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GIQSul - Grupo de Informacao Quantica do Sul
(Southern Quantum Information Group)
https://gigsul.ufsc.br/

GCQ - Grupo de Computacao Quantica
(Quantum Computing Group)
Www.gcq.ufsc.br

QuanBy Quantum Computing
https://www.quanby.com.br



nnnnnnnnnnnn Centre
for Theoretical Ph ysics

South American Inst itute
aaaaaaaaaaaaaaaaaaaaaa

ICTP
SAIFR

Outline

e Day 1

o Preliminaries:
= Juring machine
= Quantifying computational resources
= Complexity classes
= [ntroduction to Quantum Computing: a historical perspective
= Quantum computing models
= Circuit notation and quantum gates
= Universal sets of qguantum gates
= Solovay-Kitaev theorem
o Quantum oracles
o QOracular quantum algorithms:
= Deutsch
= Deutsch-Jozsa
= Grover
= Amplitude amplification
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e Day 2

o Quantum Fourier transform
o Phase estimation

o HHL

o Modular exponentiation

o Shor’s quantum algorithm
o Hamiltonian simulation

e Day 3

o Adiabatic qguantum computing (AQC)

o Quantum Annealing

o Quantum approximate optimization algorithm - QAOA
o Solving differential equations on quantum computers
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Preliminaries
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Algorithm is a finite sequence of instructions, typically used to solve a class of
specific problems or to perform a computation.!

PageRank algorithm - used by Google to
search on internet.

1 NormalDistribution(num target qubits 5, mu=0, sigma-1,
low=- 1, high=1)
nnnnn 1.build(circuit,q)
circuit.measure (q,c)

b = executa(ciret, hactemd, shote-g192) Binary Search Algorithm - search on a

job_monitor(job)

counts - job.result().get counts() StrUCtu red database.

print(counts)
sortedcounts []
sortedkeys - sorted(counts)

Euclid’s algorithm - method for finding the

for j counts:

e greatest common divisor of two numbers.

Python code: https://quantumcomputinguk.org/tutorials/tag/Python

1Algorithm.” Merriam-Webster.com Dictionary, Merriam-Webster, https://www.merriam-webster.com/dictionary/algorithm.
Accessed 1 Nov. 2022.



Turing machine

ICTP S
(formal definition of algorithm ~ 1936)

A Turing machine is a mathematical model of computation
describing an abstract machine that manipulates symbols

on a strip of tape according to a table of rules. https://
en.wikipedia.org/wiki/ Turing_machine#cite_note-2

' N
Universal State o )
Turing Transition 6,
Machine Diagram

| Turing Machine J ") * |
Description - Alan M. Turing
| _ 5 y
ol 1o fof1] 100 o0o] Our modern

TM = {states, transition rules, a computers UTM.
language, a control unit, memory tape}

S. Malekmohamadi Faradonbe, F. Safi-Esfahani, and M. Karimian-kelishadrokhi, SN Comput. Sci. 1, 333 (2020).
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Example: finite automaton for parity computation ’mp nnnnnnnnnnnnnnnnnnn
S

Given an input language (string) it compute the number of 1’s.

| » Double circled states are accept states
: / .+ Single-circled state is a reject state.
a » The alphabet {0,1,#}
\ |
Example: L = {00101101} is even.

E. Salvador, et al., Contemporary Physics 59, 174 (2018).
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Quantifying computational resources ’

The execution of an algorithm requires the consumption of resources, such as
time, space, and energy:

Time - the number of steps (elementary operations) needed to execute the
algorithm;

Space - the amount of memory required to execute the algorithm;

Energy - the amount of energy required to execute the algorithm.

Depending on the problem, one or more resources may be minimized in favor of
the others.

These resources are quantified through the asymptotic analysis.



Asymptotic analysis ’C ...................
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The goal of asymptotic analysis is to capture the essential behavior of a given
function according to the input size n for n - .

Big O notation - O(n): it is used to give an upper bound on the asymptotic behavior
of a function for large n .

f(n) = O(g(n)) means there exists constants ¢ > 0 and integer
ng > 0 such that f(n) < cg(n) for n > ny.

Example: Function Name
324 = O(1) constant
10logn 4+ 50 = O(logn) logarithmic Informally: /
apn® + ap_gn* 1+ - +a, = O(n*) polynomial grows as g or

a” +n* = 0(a");a > 1 exponential slower.



