# Strange magnetars admixed with fermionic dark matter

## Eduardo S. Fraga











\* DM is hard to probe, so one needs extreme gravitational interactions.

[NASA]

\* In principle, DM particles could collide with neutrons and other components of NS, loose energy, be gravitationally trapped, and accumulate in their cores.



\* NB: nucleon interactions (not ideal Fermi gas) + momentum dependence of the hadronic form factors -> significant suppression of DM capture rate in NS [Bell et al (2021)].



\* For high enough central densities, one expects to find either hybrid stars, i.e., neutron stars with a quark matter core, or even more exotic objects, such as quark stars.

\* If quark stars are to be found in the universe, they have most likely accumulated some amount of dark matter over the course of their lives.

\* What is the effect of the presence of cold fermionic DM on:

the structure of quark stars (mass, radius, etc) ?

their stability w.r.t. radial oscillations ?

quark magnetars with very high magnetic fields ?



[F. Weber, 2000]

#### \* Which ingredients do we need?

- Equations of state for cold DM and cold QM.
- → Stellar structure from TOV equations for two-fluid stars.

## pressure(T,µ,B,etc) + TOV

- Stability equations & behavior of fundamental frequency.
- → Incorporation of large magnetic fields in the EoS for QM.







Eduardo S. Fraga

4

Self-interacting CDM

[Narain, Schaffner-Bielich & Mishustin (2006); Mukhopadhyay & Schaffner-Bielich (2016)]

- \* Fermi gas + two-body self-repulsion between fermions
- \* Useful dimensionless quantities:  $z = k_F / m_D$ ;  $y = m_D / m_I$
- $\star$  m<sub>I</sub>: interaction mass scale
- \* m<sub>D</sub> = 1, 10, 50, 100, 200, 500 GeV (dark fermion mass)
- $\star$  y = 0.1 (weak DM); y = 10<sup>3</sup> (strong DM)
- \* Pressure:

$$\frac{p_{\rm DM}}{m_{\rm D}^4} = \frac{1}{24\pi^2} \left[ (2z^3 - 3z)\sqrt{1 + z^2} + 3\sinh^{-1}(z) \right] + \left(\frac{1}{3\pi^2}\right)^2 y^2 z^6$$



<sup>[</sup>Ferreira & ESF (in prep.)]

\* Self-interacting case corresponds to much larger masses and radii.

#### Cold QM



#### \* MIT bag model, perhaps the most popular approach to QM in NS.



Asymptotic freedom + confinement in the simplest and crudest fashion: bubbles (bags) of perturbative vacuum in a confining medium. + eventual corrections ~ α<sub>s</sub>

- Asymptotic freedom: free quarks and gluons inside color singlet bags
- Confinement: vector current vanishes on the boundary

★ B =  $(145 \text{MeV})^4 \approx 57 \text{MeV/fm}^3$  is the bag constant chosen to surpass the two-solar mass limit.

\* Pressure:

$$p_{
m QM}=rac{3\mu_q^4}{4\pi^2}-B$$

( $\mu_q$ : quark chemical potential)

#### Dependence on the choice of the bag constant



[Weissenborn, Sagert, Pagliara, Hempel, Schaffner-Bielich (2011)]

8



### Stellar structure of one-fluid stars

\* From the TOV equations

[Einstein's GR field equations + spherical symmetry + hydrostatic equilibrium]

$$\begin{split} \frac{dp}{dr} &= -\frac{G\mathcal{M}(r)\epsilon(r)}{r^2 \left[1 - \frac{2G\mathcal{M}(r)}{r}\right]} \left[1 + \frac{p(r)}{\epsilon(r)}\right] \left[1 + \frac{4\pi r^3 p(r)}{\mathcal{M}(r)}\right] \\ & \frac{d\mathcal{M}}{dr} = 4\pi r^2 \epsilon(r) \;\; ; \quad \mathcal{M}(R) = M \end{split}$$

| m <sub>D</sub>            | ${\sf M}_{ m max}({\sf M}_{\odot})$ | $R_{\min}$          | Compact Star              |
|---------------------------|-------------------------------------|---------------------|---------------------------|
| 100 GeV                   | $10^{-4}$                           | 1 m                 | neutralino star (cold DM) |
| 1 GeV                     | 1                                   | 10 km               | neutron star              |
| $1~{ m GeV}/0.5~{ m MeV}$ | 1                                   | 10 <sup>3</sup> km  | white dwarf               |
| 10 keV                    | $10^{10}$                           | 10 <sup>11</sup> km | sterile neutrino star     |
| 1 keV                     | $10^{12}$                           | 10 <sup>13</sup> km | axino star (warm DM)      |
| 1 eV                      | $10^{18}$                           | 10 <sup>19</sup> km | neutrino star             |
| $10^{-2} \mathrm{~eV}$    | 10 <sup>22</sup>                    | 10 <sup>23</sup> km | gravitino star            |

