Universal set of quantum gates

A set of quantum gates that allows us to approximate any quantum gate to any desired precision is called a universal gate set.

(Exactly) universal: all gates of one and two quits.

U with precision ϵ if¹

with some appropriate matrix norm. For instance, the spectral norm

i.e., the largest singular value of A.

¹A. M. Childs, Lecture Notes on Quantum Algorithms, http://www.cs.umd.edu/~amchilds/qa/.

- (Approximately universal): We say that a circuit with gates $U_1U_2 \dots U_t$ approximates
 - $\|U U_t \dots U_2 U_1\| \le \epsilon$

$$\max_{|\psi\rangle} \frac{\|A|\psi\rangle\|}{\||\psi\rangle\|}$$

Some examples of universal gate sets are:

- {CNOT, all single-qubit gates}¹
- $\{CNOT, H, T\}^2$
- {CNOT, $R_v(\pi/4), S$ }³
- {Toffoli, H}⁴ reversible classical gate + 1 quantum gate!

Properties of a set of quantum gates to be universal:

- Superposition;
- Entanglement;
- Complex amplitudes;
- Contain more than the Clifford group {CNOT, H, S}.

¹A. Barenco, et al., *Phys. Rev. A* **52**, 3457 (1995). ²P. O. Boykin, et al. *Inf. Proc. Lett.* **75**, 101 (2000). ³A. Y. Kitaev, *RMS: Russian Mathematical Surveys* **52**, 1191 (1997). ⁴Y. Shi, arXiv:guant-ph/0205115 (2002).

The *Clifford group* is the set of gates {CNOT, H, S}.

Although this set contains the properties described previously, the Gottesman-*Knill theorem¹* says that a quantum circuit containing only these gates is efficiently simulated by a classical computer.

efficiently on a classical computer:

- Preparation of qubits in state $|0\rangle^{\otimes n}$, 1.
- Clifford gates, 2.
- 3. Measurements in the computational basis.

This theorem shows that even some *highly entangled states* can be simulated efficiently.

¹D. <u>Gottesman</u>, arXiv:quant-ph/9807006v1, (1998).

Theorem: A quantum circuit using only the following elements can be simulated

Solovay-Kitaev Theorem

Theorem¹: Fix two universal gate sets that are closed under inverses. Then any tgate circuit using one gate set can be implemented to precision ϵ using a circuit of $t \operatorname{poly} \log(t/\epsilon)$ gates from other set (indeed, there is a classical algorithm for finding this circuit in time t poly $\log(t/\epsilon)$.

Meaning:

- The running time of an algorithm using one gate set is the same as that using the other gate set up to logarithmic factors;
- This means that even polynomial quantum speedups are robust with respect to the choice of gate set;
- Quantum computers need only implement a finite number of gates to gain the full power of quantum computation.
- ¹A. M. Childs, Lecture Notes on Quantum Algorithms, http://www.cs.umd.edu/~amchilds/qa/.

circuit, relative to some universal set of quantum gates.

which *n* is the number of input qubits.

Circuit complexity is generally hard to find!

- It is the least number of quantum gates required to implement a given quantum
 - **Example:** Toffoli gate decomposed into 16 one and two qubits gates.

Efficient quantum algorithms have at most *polynomial* circuit complexity poly(n), in

Quantum Oracles

In this model, we assume we have access to an *oracle*, or *black box*, to which we can pass queries, and which returns answers to our queries. Our goal is to determine some property of the oracle using the *minimal number of queries*¹.

XOR Oracle²

The XOR quantum oracle O is a unitary operator that implements the boolean function $f: \{0,1\}^n \to \{0,1\}^m$:

¹A. Montanaro, Quantum computation - Lecture notes, https://people.maths.bris.ac.uk/~csxam/ teaching/qc2020/. ²G. G. Pollachini, (2018). http://gcq.ufsc.br/doku.php?id=trabalhos_desenvolvidos. In portuguese.

$|x\rangle$ is the input state

 $|y\rangle$ is the *target* or *answer* state

 $y \oplus f(x)$ is the *bitwise* XOR operation,

Notice that if $|y\rangle = |0\rangle^{\otimes m}$, then the output state is $|y \oplus f(x)\rangle = |f(x)\rangle$.

the state $|y\rangle = |-\rangle$

$$|x\rangle|0\rangle \xrightarrow{I\otimes X} |x\rangle|1\rangle \xrightarrow{I\otimes H} |x\rangle|-\rangle$$

¹G. G. Pollachini, TCC, (2018). In portuguese.

