J
µ

R � J
µ

L , P := h ˆ̄ i�5 ̂i (5)

are the chiral current and the pseudo-scalar condensate, respectively. We stress that
the anomaly relation (4) just states that the sum of the divergence of the chiral current
(i.e., the chirality production number) and the pseudo-scalar condensate equal to the
topological charge eE/⇡. The anomaly relation does not tell us the breakdown how each
contribution makes up the sum. To know the breakdown, one has to compute either of
the contributions explicitly.

The breakdown of the massive chiral anomaly relation (4) is well understood in the
slow limit, i.e., when the applied electric field is varying slowly in spacetime. In the slow
limit, the chirality production for massive Dirac fermions is driven by the Schwinger
mechanism [18, 19, 21, 30, 40–42]. The Schwinger mechanism states that pairs of a
particle and an anti-particle are produced via quantum tunneling. One may estimate
the pair production number for slowly varying electric fields by using Schwinger’s classic
result [43] (or the so-called locally-constant-field approximation [44, 45]) as

Npair(t, x) ⇠
R
t
dt0eE(t0, x)

2⇡
e�⇡

m2

|eE(t,x)| . (6)

After the pair production, the particles and anti-particles are accelerated along the par-
allel and anti-parallel directions with respect to the electric field, respectively, i.e., the
spectral flow occurs. Accordingly, chirality +2 is produced whenever pairs are produced.
Therefore,

J
0
5

slow limit������! 2Npair ⇠
R
t
dt0eE(t0, x)

⇡
e�

⇡m2

|eE(t,x)| . (7)
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constructed with H̃0 and/or H̃l 6=0 are c-number. The latter means that the kick operator
K, which is eventually given as a sum of commutations of H̃0 and/or H̃l 6=0, must be a
c-number. Therefore, K commutes with anything except for H̃0, and one can simplify
Eq. (19) as

e+iK
He�iK = H + i[K, H̃0],

@e+iK

@t
e�iK = iK̇, (32)

which in turn simplifies Eq. (16) as

HF = H + i[K, H̃0]� "
�1

K̇. (33)

Applying
R
T

0
dt
T

and imposing the van Vleck gauge fixing condition (22), one obtains

HF = H̃0, (34)

i.e., there are no "-corrections to the Floquet Hamiltonian HF within the van Vleck
expansion scheme. One then understands that K(n) satisfies a recursive equation of the
form

K̇
(n+1) = i[K(n)

, H̃0] = ⌥@xK
(n)

, (35)

with an initial condition

K̇
(1) = H � H̃0 =

p
2
⇣
eA

⌥ � eÃ
⌥

0

⌘
. (36)

The solution to this recursive equation is given by

K
(n)(t, x) = (⌥@x)

n�1

Z
t

dtn

Z
tn

dtn�1 · · ·
Z

t2

dt1
p
2
⇣
eA

⌥(t1, x)� eÃ
⌥

0 (x)
⌘
. (37)

Here and hereafter we always set undertermined integration constants for indefinite in-
tegrals to be zero for notational simplicity, i.e.,

R
t
dt0e�

2⇡i
T t

0
:= T

�2⇡ie
�

2⇡i
T t

0
. Note that

the integration constant must be vanishing in Eq. (37); otherwise it does not satisfy the
van Vleck gauge fixing condition (22). Summing up with respect to n, we find

K(t, x) =
1X

n=1

(⌥@x)
n�1

Z
t

dtn

Z
tn

dtn�1 · · ·
Z

t2

dt1
p
2
⇣
eA

⌥(t1, x)� eÃ
⌥

0 (x)
⌘
, (38)

where and hereafter we suppress the book-keeping parameter " for brevity. We emphasize
that the kick operator K (38) receives nontrivial corrections from the external field A

µ,
while the Floquet Hamiltonian HF (34) does not. This implies that nontrivial physics of
Weyl fermions such as the chiral anomaly comes out only from the kick operator.