[Mukhopadhyay & Schaffner-Bielich (2016)]

### Quark stars admixed with DM



#### \* Three possible configurations for dark compact stars



[Karkevandi et al. (2021)]



### Stellar structure of two-fluid stars

\* Two-fluid TOV equations

[Sandin & Ciarcelluti (2009)]

$$\begin{split} \frac{dp_{\rm QM}}{dr} &= -\frac{\left(p_{\rm QM} + \epsilon_{\rm QM}\right)}{2} \frac{d\nu}{dr}, \quad \frac{dm_{\rm QM}}{dr} = 4\pi r^2 \epsilon_{\rm QM}, \\ \frac{dp_{\rm DM}}{dr} &= -\frac{\left(p_{\rm DM} + \epsilon_{\rm DM}\right)}{2} \frac{d\nu}{dr}, \quad \frac{dm_{\rm DM}}{dr} = 4\pi r^2 \epsilon_{\rm DM}, \\ \frac{d\nu}{dr} &= 2\frac{\left(m_{\rm QM} + m_{\rm DM}\right) + 4\pi r^3 \left(p_{\rm QM} + p_{\rm DM}\right)}{r(r - 2(m_{\rm QM} + m_{\rm DM}))}, \end{split}$$

#### \* Boundary conditions:

- $m_{\text{QM}}(r \rightarrow 0) = m_{\text{DM}}(r \rightarrow 0) \rightarrow 0$
- $R_{QM} > R_{DM}$ : first  $p_{DM}(R_{DM}) \rightarrow 0$ ; later  $p_{QM}(R_{QM}) \rightarrow 0$
- $R_{DM} > R_{QM}$ : first  $p_{QM}(R_{QM}) \rightarrow 0$ ; later  $p_{DM}(R_{DM}) \rightarrow 0$

Radial oscillations[Jiménez & ESF (2022)] $\star \Delta r/r = \xi$  &  $\Delta p$  are the independent variables ;  $\Gamma$ : adiabatic index<br/>[Gondek et al. (1997)]

\* For two-fluid stars one can write the total Lagrangian variables as  $\xi = \xi_{QM} + \xi_{DM}$  and  $\Delta p = \Delta p_{QM} + \Delta p_{DM}$ 

\* Two-fluid radial pulsating equations

$$\frac{d\xi_{\rm QM/DM}}{dr} \equiv -\frac{1}{r} \left( 3\xi_{\rm QM/DM} + \frac{\Delta p_{\rm QM}}{\Gamma p} \right) - \frac{dp}{dr} \frac{\xi_{\rm QM/DM}}{(p+\epsilon)} ,$$

$$\frac{d\Delta p_{\rm QM/DM}}{dr} \equiv \xi_{\rm QM/DM} \left\{ \omega^2 e^{\lambda - \nu} (p+\epsilon)r - 4\frac{dp}{dr} \right\} + \xi_{\rm QM/DM} \left\{ \left( \frac{dp}{dr} \right)^2 \frac{r}{(p+\epsilon)} - 8\pi e^{\lambda} (p+\epsilon) pr \right\} + \Delta p_{\rm QM/DM} \left\{ \frac{dp}{dr} \frac{1}{p+\epsilon} - 4\pi (p+\epsilon) r e^{\lambda} \right\}$$

$$\lambda(r) = -\ln(1 - 2(m_{\rm QM}(r) + m_{\rm DM}(r))/r)$$

\*  $\omega$ : oscillation frequency ;  $\lambda(R_{QM}) = -\nu(R_{QM})$  and  $\lambda(R_{DM}) = -\nu(R_{DM})$ 

### Results for structure and stability

Results for  $m_D = 100$  GeV for illustration:

[Ferreira & ESF (2022)]



\* The increase in DM central energy density does not change the maximum mass and radius very much, but shifts the curves towards higher central energy densities.

\* The range of stable configurations occurs at higher central energy densities.





\* Slight decrease of maximum mass with the increase of DM central energy density.