- $y \oplus f(x) = y_1 \oplus f_1(x) \dots y_m \oplus f_m(x) = \text{string of length } m$

Phase Oracle¹

Lets consider only one target qubit to illustrate the idea. Our first goal is to prepare

Then, querying the oracle, we get $|x\rangle|-\rangle = |x\rangle \frac{1}{\sqrt{2}} (|0\rangle = \frac{1}{\sqrt{2}} \left(|x\rangle|0\rangle - |x\rangle|1\rangle \right)$ $=\begin{cases} |x\rangle|-\rangle, & f(x)=0\\ -|x\rangle|-\rangle, & f(x)=1 \end{cases}$ $= (-1)^{f(x)} |x\rangle |-\rangle.$

Therefore, the action of a phase oracle O_P can be summarized as

$$-|1\rangle)$$

 $-|x\rangle|1\rangle$

 $\longrightarrow \frac{1}{\sqrt{2}} \left(|x\rangle | 0 \oplus f(x) \rangle - |x\rangle | 1 \oplus f(x) \rangle \right)$ $= \begin{cases} \frac{1}{\sqrt{2}} \left(|x\rangle|0\rangle - |x\rangle|1\rangle \right), & f(x) = 0\\ \frac{1}{\sqrt{2}} \left(|x\rangle|1\rangle - |x\rangle|0\rangle \right), & f(x) = 1 \end{cases}$

$$(-1)^{f(x)} |x\rangle.$$

It is the number of calls to a function, or queries to an oracle (or black box) needed to solve the problem.

We don't know its inner working

Example: In the Grover's search algorithm, the classical solution takes O(N)queries, while in the quantum case it takes only $O(\sqrt{N})$.

We call oracle separation the speedup in the number of oracle queries.

Output

Oracular quantum algorithms

Deutsch problem¹

function is balanced or constant.

Classical solution

In the classical scenario, we must calculate f(0) and f(1) and compare them.

Two bits of information are required!

¹D. Deutsch, *Proc. R. Soc. A* **400**, 7 (1985).

Problem: Let f(x) be a boolean function $f: \{0,1\} \rightarrow \{0,1\}$, which is promised to be constant (f(0) = f(1)) or balanced ($f(0) \neq f(1)$). The problem is to determine if the

Oracular quantum algorithms

Deutsch problem¹

Problem: Let f(x) be a boolean function $f: \{0,1\} \rightarrow \{0,1\}$, which is promised to be constant (f(0) = f(1)) or balanced ($f(0) \neq f(1)$). The problem is to determine if the function is balanced or constant.

$$|0\rangle - H$$

¹D. Deutsch, *Proc. R. Soc. A* **400**, 7 (1985). ²D. Collins, K. W. Kim, and W. C. Holton Phys. Rev. A **58**, R1633(R) (1998).

The power of quantum interference

Deutsch-Jozsa algorithm¹

constant.

Deterministic classical solution

There are 2^n functions $\{f(0), f(1), f(2), f(3), \dots, f(2^n - 1)\}$

In the worst case it is necessary to evaluate $2^{n-1} + 1$ functions to decide if f is constant or balanced.

Exponential number of queries to the classical oracle.

¹D. Deutsch, R. Jozsa, *Proc. R. Soc. London A*. **439**, 553 (1992).

Problem: Let f(x) be a boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$, which is promised to be constant or balanced. The problem is to determine if the function is balanced or

Quantum solution

Optimized version of the circuit used to solve the Deutsch-Jozsa problem¹.

¹D. Collins, K. W. Kim, and W. C. Holton Phys. Rev. A 58, R1633(R) (1998).

Step 0 - Initial state:

Step 1 - Uniforme superposition state:

$$\psi_1 \rangle = H^{\otimes n} |0\rangle^{\otimes n}$$
$$= |+\rangle^{\otimes n}$$
$$= \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right)$$
$$= \frac{1}{\sqrt{2^n}} \sum_{x \in \mathbb{B}_n} |x|$$

 $|0\rangle^{\otimes n}$

2^{*n*} possible combinations of *n* qubits

$$\mathbb{B}_n = \{0 \dots 00, 0 \dots 01, 0 \dots 10 \\ = \{0, 1, 2, 3, \dots, 2^n - 1\}.$$

0, 0...11, ..., 1...11

Step 2 - Oracle query:

