Mesons under strong magnetic field in the NJL model

N. N. Scoccola Tandar Lab -CNEA– Buenos Aires

PLAN OF THE TALK

Introduction

- Extended Nambu-Jona-Lasinio (NJL) model under strong magnetic fields
- Results for neutral mesons
- Results for charged mesons
- Summary & Conclusions

Refs: Carlomagno, Gomez Dumm, Noguera & NNS: Phys.Rev.D 106 (2022) 074002, Carlomagno, Gomez Dumm, I. Villafañe, Noguera & NNS: arXiv:2209.10679

For related work see posters by M. Coppola and J. Sodré

Introduction

In the last decades there has been quite a lot of interest in investigating how the hadronic properties are affected by the presence of strong magnetic fields.

Motivation: their possible existence in physically relevant situations:

- High magnetic fields in non-central relativistic heavy ion collisions
- Compact Stellar Objects: magnetars
- Early Universe

Features of strongly interacting matter under intense magnetic fields have been investigated in a variety of approaches: NJL, LQCD, χ PT, quark models, etc

Recent reviews:

Kharzeev, Landsteiner, Schmitt, Yee, Lect. Notes Phys. 871, 1 (2013).

Miransky, Shovkovy, Phys. Rept. 576, 1 (2015).

Andersen, W. R. Naylor, A. Tranberg, Rev. Mod. Phys. 88, 025001 (2016)

Generalized NJL model at finite B

We start from the Euclidean lagrangian of the NJL model for 2 flavors in the presence of an external e.m. field

$$\mathcal{L} = \overline{\psi}(x) \left(-i \not{D} + m_c \right) \psi(x) - g_s \sum_{a=0}^{3} \left\{ \left[\overline{\psi}(x) \tau_a \psi(x) \right]^2 + \left[\overline{\psi}(x) i \gamma_5 \tau_a \psi(x) \right]^2 \right\}$$

$$-g_{\nu 3} \left[\overline{\psi}(x) \gamma_\mu \overline{\tau} \psi(x) \right]^2 - g_{\nu 0} \left[\overline{\psi}(x) \gamma_\mu \psi(x) \right]^2$$

$$+ 2g_d \sum_{\varepsilon = \pm 1} \det[\overline{\psi}(x)(1 + \varepsilon \gamma_5)\psi(x)],$$

$$t \text{Hooft}$$
where
$$D_\mu = \partial_\mu - i \hat{Q} \mathcal{A}_\mu \quad , \quad \hat{Q} = \operatorname{diag}(Q_u, Q_d) \quad , \quad Q_u = -2Q_d = 2e/3 \quad , \quad \tau_a = (1, \overline{\tau}) \quad , \quad \psi = \begin{pmatrix} \psi_u \\ \psi_d \end{pmatrix}$$

We consider a constant and uniform magnetic field along the z-axis and choose the Landau gauge

$$\vec{B} = B \ \hat{x}_3$$

$$\mathcal{A}_4 = 0, \vec{\mathcal{A}} = (0, B x_1, 0)$$

We bosonize the fermionic theory, introducing $\sigma_a(x)$, $\pi_a(x)$, $\rho_{a\mu}(x)$ and integrating out the fermion fields. The bosonized Euclidean action reads

$$S_{\text{bos}} = -\ln \det \mathcal{D} + \frac{1}{4g} \int d^4 x \left[\sigma_0(x) \sigma_0(x) + \vec{\pi}(x) \cdot \vec{\pi}(x) \right] \\ + \frac{1}{4g(1 - 2\alpha)} \int d^4 x \left[\vec{\sigma}(x) \cdot \vec{\sigma}(x) + \pi_0(x) \pi_0(x) \right] \\ + \frac{1}{4g} \int d^4 x \, \vec{\rho}_\mu(x) \cdot \vec{\rho}_\mu(x) + \frac{1}{4g_{\nu 0}} \int d^4 x \, \rho_{0\mu}(x) \rho_{0\mu}(x)$$

where

$$\left[\mathcal{D}_{x,x'}=\delta^{(4)}(x-x')\left\{-i\not\!\!D+m_c+\sum_{a=0}^3\tau_a\left[\sigma_a(x)+i\gamma_5\pi_a(x)+\gamma_\mu\rho_{a\mu}(x)\right]\right\}\right]$$

$$g = g_s + g_d$$

$$\alpha = g_d / (g_s + g_d)$$

$\alpha = 0$	Flavors decoupled
$\alpha = 1/2$	Maximum flavor mixing
<i>α</i> □ 0.1−0.2	"empirical"