Big 2 notation - 2(n): it Is used to give a lower bound on the tﬂg R
asymptotic behavior of a function for large n.

f(n) = Q(g(n)) means there exists constants ¢ > 0 and integer
ng > 0 such that f(n) > cg(n) for all n > ng. Or equivalently,

g(n) =0(f(n))

Example:

Function
5n — 2 = Q(/n)
3n* +10 = Q(n)

aknk 2. ak—ank_l by = Q(l) Informally: /

- AN, grows as g or
a” ={n")ia>1 faster.




Big O notation - O(n): it combines the notations O(n) and Q(n), such tICTP e
that f(n) = ©@(g(n)) if f(n) = O(g(n)) and f(n) = 2(g(n)).

f(n) = O(g(n)) means there exists constants c¢;, co > 0 and integer
ng > 0 such that cig(n) < f(n) < cag(n) for all n > ny.

Example:
Function
5n — 2 = O(n)
agn® + ag—qn® 1+ -+ a, = O(n*)  Informally: 1
n* + vnlogn = (-)(n2) grows in the

same way as g.
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But, when a quantum algorithm is considered efficient? ’
S

South American Institute
for Fundamental Research

This includes algorithms that take subexponential time, exponential and
factorial.

Ex.: Factoring integer numbers classically (Number Field Sieve)

0(2711/3)
which are less than exponential time

O (2P )y



Deterministic and nondeterministic computation

computation on a
DTM, a state is

Deterministic Turing machine - DTM

Nondeterministic Turing machine - NTM

Deterministic Computation

Start @

y
Accept @
or

Reject

Non—deterministic Computation

E. Salvador, et al., Contemporary Physics 59, 174 (2018).
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For every step of a
computation on a
NTM, a state
followed by one




Complexily classes ’S',g;g e
(non-formal definitons) T

DTMs. t



Complexity classes ’S',g;; S
(non-formal definitions )

INTMs. |

Equivalent definition: NP iIs the set of decision problems for which it is
possible to check, in polynomial time, if a proposed solution is indeed a
isolution.

Observe that P € NP. The opposite is unknown.

Ex Decision version of traveling salesman problem, integer factorization, boolean
satisfiability, ... ;
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Complexity classes ’
S

The class NP- Complete is the set of decision problems in NP that can be |
mapped to other NP problems using at most polynomial resources.

Ex: Boolean satisfiability, Knapsack problem, Traveling salesman problem



vomplexity classes ’S',g; =
(non-formal definitons) T

mapped to other NP problems using at most polynomial resources.

Ex: Boolean satisfiability, Knapsack problem, Traveling salesman problem
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NP-Complete

Complexity
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https://en.wikipedia.org/wiki/NP-completeness
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Introduction to quantum computing:
A historical perspective
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/Church-Turing Thesis: Any algorithmic process can be efficiently\

simulated using an Turing machine.
- /

Turing machine
VS.
Reversible computation

Paul Benioff

KA Turing machine can be simulated by the unitary (reversible) evolution of a quantum\
Drocess.

Paul Benioff, J. Statist. Phys. 22, 563 (1980).

\ )
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1 Freeman Dyson
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3 James Crutchfield
4 Norman Packard
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Feynman's proposal:
Quantum computers as universal quantum simulators

International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982

Simulating Physics with Computers

Richard P. Feynman
Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

4. QUANTUM COMPUTERS—UNIVERSAL QUANTUM
SIMULATORS

The first branch, one you might call a stde-remark, is, Can you do it
with a new kind of computer—a quantum computer? (I'll come back to the
other branch in a moment.) Now it turns out, as far as I can tell, that you
can simulate this with a quantum system, with quantum computer elements.
It’s not a Turing machine, but a machine of a different kind. If we disregard
the continuity of space and make it discrete, and so on, as an approximation
(the same way as we allowed ourselves in the classical case), it does seem to

I CT P International Centre
for Theoretical Physics
SA' FR South American Institute
for Fundamental Research

“Nature 1sn’t classical, dammit, and
if you want to make a simulation of
nature, you’d better make it
quantum mechanical, and by golly
it’s a wonderful problem, because it
doesn’t look so easy.”



classical computers

Simulating physical systems with ’S

/

-

How much memory does a computer need to simulate a material”?

