

SAIFR

Probing electromagnetic field with charge dependence of directed flow in STAR experiment at RHIC

Ashik Ikbal Sheikh (for the STAR Collaboration)

Kent State University

Workshop on Electromagnetic Effects in Strongly Interacting Matter ICTP SAIFR, São Paulo, Brazil, Oct 25 - 28, 2022

Supported in part by U.S. DEPARTMENT OF ENERGY Office of Science

Magnetic field in heavy ion collisions

Ashik Ikbal Sheikh, EESM-22, Sao Paulo, Brazil

Estimates of the produced magnetic field

A crude estimate of the magnetic field (using Biot-Savart Law):

 $-eB_y \sim 40m_\pi^2 \sim 10^{18}$ Gauss (At RHIC Au+Au collisions, $\sqrt{s_{NN}} = 200$ GeV, b = 5 fm, t = 0)

- Strongest magnetic field ever produced in laboratory
- B-field has observable effects on properties of produced particles, 1S 0 such as anisotropic flow

Earth ~0.5 Gauss

STAR magnet ~5000 Gauss

lst wire 2nd wire http://physicstasks.eu/

Neutron Star (Magentar) ~ 10¹⁴ Gauss

Heavy ion collisions ~ 10¹⁸ Gauss

Directed flow (v_1) and charge splitting (Δv_1)

0 directed flow (v₁)

$$E\frac{d^{3}N}{dp^{3}} = \frac{d^{2}N}{2\pi p_{T}dp_{T}dy} \left(1 + 2\sum_{n=1}^{+\infty} v_{n}\right)$$
where $v_{n} = \langle \cos n(\phi - \Psi_{RP}) \rangle$

- Probe early stage of the collisions -0 strong electromagnetic (EM) field
- EM field has observable consequences 0 on charge driven v_1 splitting (Δv_1)

First harmonic coefficient of Fourier decomposition of particle azimuthal distribution -

EM field drives splitting

- Assume a non-central HIC $(b \neq 0)$
- Beam direction: \hat{z} , Impact parameter: \hat{x}
- Reaction plane (RP): xz
- Or Charged spectators produce magnetic
 And the second field - $\vec{B} \perp RP$

EM field drives splitting - Hall effect

- Lorentz force pushes positively and 0 negatively charged particles in opposite directions
- Generated current $\perp \vec{B}, \vec{u}$ => Hall effect

EM field drives splitting - Faraday and Coulomb effect

- Spectators fly away, \vec{B} decays down fast
- Time varying \vec{B} induces \vec{E} field => 0 Faraday effect
- Charged spectators also generate 0 **Coulomb field**

EM field drives splitting - Hall, Faraday and Coulomb effect

- Faraday, Coulomb and Hall are competing effects
- Net effect of Faraday, Hall and Coulomb affects v₁
- Direction of v_1 for positive particles shown by dashed arrows (when Faraday+Coulomb > Hall)
- Direction of v_1 for negative particles the other way around
- EM field drives v_1 splitting (Δv_1) between particles and anti-particles
- Can we measure this splitting?

Splitting (Δv_1): Challenge in measurements (Transport)

- The u, d quarks can be transported from beam rapidity
- Since transported quarks travel from beams, they suffer a lot more interactions than produced quarks (\bar{u}, d, s, \bar{s})
- Transported quarks have different v₁ than produced quarks
- There is already a v_1 splitting between quarks (transported) and anti-quarks (produced)
- This splitting interferes with the EM field driven splitting, becoming difficult to isolate

Interplay between transported quarks and EM field (a qualitative picture)

- 0
- $\Delta dv_1/dy < 0$ could be a signature of EM field (Faraday+Coulomb > Hall+Transport) 0

Splitting between particle and anti-particle ($\Delta dv_1/dy = dv_1^+/dy - dv_1^-/dy$) with centrality

Splitting (Δv_1): An approach to subtract transported quark effect

- In experiment, it is impossible to distinguish between produced and transported u and d quarks
- Avoid particles containing u, d quarks
- Use only produced particles (only produced constituent quarks $-\bar{u}, \bar{d}, \bar{s}, \bar{s}$): $K^-, \bar{p}, \bar{\Lambda}, \phi, \bar{\Xi}^+, \Omega^-$ and $\bar{\Omega}^+$
- With these particles, make a clean case to measure EM fielddriven-splitting
- Output Compare the combinations with same mass at the constituent level
- Apply and test coalescence-inspired sum rule: $v_1(hadron) = \sum v_1^i(q_i)$, same $y - p_T/n_q$ space, with $n_q \rightarrow$ constituent quarks) $q_i \rightarrow \text{Constituent quarks}$

A. Ikbal, D. Keane, P. Tribedy, Phys. Rev. C 105, 014912 (2022) **STAR Collaboration, Phys. Rev. Lett. 120, 062301 (2018)**

Splitting (Δv₁): Testing Coalescence sum rule

Output Complete Complete And Make identical constituent quark combinations

$$\overline{\Omega}^+(ar{s}ar{s}ar{s})$$
 Ω^-

$v_1[K(\bar{u}s)] + v_1[\bar{\Lambda}(\bar{u}s\bar{d})] = v_1[\bar{p}(\bar{u}\bar{u}\bar{d})] + v_1[\phi(s\bar{s})]$

• Charge difference, $\Delta q = 0$ and strangeness difference, $\Delta S = 0$

A. Ikbal, D. Keane, P. Tribedy, Phys. Rev. C 105, 014912 (20

20	2	2)

Splitting: Combination with non-zero Δq and ΔS

Combine particles and make non-identical quark combinations, same mass at the constituent level