We proceed by expanding the bosonized action in powers of the fluctuations $\delta\sigma_a(x)$, $\delta\pi_a(x)$, $\delta\rho_{a\mu}(x)$ around the corresponding mean field (MF) values. We assume that only $\tau_a \bar{\sigma}_a = diag(\bar{\sigma}_u, \bar{\sigma}_d)$ is non-vanishing. Thus we write

$$\mathcal{D}_{x,x'} = \operatorname{diag}(\mathcal{D}_{x,x'}^{MF,u}, \mathcal{D}_{x,x'}^{MF,d}) + \delta \mathcal{D}_{x,x'}.$$

where

$$\mathcal{D}_{x,x'}^{MF,f} = \delta^{(4)}(x-x') \left(-i \not\partial - Q_f B x_1 \gamma_2 + M_f\right) \quad \text{with} \quad M_f = m_c + \overline{\sigma}_f$$

The effective action is
$$S_{\text{bos}} = S_{\text{bos}}^{MF} + S_{\text{bos}}^{quad} + \dots$$

At MF level we have

$$\frac{S_{\text{bos}}^{MF}}{V^{(4)}} = \frac{(1-\alpha)(\bar{\sigma}_u^2 + \bar{\sigma}_d^2) - 2\alpha \ \bar{\sigma}_u \bar{\sigma}_d}{8g(1-2\alpha)} - \frac{N_c}{V^{(4)}} \sum_{f=u,d} \int d^4 x d^4 x' \ tr_D \ln\left(S_{x,x'}^{MF,f}\right)^{-1},$$

$$MF \text{ quark propagator in presence of mag. field}$$

For MF quark
propagator we use
$$\begin{split} S_{x,x'}^{MF,f} &= \exp\left[i\Phi_{f}\left(x,x'\right)\right]\tilde{S}^{MF,f}\left(x-x'\right) \\ &\tilde{S}^{MF,f}\left(x-x'\right) = \int_{p}e^{ip\left(x-x'\right)}\tilde{S}_{p}^{f} \\ &\Phi_{f}(x,x') = s_{f}B_{f}(x_{1}+x'_{1})(x_{2}-x'_{2})/2 \\ &s_{f} = sign(Q_{f}B) \quad , \quad B_{f} = |Q_{f}B| \\ &p_{\perp} = (p_{1},p_{2}) \quad , \quad p_{\parallel} = (p_{3},p_{4}) \end{split}$$

To regularize the MF-action we sum and subtract the B=0 contribution. The *B*-dependent piece turns out to be finite. The B=0 one is regularized introducing 3D-cutoff Λ (Magnetic Field Independent Regularization – MFIR)

The MF effective masses M_f are obtained from the coupled set of gap equations

$$\frac{\partial S_{bos}^{MF,reg}}{\partial M_u} = \frac{\partial S_{bos}^{MF,reg}}{\partial M_d} = 0$$

NEUTRAL MESON MASSES IN NJL AT FINITE MAGNETIC FIELD

At quadratic level the neutral meson contribution is

$$\begin{aligned}
\mathcal{S}_{\text{hos}}^{\text{quad,neutral}} &= \frac{1}{2} \int d^4 x \, d^4 x' \sum_{M,M'} \, \delta M(x) \, \mathcal{G}_{MM'}(x,x') \, \delta M'(x') \\
\text{with } a = 0,3
\end{aligned}$$
Note that for B=0 $(\sigma_0, \pi_0, \rho_0) \Leftrightarrow (\sigma, "\eta", \omega)$ $(\sigma_3, \pi_3, \rho_3) \Leftrightarrow (a_1^0, \pi^0, \rho^0)$
The inverse meson propagator $\mathcal{G}_{MM'}(x, x')$ is

$$\begin{aligned}
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{J}_{MM'}(x, x'), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{J}_{MM'}(x, x'), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{J}_{MM'}(x, x'), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{J}_{MM'}(x, x'), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{G}_{MM'}(x, x'), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{G}_{MM'}(x, x'), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{G}_{MM'}(x, x'), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{G}_{MM'}(x, x'), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{G}_{MM'}(x', x), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{G}_{MM'}(x', x), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{G}_{MM'}(x', x), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{G}_{MM'}(x', x), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{G}_{MM'}(x', x), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{G}_{MM'}(x', x), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{G}_{MM'}(x', x), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{G}_{MM'}(x', x), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{G}_{MM'}(x', x), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{G}_{MM'}(x', x), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{G}_{MM'}(x', x), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)}(x - x') + \mathcal{G}_{MM'}(x', x), \\
\mathcal{G}_{MM'}(x, x') &= \frac{1}{2g_M} \, \delta_{MM'} \, \delta^{(4)$$

