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Magnetic field in heavy ion collisions
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“ Heavy ions Quark gluon plasma
ectators
® Non-central HICs ( non-zero impact parameter ) /W l/_-

® Charged spectator nuclei produce electric currents (like two

parallel current carrying wires in opposite directions) /@@@E%

@ The currents can produce magnetic fields

® Magnetic fields due to these two sources add up st wire 2nd wire

http://physicstasks.eu/

2/21



Estimates of the produced magnetic field

(]

O A crude estimate of the magnetic field (using Biot-Savart Law):

I l
—eB, ~ 40m; ~ 10"°*Gauss ( At RHIC Au+Au collisions, \/sxx = 200 T l

GeV,b=5fm,t=0) ‘E}@

o Strongest magnetic field ever produced in laboratory

o B-field has observable effects on properties of produced particles, -

S—

such as anisotropic flow Ist wire 2nd wire

http:/ /physicstasks.eu

Earth STAR magnet Neutron Star (Magentar) Heavy ion collisions
~0.5 Gauss ~5000 Gauss ~ 1014 Gauss ~ 1018 Gauss
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Directed flow (v1) and charge splitting (Av)

o First harmonic coefficient of Fourier decomposition of particle azimuthal distribution -
directed flow (v1)

d3N d2N Rl
E — (1 2 g — )
d® ~ 2nprdprdy W T ; vncosn(p — Wrp) ' .
N AL V\
where v, = (cosn(¢ — Vgp)) >\VR9

Vv, (4)

O Probe early stage of the collisions -
strong electromagnetic (EM) field

o EM field has observable consequences
on charge driven v1 splitting (Av+)
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EM field drives splitting

@ Assume a non-central HIC (b # 0)
@ Beam direction: 2, Impact parameter: X

® Charged spectators produce magnetic
field- B L RP

O=Y(B)

b0
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EM field drives splitting - Hall effect

Hatd ﬁ;}% o Produced medium expands
longitudinally ( ﬂf| |2 U1l B)

o Lorentz force pushes positively and
negatively charged particles in
opposite directions

o Generated current L E,ﬂ’
=> Hall effect
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EM field drives splitting - Faraday and Coulomb effect

o Spectators fly away, B decays down Bt o= 8
fast =
o Time varying B induces E field => t]:'ww\a[{,,} g I

Faraday effect

o Charged spectators also generate
Coulomb field
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EM field drives splitting - Hall, Faraday and Coulomb effect

n<0, vi>0 n<0, vi<0

Total Dyected Flow

n>0, vi<0

’lg

@ Faraday, Coulomb and Hall are competing effects

® Net effect of Faraday, Hall and Coulomb
affects v+

@ Direction of v1 for positive particles shown by
dashed arrows (when Faraday+Coulomb > Hall)

@ Direction of v4 for negative particles - the other
way around

@ EM field drives v1 splitting (Av+) between
particles and anti-particles

@ Can we measure this splitting?
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Splitting (Av1): Challenge in measurements (Transport)

@ The u, d quarks can be transported from
beam rapidity

Quark transportation

® Since transported quarks travel from
beams, they suffer a lot more interactions
than produced quarks (u, d, s, 5)

@ Iransported quarks have different v1 than
produced quarks

@ There is already a v1 splitting between
quarks (transported) and anti-quarks
(produced)

@ This splitting interferes with the EM field
driven splitting, becoming difficult to
isolate
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Interplay between transported quarks and EM field (a qualitative picture)

< A (a) transported quarks <= A (b) electromagnetic field =

= (a) p ! 3 (b) & & (c) overall effect
;C>5, UrQMD E>5, Faraday+Coulomb>Hall f’, Faraday+Coulomb>
< < Hydro+EM field < Hall+Transport

T~ ] —l_ » /—\

-
central peripheral central peripheral central Y’ipheral

o Splitting between particle and anti-particle (Adv, /dy = dv] /dy — dv] /dy) with centrality
o Advy/dy < 0 could be a signature of EM field (Faraday+Coulomb > Hall+Transport)
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Splitting (Av4): An approach to subtract transported quark effect

® In experiment, it is impossible to distinguish between produced
and transported u and d quarks 0

@ Avoid particles containing u, d quarks

@ Use only produced partlcles (only produced constituent quarks
— u,d,8,5) K—,p, A b, =2 . 0 and O

@® With these particles, make a clean case to measure EM field- " ~ . ( ()
driven-splitting

@® Combine different particles and compare the combinations with
same mass at the constituent level

0

® Apply and test coalescence-inspired sum rule: vi(hadron) = Zvl(qi), 5
(same y —pr/ng space, with n, — constituent quarks )

q; — Constituent quarks ;
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Splitting (Av1): Testing Coalescence sum rule

@® Combine particles and make identical constituent quark combinations

@® Charge difference, Ag = 0 and strangeness difference, AS =0
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Splitting: Combination with non-zero Aq and AS

@ Combine particles and make non-identical quark combinations, same mass at the
constituent level

o o
Q" (335)  Q (sss)
vi[A(75d)] vs w[K (is)] + Swi[p(iiid)] vilK (@ s)] + wp(dad)]/

® Charge difference, Ag = 4/3 and strangeness difference, AS =2
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Combining different produced particles

o Combinations having same or nearly same quark mass but different Ag and AS
=> No contribution from transported quark

