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In the last decades there has been quite a lot of interest in investigating how 

the hadronic properties are affected by the presence of strong magnetic 

fields. 
 

Motivation:  their possible existence in physically relevant situations:   
 

• High magnetic fields in non-central relativistic heavy ion collisions  

• Compact Stellar Objects: magnetars  

• Early Universe 

Introduction 



We start from the Euclidean lagrangian of the NJL model for 2 flavors in the 

presence of an external e.m. field 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Generalized NJL model at finite B 
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We consider a constant and uniform magnetic field along the z-axis and 

choose the Landau gauge   
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We bosonize the fermionic theory, introducing a(x), 𝜋𝑎 𝑥 , ρ𝑎μ 𝑥  and 

integrating out the fermion fields. The bosonized Euclidean action reads 
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We proceed by expanding the bosonized action in powers of the fluctuations 

𝛿𝜍𝑎 𝑥 , 𝛿𝜋𝑎 𝑥 , 𝛿ρ𝑎μ 𝑥  around the corresponding mean field (MF) values. 

We assume that only 𝜏𝑎𝜍 𝑎 = 𝑑𝑖𝑎𝑔(𝜍 𝑢 , 𝜍 𝑑) is non-vanishing. Thus we write 
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At MF level we have 

MF quark propagator in presence of mag. field 



Type equation here. 
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For MF quark  

propagator we use 
 

Schwinger phase (SP) 
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In proper time 

To regularize the MF-action we sum and subtract the B=0 contribution. The 

B-dependent piece turns out to be finite. The B=0 one is regularized 

introducing 3D-cutoff  Λ (Magnetic Field Independent Regularization – MFIR) 

 

The MF effective masses Mf  are obtained from the coupled set of gap 
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At quadratic level the neutral meson contribution is 
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The inverse meson propagator                  is 
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with  

𝒢𝑀𝑀′(𝑥, 𝑥′) 



The expressions  for 𝐹
𝑀𝑀′
𝑓

(𝑞) are divergent. As in MF-action we sum and 

subtract the B=0 contributions. B-dependent piece turns out to be finite. The 

B=0 ones are regularized introducing 3D-cutoff  Λ (MFIR) 
 

 

                                                  𝐹
𝑀𝑀′
𝑓,𝑚𝑎𝑔

(𝑞) = 𝐹
𝑀𝑀′
𝑓

(𝑞) - 𝐹
𝑀𝑀′
𝑓,𝐵=0

𝑞  
 
 

Contributions of Schwinger phases from quark propagators cancel out. The 

polarization functions are translational invariant. Taking Fourier transform of 

𝑀 𝑥   polarization functions are diagonal in momentum space 
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To calculate the meson masses we set 𝑞 = 0 and 𝑞4 = 𝑖 𝑚 . In this case 

scalar meson decouples. Only non-vanishing polarization functions are 

𝐼𝑛𝑓
𝑚𝑎𝑔

  finite integrals that depend on (𝑀𝑓,𝑚, 𝐵) 
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Demanding  det 𝐺 || = 0   and   det 𝐺 ⊥ = 0 masses and compositions obtained 



At quadratic level the Q=+e meson contribution is (similar for Q=-e ) 
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The inverse meson propagator                  is 
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We are interested in the lowest pion and rho meson states (thus we set 𝑞3=0) 
 

• 𝜌+ it corresponds to 𝑘 = −1.  

     No coupling to 𝜋+. 
 
 

• 𝜋+ it corresponds to 𝑘 = 0.  

     Only couples with 𝜌+  
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regularized using the MFIR scheme.  
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In our numerical calculations the values of g, g𝑣0= g𝑣3, Λ and 𝑚𝑐 are fixed so 

as to reproduce the B=0 values of 𝑓𝜋=92.4 MeV, 𝑚𝜋=138 MeV and  𝑚𝜌= 𝑚𝜔= 

770 MeV together with M=400 MeV. For 𝛼 = 0.1 we get  𝑚"𝜂"=520 MeV 

Results 

Good agreement with LQCD results (Bali et al, ‘12) 
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  NEUTRAL MESON SECTOR 

States denoted 𝑀   to 

indicate meson with 

largest weight in 

spin-isospin 

decomposition 

Masses of 𝜋   and 𝜂  

decrease with B 

Masses  of 𝜌 ⊥ and 𝜔 ⊥ 

increase  with B 

Sz=±1 states 
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Effect of flavor mixing and the mixing with  

vectors on the pseudoscalar masses 

No mixing with  

vectors 

 

Mixing with 

vectors     

 



Comparison of mass of lowest Sz=0 state with LQCD results 



Masses of vector Sz=±1 states 

Effect of flavor mixing and 𝜌𝜔 

the mixing on masses  

of Sz=±1 vectors 

Black line NO 𝜌𝜔 mixing 

Comparison with LQCD results 



Results do not 

change much 

except for 

Sz=0 vectors 

(which lie above 

threshold) 
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This leads to behavior of quark masses similar to e.g. Endrodi-Marko, ‟18, etc 

Sz=0                               Sz=±1 

Effect of B-dependent couplings 



  CHARGED MESON SECTOR 

Lowest 𝜌±  state (k = -1) 
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Approximation used by 

Chernodub, „10  

to suggest existence of 

charged vector  

condensation, i.e. 

Vacuum Super 

Conductor (VSC) 

Our result differs from previous SU2 NJL calculations (Liu et al ‟15; Cao ‟19) 

which find VCS. They set 𝜌 meson at rest (𝑞  =0) and neglect Schwinger Phase 

[It might be called ``Plane Wave Approximation‟‟] 

We use 𝛼 = 1/2 for 

simplicity 



k=0 states (Sz=0) 

Composition for 

selected values of eB 

(𝑔 and 𝑔𝑣 ctes)  



Comparison mass of lowest 𝜋  meson with 

LQCD results 

(𝑔 and 𝑔𝑣 ctes) 



Summary and Conclusions 

- We have considered the effect of a strong magnetic field on the masses of 

pseudoscalar and vector mesons in the context of an extended NJL model 

taking into account the mixings induced by the magnetic field 
 

- For neutral mesons with Sz=0 we find that while the pseudocalars masses 

tend to decrease as the magnetic field increases those of the vectors behave 

in the opposite way. 
 

- The effect of the mixing on mass of the lowest state (the `pion´) is non-

negligible. Mass somewhat small as compared with LQCD results. Axials ?  
 

- Masses of neutral mesons with Sz=±1 tend to increase with B 
 

- Effect of B-dependent couplings on neutral meson masses rather small 
 

- The mass of lowest 𝜌+ decreases at low B but stabilizes at a non-zero value. 

NO VSC. Different from other NJL calculations that neglect SP 
 

- Effect of 𝜌𝜋 mixing on mass of lowest charged `pion´ non-negligible. Gets 

NJL results closer to those of LQCD  