Contributions of Schwinger phases from quark propagators cancel out. The polarization functions are translational invariant. Taking Fourier transform of M(x) polarization functions are diagonal in momentum space

$$S_{\pi^0}^{quad} = \frac{1}{2} \sum_{M,M'} \int_q \left(\delta M(q) \right)^* G_{MM'}(q) \, \delta M(q)$$

where
$$G_{MM'}(q) = \left[\frac{\delta_{MM'}}{2g_M} - \left(F_{MM'}(q) + \varepsilon_M \varepsilon_{M'}F_{MM'}(q)\right)\right]$$

with
$$F_{MM'}^f(q) = N_c \int_p \operatorname{tr}_D \left[\tilde{S}_{p+q/2}^f \Gamma^{M'} \mathcal{S}_{x',x}^{MF,f} \tilde{S}_{p-q/2}^f \right]$$

The expressions for $F_{MM'}^{f}(q)$ are divergent. As in MF-action we sum and subtract the *B*=0 contributions. *B*-dependent piece turns out to be finite. The *B*=0 ones are regularized introducing 3D-cutoff Λ (MFIR)

$$F_{MM'}^{f,mag}(q) = F_{MM'}^{f}(q) - F_{MM'}^{f,B=0}(q)$$

To calculate the meson masses we set $\vec{q} = 0$ and $q_4 = i m$. In this case scalar meson decouples. Only non-vanishing polarization functions are $F_{\pi_a\pi_b}^{f,mag} = -N_c \left[I_{1f}^{mag} - m^2 I_{2f}^{mag} \right]$ $\begin{aligned} F_{\pi_{a}\rho_{b\mu}}^{f,mag} &= iN_{c} I_{3f}^{mag} \delta_{\mu3} \\ F_{\rho_{a\mu}\rho_{b\nu}}^{f,mag} &= N_{c} \left[I_{4f}^{mag} \left(\delta_{\mu1} \delta_{\nu1} + \delta_{\mu2} \delta_{\nu2} \right) + m^{2} I_{5f}^{mag} \delta_{\mu3} \delta_{\nu3} \right] \end{aligned}$ I_{nf}^{mag} finite integrals that depend on (M_{f}, m, B) The ρ meson polarization vectors $\epsilon_{\mu}^{(Sz)}$ (Sz=±1,0 spin projection) are (at rest) $\epsilon_{\mu}^{(\pm 1)} = \frac{1}{\sqrt{2}} (1, \pm i, 0, 0) \quad \left[\rho_{\parallel} \right]$ $\epsilon_{\mu}^{(0)} = (0, 0, 1, 0) \qquad \left[\rho_{\perp} \right]$ Then, in the pseudocalar-vector sector we have $G = G_{\perp} \oplus 2G_{\parallel} \text{ where } \begin{cases} G_{\perp} \text{ corresponds to } \pi_0 - \pi_3 - \rho_{0\perp} - \rho_{3\perp} \text{ system (Sz=0)} \\ G_{\parallel} \text{ corresponds to } \rho_{0\parallel} - \rho_{3\parallel} \text{ system (Sz=\pm1)} \end{cases}$

Demanding det $G_{\parallel} = 0$ and det $G_{\perp} = 0$ masses and compositions obtained

CHARGED MESON MASSES IN NJL AT FINITE MAGNETIC FIELD

At quadratic level the Q=+e meson contribution is (similar for Q=-e)

$$S_{\text{bos}}^{\text{quad},+} = \frac{1}{2} \int d^4 x \, d^4 x' \sum_{M,M'} \, \delta M(x)^{\dagger} \, \mathcal{G}_{MM'}(x,x') \, \delta M'(x')$$

$$M=\pi^+$$
 , ho_μ^+

The inverse meson propagator $\mathcal{G}_{MM'}(x, x')$ is

$$\mathcal{G}_{MM'}(x,x') = \frac{1}{2g_M} \,\delta_{MM'} \,\delta^{(4)}(x-x') + \mathcal{J}_{MM'}(x,x') \,,$$

where

$$\mathcal{J}_{MM'}^{ud}(x',x) = N_c \exp\left[i\left(\Phi_u(x,x') + \Phi_d(x',x)\right)\right] \operatorname{tr}_D\left[\tilde{\mathcal{S}}^{MF,u}(x-x')\Gamma^{M'}\tilde{\mathcal{S}}^{MF,d}(x'-x)\Gamma^{M}\right]$$

Note that using $Q_{\pi^+} = Q_{\rho^+} = Q_u - Q_d \equiv Q_+$ we have

$$\Phi_{+}(x, x') = \Phi_{u}(x, x') + \Phi_{d}(x', x)$$

SP does not vanish. Needed to keep gauge invariance of action. Translational invariance is broken. We cannot use plane waves (Fourier transform) to "diagonalize" space dependence of $\mathcal{G}_{MM'}(x, x')$

For $k \ge 1$, $\rho_{\mu}^{+}(\bar{q})$ can be expressed in terms of 3 independent (transverse) polarization vectors. For k = -1 there is only one polarization vector while for k = 0 there are two. This way of writing the solutions is similar to that of Ritus for $\frac{1}{2}$ fermions.