As we discuss soon, the series expression (38) has a finite radius of convergence, i.e.,
the van Vleck expansion is not necessarily convergent. Nevertheless, one can obtain a
function which is well-defined on the whole parameter space by first explicitly performing
the n-summation in Eq. (38) and then analytically continuing it beyond the original

10

reproduce the chiral anomaly. We then proceed to discussions for a more nontrivial
case of the massive Dirac fermions in the next section. Using the Weyl fermions in
(1+1) dimensions is advantageous for theoretical consideration since the Weyl equation
is analytically solvable. We can therefore write down the explicit forms of the Floquet
Hamiltonian HF and the kick operator K to arbitrary orders. We show that the chiral
anomaly in the van Vleck high-frequency expansion has an intriguing structure; only low
order terms up to n = 2 are essential for the chiral anomaly and higher order terms with
n > 2 eliminate redundant terms one after another. We also clarify the convergence
condition for the van Vleck expansion, and discuss how one can extend the radius of
convergence via resummation or considering a “Hamiltonian” in the spatial direction.

3.1. Weyl equation and Hamiltonian

The Weyl equation in (1+1) dimensions reads

i@t�R/L(t, x) = HR/L(t, x)�R/L(t, x) (27)

with the Weyl Hamiltonian expressed in terms of the light-cone variables:

HR/L := ⌥i@x + eA
0(t, x)⌥ eA

1(t, x) = ⌥i@x +
p
2eA⌥(t, x) . (28)

The upper and the lower signs refer to the right- and the left-handed [or the right- and
the left-moving in (1+1) dimensions] fermions, i.e., �R and �L, respectively. For the
moment we do not take a particular gauge for the gauge field A

µ (which we fix later).
In our problem setup the electric field, or Aµ, is periodic in time as

A
µ(t+ T, x) = A

µ(t) , (29)

so as the Hamiltonian; H(t + T, x) = H(t, x). One may then express HR/L in Eq. (28)
as a Fourier series as

HR/L = ⌥i@x +
p
2eÃ⌥

0| {z }
=H̃0

+
X

l 6=0

e+
2⇡il
T t

p
2eÃ⌥

l

| {z }
=
P

l 6=0 e+
2⇡il
T

t
H̃l 6=0

. (30)

We also assume that the period T is su�ciently small (i.e., the frequency T/2⇡ is large)
compared to the typical length scale of the electric field L as

T/L ⌧ 1, (31)

so that, as we shall demonstrate in the next section 3.2, the van Vleck high-frequency
expansion is convergent.

3.2. van Vleck expansion to arbitrary orders

One can compute the Floquet Hamiltonian HF and the kick operator K to arbitrary
high orders for the Weyl equation in (1+1) dimensions (27). As reviewed in Sec. 2.2, the
Floquet Hamiltonian HF and the kick operator K are obtained by perturbatively solving
Eq. (16). To do this explicitly, we notice that only the zero mode of the Hamiltonian H̃0 =
⌥i@x +

p
2eÃ±

0 can have nontrivial commutation relations, and that any commutations
9

Original Hamiltonian for Weyl fermions

Explicitly constructed Kick opeartor:

Floquet Hamiltonian
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where and hereafter we suppress the book-keeping parameter " for brevity. We emphasize
that the kick operator K (38) receives nontrivial corrections from the external field A

µ,
while the Floquet Hamiltonian HF (34) does not. This implies that nontrivial physics of
Weyl fermions such as the chiral anomaly comes out only from the kick operator.

As we discuss soon, the series expression (38) has a finite radius of convergence, i.e.,
the van Vleck expansion is not necessarily convergent. Nevertheless, one can obtain a
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Simply only in (1+1)D!
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To make the long story very short, the axial current 
expectation value involves the point-splitting regularization 
leading to a derivative term from the Kick operator.

Floquet Hamiltonian does not carry information of the 
chiral anomaly, as suspected correctly.

Very first time to point out that the Kick operator is so 
essential for physics.
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One might think that this is only an academic exercise?

No… the Kick operator is a transformation onto the 
“co-rotating” bases:  consider a real rotating system! 
EM fields look like time-periodically driven potentials!

A very interesting subject: Chiral anomaly with EM 
fields in a rotating frame

Time-periodicity can be canceled by the unitary rotation, 
but the chiral anomaly is retained in this part.

Fukushima-Hattori-Mameda-Taya (on going)
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Summary

Many are known for constant EM fields 
□ Relation between the particle production and the axial 

Ward identity (chiral anomaly). 
□ In-In and In-Out differences 

Inhomogeneity (in spacetime) is everywhere 
□ QCD phase diagram with strong B effect 
□ Rotating QCD medium producing paraxial photons 
□ LPV backgrounds modeled with the Maxwell eq. 

Theoretical approach based on the Floquet theory

36