Index Quark Mass  Charge  Strangeness Expression
1 Am =0 Ag=0 AS =0 [p(did) + ¢(s5)] — [K (as) + A(iad5s)]
2 Am =0 Ag=1 AS =2 [A(Td5)] — [%Q_(sss) %5(&&5)]
3 Am=~0 Aq=1% AS =2 [A(@d3)] — [K (Ts) + 2 p(aiad)]
4 Am =20 Ag =2 AS =6 [§+(§§§)] — [Q27 (sss)]
5 Am~0 Ag=% AS=4 =" (d53)] — [K (@s) + 19 (sss)]

o Only 5 combination differences among many are independent
o Two degenerate combinations in AS =2 - Good cross check

o Measure splitting with Ag and AS, though they are correlated
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Towards measurements: STAR detector and datasets

o TPC+TOF for PID: TPC measures dE/dx
of tracks (|n| < 1, 0 < ¢ < 27) and TOF
measures time of flight (|| < 0.9) ‘

o EPD (2.1 < |y <5.1) or ZDC (|| > 6.3) , §
for event plane reconstruction ‘ S O *

Datasets analyzed:

o At /snn = 27 GeV Au+Au at BES-II,
and /snyn = 200 GeV Au+Au and
isobaric collisions (Ru+Ru and Zr+Zr)
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Coalescence sum rule at Au+Au @ 27 GeV

v[K (@s)] + w[A(@5d)] = vi[p(aad)] + vi[¢(s3)]

O 02 i ! | ! Aq p—t 0, AS — 0
' STAR Preliminary o+ Data
0.015 1" Au+Au 27 GeV (10-40%) -~ AMPT ..
0.01 Agq=0, AS=0 — Fit -~
"o
S 0.005 l | ({) Q 5
2" 0 1 T | ;{; | T &
0.005 e g - o o 3
-0.01  p (uud) ¥ -¢.(ss) - K (us) - A (uds)
0015 | slope=0.0003+0.0043
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-08 -06 -04 -0.2 02 04 06 0.8
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@ lest of sum rule with identical quark combinations

® Avislope (withy) ~ 107N {-4}

® Sum rule holds within measured uncertainties
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Splitting at non-zero Aq and AS (27 GeV)

)

AQ = 4/3, AS = 2

vi[A(Z5d)] vs w[K (ds)] + 5 va[p(
| | . Aq =4/3, AS =2 0.005
0-02 1 s1AR Preliminary -+ Data *
0.015 I Au+Au 27 GeV (10-40%) -~ AMPTX0.5 <]>
001 [ ..-- — Fit 0 |
i ] -
S 0.005 P 5
I 0| O - o -0.005
= o B o
4 D S E — Au+Au
-0.005 | Aq=4/3, AS=2 N
S R < Aq = 4/3, AS =2
-0.01 | A (uds) - K (us) - 1/3 p (uud) 001 |
0015 | Slope=0.0039:0.0007 | R A
002 | 0.131<pT/nq[ (GeV/lc)<1 1 1 . ‘ |
-0.015
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y

A (uds) - K (us) - 1/3 p (uud)
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¢ 5 ¢ !
e

27 GeV (10-40%)

® |Av1| increases at larger y and p1/nq

@ Significant non-zero slope (with y) for Aq = 4/3, AS =2
@® AMPT has the opposite trend - No EM field in AMPT
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Splitting with charge and strangeness
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o Avq slope (fit constrained to

origin) increases with Ag
and AS

o Splitting increases going from
vsnny = 200 to 27 GeV
(longer persistence of EM
field at lower energy!)

o AMPT can not explain the
data

o PHSD(+EMF) can describe
the data within errors, but
EMF Is not the sole difference
between these two models



Splitting between proton and anti-proton in 50-80% centrality

o Splitting shown so far I

based on species with 0005 g} °p — +
produced quarks only - |

(b) Ru+Ru and Zr+Zr,| | (c) Au+Au, 27 GeV, x 0.2 ) |
200 GeV

: O & (:) ® Q O @®
o viand Avq forpandp > Ofp------ %-s--g---—--#r--g-b-a-c)-a --------- L85 -----
are shown in Au+Au 27 ; . I ° o I : f e
GeV, 200 GeV and - Centrality: 50-80% * T | é 1 STAR Preliminary )

-0.005
Ru+Ru, Zr+Zr at 200 P> 0.4 GeV/c,p<2GeV/c T
GeV collisions ' [

Au+Au, 200 GeV ’
o Advq/dy between p () Au+Au, 200 Ge t 7| 200 Gev T

and D is negative, with ' @ vh-vl
>50 significance oo —Linearfit 1
4 QOfF=-=--=--C G - - o . N T T Sy M, - W
O Advl/dy IS much T Slope =
(~factor 5) stronger at " [-1.89 = 0.35(stat.) * [-3.28 =+ 0.54(stat.) T [-1.88 = 0.13(stat.)
27 GeV |+ 0.09(syst.)] x 10 [ =0.27(syst)] x 10 | =0.05(syst.)] x 107
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Splitting between particle and anti-particle with centrality
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o Advy/dy for 7+ — 7, KT — K~ and p-p

GeV collisions

Centrality (%)

are shown in Au+Au 27 GeV, 200 GeV and Ru+HR

o Adv;/dy decreases from central to peripheral collisions, with more than 50 significance

Centrality (%)
\u, Zr+Zr at 200

o Advy/dy <0in peripheral collisions => qualitatively agrees with expectation of EM field effect (Faraday+Coulomb

> Hall+Transport)
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Summary

o Measured charge (Agq) and strangeness (AS) dependent splitting - free from
the transported quark effect

o Splitting increases with Ag and AS, stronger in lower collision energy

o PHSD+EM field calculations can describe the charge-dependent splitting
within uncertainties

O Negative value of slope of splitting between particles and anti-particles in
peripheral collisions => qualitatively agrees with expectation of EM field effect
(Faraday+Coulomb > Hall+ Transport)

Thank You
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