There is some freedom in the election of the 3 matrices Δ_{λ} which is compensated by the choice of the polarization vectors $\epsilon_{\mu}^+(\bar{q})$.

In this basis
$$S_{\text{bos}}^{\text{quad},+} = = \frac{1}{2} \sum_{M,M'} \sum_{\overline{q},\overline{q}'} \left[\delta M\left(\overline{q}\right) \right]^{\dagger} \left(\frac{\delta_{MM'} \hat{\delta}_{\overline{q}\overline{q}'}}{2g_M} - \mathcal{J}_{MM'}(\overline{q},\overline{q}') \right) \delta M'(\overline{q}')$$
For example
$$\hat{\delta}_{\overline{q}\overline{q}'} = (2\pi)^4 \delta_{kk'} \delta(q_2 - q_{2'}) \delta(q_3 - q_{3'}) \delta(q_4 - q_{4'}).$$

$$\mathcal{J}_{\pi^+\pi^+}(\overline{q},\overline{q}') = 2N_c \int_{p_\nu} tr_D \left[\tilde{S}_{p+\nu/2}^d i\gamma_5 \tilde{S}_{p-\nu/2}^u i\gamma_5 \right] \int d^4x d^4x' e^{i\nu(x-x')} \mathbb{F}_{\overline{q}}(x)^* \mathbb{F}_{\overline{q}'}(x') e^{i\Phi_d(x,x')} e^{i\Phi_u(x',x)}$$
Explicit calculation shows
$$\mathcal{J}_{MM'}(\overline{q},\overline{q}') = \hat{\delta}_{\overline{q}\overline{q}'} \mathcal{J}_{MM'}(k,\Pi^2) \qquad \Pi^2 = (2k+1)B_+ + q_3^2 + q_4^2$$

Here, $J_{MM'}(k, \Pi^2)$ are integrals which also depend on M_f and B. They are regularized using the MFIR scheme.

We are interested in the lowest pion and rho meson states (thus we set $q_3=0$)

•
$$\rho^+$$
 it corresponds to $k = -1$.
No coupling to π^+ .
$$\frac{1}{2g_{\nu}} - J^{(\text{reg})}_{\rho^+\rho^+}(k, -m^2_{\rho^+}) = 0.$$
$$E_{\rho^+}(eB) = \sqrt{m^2_{\rho^+} - eB}$$

•
$$\pi^+$$
 it corresponds to $k = 0$.
Only couples with ρ^+
associated to $S_z=0$
 $2 \ge 2 \mod \pi^+ \rho_{\perp}^+ (k=0) \sec t$

Results

In our numerical calculations the values of g, $g_{\nu 0} = g_{\nu 3}$, Λ and m_c are fixed so as to reproduce the *B*=0 values of f_{π} =92.4 MeV, m_{π} =138 MeV and $m_{\rho}=m_{\omega}$ = 770 MeV together with *M*=400 MeV. For $\alpha = 0.1$ we get $m_{"\eta"}$ =520 MeV

Good agreement with LQCD results (Bali et al, '12)

NEUTRAL MESON SECTOR

 $S_z = \pm 1$ states

Masses of $\tilde{\rho}_{\perp}$ and $\tilde{\omega}_{\perp}$ increase with B

Masses of $\tilde{\pi}$ and $\tilde{\eta}$ decrease with B

States denoted \widetilde{M} to indicate meson with largest weight in spin-isospin decomposition S_z=0 states compositions

 $|k\rangle = c_{\pi_0}^{(k)} |\pi_0\rangle + c_{\pi_3}^{(k)} |\pi_0\rangle + i c_{\rho_0}^{(k)} |\rho_{0\perp}\rangle + i c_{\rho_3}^{(k)} |\rho_{3\perp}\rangle$

for spin/isospin decomposition

 $|k\rangle = c_{\pi_u}^{(k)} |\pi_u\rangle + c_{\pi_d}^{(k)} |\pi_d\rangle + i c_{\rho_u}^{(k)} |\rho_{u\perp}\rangle + i c_{\rho_d}^{(k)} |\rho_{d\perp}\rangle$

for spin/flavor decomposition.