Results for different values of  $m_D$  – structure and stability of quark stars admixed with DM [Jiménez & ESF (2022)]

10

 $(\epsilon^{\text{wDM}})_{o} = 6.51 \times 10^{-1} \text{ GeV/fm}^{3}$ 

 $R_{\rm QM}$  [Km]

 $m_D = 10 \text{ GeV}$ 

(ewDM)c=6.51\*103 GeV/fm<sup>2</sup>

----- 26.03\*103 GeV/fm3

----- 39\*103 GeV/fm3

R<sub>QM</sub> [Km]

----- 2.6 GeV/fm3

----- 4.56 GeV/fm3

1.5

1.0

0.5

2.0

1.5

1.0

0.5

 $M_{\rm QM} \, [M_\odot]$ 

 $M_{\rm QM} [M_\odot]$ 

10

10

8

 $(\epsilon^{wDM})_c = 6.51 * 10^{-1} \text{ GeV/fm}^3$ 

----- 2.6 GeV/fm3

4.56 GeV/fm<sup>3</sup>

 $(\epsilon^{\rm QM})_c \, [{\rm GeV/fm}^3]$ 

 $m_D=10 \text{ GeV}$ 

AMASS/2012011

 $(\epsilon^{wDM})_c = 6.51 \times 10^3 \text{ GeV/fm}^3$ 

----- 26.03\*103 GeV/fm3

----- 39\*103 GeV/fm3



#### w<u>DM</u>: y = 0.1; $m_D = 1$ , 10 GeV

\* Mass-radius visible modifications only for small  $m_D$ .

\* Higher QM energy densities to compensate for the extra gravitational pull from DM.



\* Stability window of ultra-light quark stars (surrounded by DM):  $10^{-18}$ - $10^{-4}$  M<sub>o</sub>, depending on m<sub>D</sub> -> dark strange "planets" and strangelets.

1.5

1.0

0.5

0.0

2.0

1.5

0.5

0.0

2

4

 $(\epsilon^{\rm QM})_c [{\rm GeV}/{\rm fm}^3]$ 

<sup>10</sup> [*M*<sup>O</sup>M

 $M_{\rm QM} [M_\odot]$ 



#### <u>sDM</u>: $y = 10^3$ ; $m_D = 1$ , 10 GeV

\* As for wDM, in most of the cases M, R and central energy densities of the QM core are not appreciably affected.

\* As we increase m<sub>D</sub>, the fundamental frequency is strongly affected.

20

 $m_D=1 \text{ GeV}$ 

★ Increasing DM central densities, the maximum QM central densities are increased by a factor of ~20 in some cases.

\* Results very sensitive to m<sub>D</sub>.



### Effects from high magnetic fields

[Ferreira & ESF (2022)]



Soft gamma repeater (SGR) in 1979 (Mazets et al., 1979 [7]) (Cline et al, 1980 [8])

Anomalous X-ray pulsar (AXP) (Mereghetti & Stella, 1995 [9]) Magnetars surface magnetic
 fields of the order of 10<sup>14</sup> G - 10<sup>15</sup> G.

\* Magnetic fields inside magnetars may reach values B ~ 10<sup>18</sup> G. [Cardall, Prakash & Lattimer (2001)]

\* For quark magnetars:





#### \* Compactness:



Workshop on EM effects in strongly interacting matter, São Paulo, October/2022

-2.1

 $M_{DM}/M_{Tot}$ 

19



[Ferreira, ESF & Jiménez (in prep.)]







#### Summary and outlook

\* We investigated effects of weakly (y = 0.1) and strongly (y =  $10^3$ ) selfinteracting DM on the structure of quark stars for dark fermion masses  $m_p = 1$ , 10, 50, 100, 200, 500 GeV.

 $\star$  Results are very sensitive to (m<sub>D</sub>,y). In most situations, central QM densities are increased by the presence of DM (extra gravitational pull). Other effects are usually modest modifications.

\* Strong magnetic fields affect significantly density profiles and tidal deformability. Total mass, radius and compactness not so much.

\* Next steps: new observables, quark matter EoS from cold and dense pQCD, hybrid stars, include magnetic field effects on TOV.



# Back up slides

#### Boundary conditions

- \* Demanding:
  - ➡ smoothness at the QM or DM stellar center
  - → Vanishing p<sub>QM/DM</sub> at R<sub>QM/DM</sub>

$$u(R_{\mathrm{QM}}) = \ln\left(1 - rac{2(M_{\mathrm{QM}} + m_{\mathrm{DM}}(R_{\mathrm{QM}}))}{R_{\mathrm{QM}}}
ight)$$
 $u(R_{\mathrm{DM}}) = \ln\left(1 - rac{2(m_{\mathrm{QM}}(R_{\mathrm{DM}}) + M_{\mathrm{DM}})}{R_{\mathrm{DM}}}
ight)$ 

$$(\Delta \rho_{\rm QM/DM})_{\rm center} \equiv -3(\xi_{\rm QM/DM}\Gamma \rho_{\rm QM/DM})_{\rm center}$$

 $(\Delta 
ho_{
m QM/DM})_{
m surface}\equiv 0$ 

\* We define  $\omega^2 \to \omega^2_{QM/DM}$  if we are dealing with a QM/DM oscillating core in the admixed star.





#### Eduardo S. Fraga



#### Eduardo S. Fraga

25



Eduardo S. Fraga

26



Eduardo S. Fraga