\

/

| | protons = 26
Pieces of iron electrons = 26

neutrons = 30
# particles = 82

https://en.wikipedia.org/wiki/lron

each particle

ICTP
AIFR |

Physical description includes
spatial (position, linear momentum)
and intrinsic properties (spin) of
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Let's simplify life... ’
Stick to what interests you!! >

Let's consider spin 12 particles, such as electrons, protons # spins 1/2 # bits
and neutrons. 1 2
2 4
3 8 = 1byte
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
13 8.192 bits = 1 kilobyte
In the classical computer, each variable is represented by 23 8.388.608 bits = 1 megabyte
64 bits (double precision). Therefore, It takes 70 Tb of 33 8.589.934.592 bits = 1 gigabyte

RAM to describe 43 spins. 43 8.796.093.022.208 bits = 1 terabyte



Circuital model of guantum computing t‘f.l: —

Non-formal definition

A Quantum Turing Machine (QTM) is a
machine capable of effectively simulating an
arbitrary physical system.

g0, : |0} H| A David Deutsch
g0, : |0) X Hé—n/\
q0 : |0) { HHA] I %
c0p : 0 Any quantum algorithm can
c0; : 0 =——— ——4 be expressed formally as a
c0,: 0 particular quantum Turing
machine.

D. Deutsch, Proc. R. Soc. A. 400, 97 (1985).
A. Molina, J. Watrous, Proc Math Phys Eng Sci. 475, 20180767 (2019).



Shor's factoring algorithm

Algorithms for Quantum Computation:

Discrete Log and Factoring

Extended Abstract

Peter W. Shor
AT&T Bell Labs
Room 2D-149
600 Mountain Ave.
Murray Hill, NJ 07974 USA

emaill: shor@research.att.com

Abstract

This paper gives algorithms for the discrete log and the factoring problems that
take random polynomial time on a quantum computer (thus giving the first examples
of quantum cryptanalysis).

P. W. Shor, Proceedings 35th Annual Symposium on Foundations of
Computer Science. |[EEE Comput. Soc. Press: 124 (1994).

ICTP
SAIFR

Peter Shor

rRSA security foundation
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/

3X5=15-easy

~

19175002942688032928599 x 13558774610046711/780701 = 2.59989543x1044 - hard
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After the advent of Shor’s factoring algorithm ’
S

Bounded-error guantum polynomial time (BQP) is the class of decision
problems solvable by a quantum computer in polynomial time, with an error
probability of at most 1/3 for all instances. |

EX:

Integer factorization (Shor's algorithm),
Discrete logarithm,

Simulation of qguantum systems,
Harrow-Hassidim-Lloyd (HHL) algorithm.

NP-Complete

Complexity



https://en.wikipedia.org/wiki/Quantum_computer
https://en.wikipedia.org/wiki/Polynomial_time
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Quantum Computing Models



Universal models - implement universal quantum computation ’mp ,,,,,,,,,,,,,,,,,,,
S

* Quantum circuit model

 Adiabatic quantum computing

* Quantum Turing machine

» Measurement based quantum computation
» Quantum walks

» Topological qguantum computing

Restricted models - implement restricted functions

» Quantum annealing - calculates the ground state of the Ising model

» Boson sampling - calculates the permanent of matrices

» Deterministic quantum computation with one quit (DQC1) - calculates the trace of
a unitary matrix
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Quantum circuital model



Circuit notation

Simple example

>
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Initial states

Circuit notation

Single-qubit
gate Double line =
classical bit

'
Single line ﬁ /74 bo
= qubit
A = b1

T

Measurement
gate (10, 1))

Two-qubit

(Discrete) time evolution - from left to right

Calssical string

>

ICTP nnnnnnnnnnnnnnnnnnn
lllllllllllllllllllll
Al FR South American Institute
for Fundamental Research



Qubit - the building block t&ﬁlﬁ ey

Bloch sphere
0)

Qubit
) =al0)+b|1) st a,b e C

b|* = 1 -normalization condition

1) = cos(6/2) |0) + ¥ sin(0/2) |1)
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Quantum gates
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Single-qubit quantum gates

Single-qubit gates are rotations on the Bloch sphere.
_ 1l
U=¢e¢"R;(0)