State	$eB \; [{ m GeV^2}]$	Spin-isospin composition				Spin-flavor composition			
		$c_{\pi_0}^{(k)}$	$c_{\pi_3}^{(k)}$	$c^{(k)}_{ ho_{0\perp}}$	$c^{(k)}_{ ho_{3\perp}}$	$c_{\pi_u}^{(k)}$	$c_{\pi_d}^{(k)}$	$c^{(k)}_{ ho_{u\perp}}$	$c^{(k)}_{ ho_d\perp}$
$ ilde{\pi}~(k=1)$	0.05	0.00	0.99	-0.02	-0.01	0.71	-0.70	-0.02	-0.01
	0.5	0.10	0.99	-0.08	-0.03	0.77	-0.63	-0.08	-0.04
	1.0	0.16	0.98	-0.08	-0.03	0.81	-0.59	-0.08	-0.04
$\overline{\tilde{\eta} \ (k=2)}$	0.05	0.99	-0.04	-0.04	-0.13	0.67	0.73	-0.12	0.07
	0.5	0.87	-0.32	0.06	-0.38	0.38	0.84	-0.22	0.31
	1.0	0.83	-0.34	0.10	-0.42	0.35	0.83	-0.22	0.37
$ ilde{\omega}~(k=3)$	0.05	-0.20	0.27	0.76	-0.56	0.05	-0.33	0.14	0.93
$\widetilde{ ho}$ $(k=4)$	0.05	0.49	0.33	0.47	0.65	0.58	0.11	0.79	-0.13

Table I. Composition of the $S_z = 0$ meson mass eigenstates for some selected values of eB. Results correspond to $\alpha = 0.1$. Relative signs hold for the choice B > 0.

Effect of flavor mixing and the mixing with vectors on the pseudoscalar masses

Comparison of mass of lowest $S_z=0$ state with LQCD results

Masses of vector $S_z = \pm 1$ states

Effect of B-dependent couplings

We take

g(eB) /g = g_v(eB)/g_v =
$$\kappa_1 + (1 - \kappa_1) \exp\left[-\kappa_2 (eB)^2\right]$$

$$\begin{cases} \kappa_1 = 0.321 \\ \kappa_2 = 1.31 \text{ GeV}^2 \end{cases}$$

This leads to behavior of quark masses similar to e.g. Endrodi-Marko, '18, etc

CHARGED MESON SECTOR

We use $\alpha = 1/2$ for simplicity

PointLike $E_{\rho} = \sqrt{\left(m_{\rho}^{B=0}\right)^{2} - eB}$

Approximation used by Chernodub, '10 to suggest existence of charged vector condensation, i.e. Vacuum Super Conductor (VSC)

Our result differs from previous SU2 NJL calculations (Liu et al '15; Cao '19) which find VCS. They set ρ meson at rest ($\vec{q} = 0$) and neglect Schwinger Phase [It might be called ``Plane Wave Approximation'']

	$ ilde{\pi}^+$		$ ilde ho^+$		7
$eB \ [{ m GeV}^2]$	$c_{\pi^+}^{ ilde{\pi}^+}$	$c^{\tilde{\pi}^+}_{ ho^+}$	$c_{\pi^+}^{\tilde{ ho}^+}$	$c^{\tilde{\rho}^+}_{\rho^+}$	Composition for
0.05	0.999	0.013	-0.156	0.988	selected values of el
0.5	0.960	0.281	-0.702	0.713	$(g \text{ and } g_v \text{ ctes})$
1.0	0.892	0.453			

Summary and Conclusions

- We have considered the effect of a strong magnetic field on the masses of pseudoscalar and vector mesons in the context of an extended NJL model taking into account the mixings induced by the magnetic field

- For neutral mesons with Sz=0 we find that while the pseudocalars masses tend to decrease as the magnetic field increases those of the vectors behave in the opposite way.

- The effect of the mixing on mass of the lowest state (the `pion') is nonnegligible. Mass somewhat small as compared with LQCD results. Axials ?

- Masses of neutral mesons with $Sz=\pm 1$ tend to increase with B

- Effect of B-dependent couplings on neutral meson masses rather small

- The mass of lowest ρ^+ decreases at low B but stabilizes at a non-zero value. NO VSC. Different from other NJL calculations that neglect SP

- Effect of $\rho\pi$ mixing on mass of lowest charged `pion' non-negligible. Gets NJL results closer to those of LQCD