 $\Omega^{-}(sss)$ $\overline{\Omega}^+(ar{s}ar{s}ar{s})$ $v_1[\overline{\Lambda}(\overline{u}\overline{s}\overline{d})] v_s v_1[K(\overline{u}s)] + \frac{1}{3}v_1[\overline{p}(\overline{u}\overline{u}\overline{d})]$

• Charge difference, $\Delta q = 4/3$ and strangeness difference, $\Delta S = 2$

A. Ikbal, D. Keane, P. Tribedy, Phys. Rev. C 105, 014912 (2022)

Combining different produced particles

0 => No contribution from transported quark

Index	Quark Mass	Charge	Strangeness	Expression
1	$\Delta m = 0$	$\Delta q = 0$	$\Delta S = 0$	$[\bar{p}(\bar{u}\bar{u}\bar{d}) + \phi(s\bar{s})] - [K(\bar{u}s) + \bar{\Lambda}(\bar{u}\bar{d}\bar{s})]$
2	$\Delta m pprox 0$	$\Delta q = 1$	$\Delta S = 2$	$\left[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})\right] - \left[\frac{1}{3}\Omega^{-}(sss) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})\right]$
3	$\Delta m pprox 0$	$\Delta q = rac{4}{3}$	$\Delta S = 2$	$\left[\overline{\Lambda}(\overline{u}\overline{d}\overline{s})\right] - \left[K(\overline{u}s) + \frac{1}{3}\overline{p}(\overline{u}\overline{u}\overline{d})\right]$
4	$\Delta m = 0$	$\Delta q = 2$	$\Delta S = 6$	$[\overline{\Omega}^+(\overline{s}\overline{s}\overline{s}\overline{s})] - [\Omega^-(sss)]$
5	$\Delta m pprox 0$	$\Delta q = \frac{7}{3}$	$\Delta S = 4$	$[\overline{\Xi}^+(\overline{d}\overline{s}\overline{s})] - [K(\overline{u}s) + \frac{1}{3}\Omega(sss)]$

- Only 5 combination differences among many are independent Ο
- Two degenerate combinations in $\Delta S = 2$ Good cross check
- Measure splitting with Δq and ΔS , though they are correlated Ο

Combinations having same or nearly same quark mass but different $\ \Delta q$ and $\ \Delta S$

A. Ikbal, D. Keane, P. Tribedy, Phys. Rev. C 105, 014912 (2022)

Towards measurements: STAR detector and datasets

- TPC+TOF for PID: TPC measures dE/dx of tracks ($|\eta| < 1$, $0 < \phi < 2\pi$) and TOF measures time of flight ($|\eta| < 0.9$)
- EPD ($2.1 < |\eta| < 5.1$) or ZDC ($|\eta| > 6.3$) for event plane reconstruction

Datasets analyzed:

• At $\sqrt{s_{NN}} = 27$ GeV Au+Au at BES-II, and $\sqrt{s_{NN}} = 200$ GeV Au+Au and isobaric collisions (Ru+Ru and Zr+Zr)

Coalescence sum rule at Au+Au @ 27 GeV

Test of sum rule with identical quark combinations

- Δv_1 slope (with y) ~ 10^{-4}
- Sum rule holds within measured uncertainties

 $v_1[K(\bar{u}s)] + v_1[\bar{\Lambda}(\bar{u}s\bar{d})] \stackrel{?}{=} v_1[\bar{p}(\bar{u}\bar{u}\bar{d})] + v_1[\phi(s\bar{s})]$

Ashik Ikbal Sheikh, EESM-22, Sao Paulo, Brazil

Splitting at non-zero Δq and ΔS (27 GeV)

- $|\Delta v_1|$ increases at larger y and p_T/n_q
- Significant non-zero slope (with y) for $\Delta q = 4/3$, $\Delta S = 2$
- AMPT has the opposite trend No EM field in AMPT

 $v_1[\overline{\Lambda}(\overline{u}\overline{s}\overline{d})] v_s v_1[K(\overline{u}s)] + \frac{1}{3}v_1[\overline{p}(\overline{u}\overline{u}\overline{d})]$

17/21

Ashik Ikbal Sheikh, EESM-22, Sao Paulo, Brazil

18/21

- Δv_1 slope (fit constrained to 0 origin) increases with Δq and ΔS
- Splitting increases going from $\sqrt{s_{NN}} = 200$ to 27 GeV (longer persistence of EM field at lower energy!)
- AMPT can not explain the data

(Nayak et al., Phys. Rev. C 100, 054903 (2019))

PHSD(+EMF) can describe the data within errors, but EMF is not the sole difference between these two models

Splitting between proton and anti-proton in 50-80% centrality

Ashik Ikbal Sheikh, EESM-22, Sao Paulo, Brazil

Splitting between particle and anti-particle with centrality

- GeV collisions
- $\Delta dv_1/dy$ decreases from central to peripheral collisions, with more than 5 σ significance
- > Hall+Transport)

• $\Delta dv_1/dy < 0$ in peripheral collisions => qualitatively agrees with expectation of EM field effect (Faraday+Coulomb

Summary

- 0 the transported quark effect
- Splitting increases with Δq and ΔS , stronger in lower collision energy
- PHSD+EM field calculations can describe the charge-dependent splitting within uncertainties
- Negative value of slope of splitting between particles and anti-particles in Ο peripheral collisions => qualitatively agrees with expectation of EM field effect (Faraday+Coulomb > Hall+Transport)

Measured charge (Δq) and strangeness (ΔS) dependent splitting - free from

Thank You