4 _ )
Exercise: Show that

. — 0 7 Q] 0\ » A O =
R (0) =cos (5) 1 @Sln(z)n o O (Uxady,(fzb

\_




N OT g ate oOr Pa U I i X g ate ’SICTP oo

Matrix representation

l}_\ Ol

IO Hl

Al FR South American Institute
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Truth table

X |0) = |1)
X 1) = |0)

b=0,1 ; b=NOT(b)



P a u I | Y g ate ’SICTP e
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Symbol Matrix representation Truth table
o 10 =i Y |0) =i |1)
gifip o=1 =\, Y |1) = —i]0)
. or
Y |b) = (—=1)% |b)
TR b=0,1 ; b=NOT(b)
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Symbol Matrix representation Truth table
10 Z10) =10)
Z GZ—Z—_O 1 Zl}z—\l}
or




2 Q u a n t u m p h a S e g ate ’SICTP 12‘,‘*{3:';'5::‘}”:?!3‘.‘?'252@

N Matrix representation Truth table
‘ =y (10 P(6)|0) = |0)
/ Po) = {0 ew} P(6)1) = et|1)
R;(m) = P(m) = Z
RQ(W/Q) — P(7T/2) =P —» Phase gate
Ré (7-(-/4) — P(7T/4) — |’ =T gate " Exercise: What is the

relation between the
Kga’ces Z, S, and T7?

/




Symbol

direction of the
rotation axis for the
LHadamard gate.

" Exercise: Obtain the |

Hadamard gate

Matrix representation

J
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Truth table
H|0) = |+)
HI1l) =|-)

It "creates” superposition!



Two-qubit quantum gates t',f.::
CNOT - Controlled NOT gate

Symbol Matrix representation Truth table
Control
1 0 0 O CNOT [00) = |00)
0 1 0 of ONOT|0L)=]|0L)
CNOT = 00 0 1 CNOT |10) = [11)
Target [() 0 1 ()J CNOT1L) = [10)
or

CNOT |a,b) = |a,a D b
4{—)%7 a,b) = | )
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CZ gate - Controlled Z gate

Symbol Matrix representation Truth table
CZ|00) = [00)
1 0 0 O CZ|01) = |01)
7 — 0O 1 0 0 CZ|10) = [10)
{0 0 1 O CZ|11) = —|11)
0 0 0 -1 or
CZ|0b) = |0b)

CZ|1b) = Z5 [1b) = |1) (Z |b))

b=0,1
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@ercise 1: Write the CNOT gate using the CZ gate and one-qubit gates. \

Exercise 2: Use the CNOT gate and one-qubit gates to create the four Bell basis

states.
‘ l//-|-> —

[w_) =

U

|01) + | 10)

V2

[01) —|10)

V2

‘¢+> —

[p_) =

100) + | 11)

2

[00) — | 11)

NG

J
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Symbol Matrix representation Truth table
SWAP |00) = |00)
1 0 O 9 SWAP |01) = |10)
0 0 1 0 SWAP [10) = |01)
SWAP = | o
I 01 0 0| SWAP|11) = |11)
0 4 ¢ 1
or

SWAP |ab) = |ba)

a,b=0.,1



ISWAP gate

>
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s

Symbol

Exercise: The iSWAP gate is given by

iISWAP = Ryy. vy (

— 7

2

Show that its matrix representation is

iISWAP = =

1
0
0
0

0
0
l
0

0 0
i 0
0 0
0 1

—) = exp [i%(X®X+ Y ® Y)]

N

J




Three-qubit quantum gates

CCNOT - Toffoli gate

Symbol Matrix representation Truth table
CCNOT |00¢) = |00c)
1T 0 0 0 0 0O 0 O CCNOT [01¢) = |01c)
o CCNOT |10¢) = [10¢)
0 01 0 0 0 0 -
CCNOT =|c¢ ) 1 0 0 0 C CCNOT |11¢) = |11¢)
C D 1 0 0 ¢« e=0,1 ; e=NOT\(e)
0 D0 0 1 0 Q
0 0 0O O O O 0 1 or
0o 0 0 0 0 0 1 0 CONOT | a. b, c)

= la, b, (a-b) & c)

The Toffoli gate is universal for classical computing. a.,b,c=0,1
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ﬁxercise: Show that the Toffoli gate can be constructed from one-qubit gatem
plus the CNOT gate. Hint: Just do it if you have a computer!
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