Step 3 - Measurement (rotated basis)

$$\sum_{\mathbb{B}_n} (-1)^{f(x)} |x\rangle$$

$$\{ | + \rangle, | - \rangle \}$$

 $H|0\rangle = |+\rangle$

 $H|1\rangle = |-\rangle$

Density of probability of finding the system in the final state $|+\rangle^{\otimes n}$:

$$\langle +|^{\otimes n} |\psi_2\rangle = \left(\frac{1}{\sqrt{2^n}} \sum_{y \in \mathbb{B}_n} \langle y|\right) \frac{1}{\sqrt{2^n}} \sum_{x \in \mathbb{B}_n} (-1)^{f(x)} |x\rangle$$

$$\langle +| = \langle 0 | H \qquad \qquad = \frac{1}{2^n} \sum_{x \in \mathbb{B}_n} \sum_{y \in \mathbb{B}_n} (-1)^{f(x)} \langle y | x\rangle$$

$$\langle -| = \langle 1 | H \qquad \qquad = \frac{1}{2^n} \sum_{x \in \mathbb{B}_n} \sum_{y \in \mathbb{B}_n} (-1)^{f(x)} \delta_{x,y}$$

$$= \frac{1}{2^n} \sum_{x \in \mathbb{B}_n} \sum_{y \in \mathbb{B}_n} (-1)^{f(x)} \cdot \bigoplus \begin{array}{l} \pm 1 - \text{for} \\ 0 - \text{for} \end{array}$$

Therefore, if the result of the measurement is $|0\rangle^{\otimes n}$, the function is constant, otherwise it is balanced.

Only one oracle query in the quantum case.

constant function balanced function

Exponential speedup.

Efficient probabilistic classical solution to the Deutsch-Jozsa problem.

Exercise: Given that f is a balanced function of n qubits. Show that the probability of a wrong guess that the function is constant is

Perr

For k measurements s.t. $2^n \gg k$.

$$ror = \frac{1}{2^k}$$

Looking for names and phone numbers in a telephone book Looking for *names* is easy!

Name	Phone Number	
Alice	314-1592	
Bob	271-8281	
Charlie	105-4571	N/2
Dave	885-4187	N/4
Eve	125-6637	
Frank	299-7924	
Grace	729-7352	
•	•	N/2
Zoe	200-2319	

N/8

. . .

Binary search algorithm:

 $\frac{\text{\# of names}}{2^{\text{\# of steps}}} = \frac{N}{2^k} = 1$

Number of steps in average $O(\log_2 N)$

Whats is the number of steps to find a given phone number?

Grover's problem¹

The goal of the Grover's algorithm is to find an element in an unstructured list of $N = 2^n$ elements.

Classical solution: It is necessary looking for $\Theta(N)$ elements.

PS: The primary use of Grover's algorithm (at least initially) is likely not to be searching physical databases, but instead searching for solutions to computational problems.

¹L. K. Grover, Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, 212 (1996).

Problem: Find the only entry $x_0 \in \{0,1\}^n$ such that $f(x) = \begin{cases} 1, & x = x_0, \\ 0, & x \neq x_0. \end{cases}$

Grover's algorithm

The compact notation of the quantum circuit is¹

$$|0\rangle^{\otimes n} \xrightarrow{n} H^{\otimes n} - G$$

in which

$$-H^{\otimes n} = -O_{\mathbf{F}}(f) - H^{\otimes n} - 2|0\rangle\langle 0| - I - H^{\otimes n} - 2|0\rangle\langle 0| - I - H^{\otimes n} - H^{\otimes n}$$

is the Grover's operator.

¹G. G. Pollachini, (2018). http://gcq.ufsc.br/doku.php?id=trabalhos_desenvolvidos. In portuguese.

 $|0
angle^{\otimes n}$ **Step 0 - Initial state:**

Step 1 - Uniforme superposition state: Lets first define the following states

Step 3 - Grover's operator

$$\begin{split} O_{F}|x\rangle &= (-1)^{f(x)}|x\rangle \rightarrow = \begin{cases} O_{F}|x\rangle = -|x\rangle, & x = x_{0}, \\ O_{F}|x\rangle = |x\rangle, & x \neq x_{0}. \end{cases} \\ O_{F}|\alpha\rangle &= O_{F} \sum_{\substack{x \in \mathbb{B}_{n} \\ x \neq x_{0}}} \frac{|x\rangle}{\sqrt{N-1}} \\ &= \sum_{\substack{x \in \mathbb{B}_{n} \\ x \neq x_{0}}} \frac{1}{\sqrt{N-1}} O_{F}|x\rangle \\ &= \sum_{\substack{x \in \mathbb{B}_{n} \\ x \neq x_{0}}} \frac{1}{\sqrt{N-1}} |x\rangle \\ &= |\alpha\rangle \ , \end{split} \text{ and } \begin{cases} O_{F}|\beta\rangle = O_{F}|x_{0}\rangle \\ &= -|x_{0}\rangle \\ &= -|\beta\rangle \ . \end{cases} \end{split}$$

Oracle's effect:

Rewriting the *G* operator

$$G = H^{\otimes n} (2 |0\rangle \langle 0| - I$$
$$= (2H^{\otimes n} |0\rangle \langle 0| H^{\otimes}$$
$$= (2H^{\otimes n} |0\rangle \langle 0| (H^{\otimes})$$
$$= (2|\psi\rangle \langle \psi| - I) O_{\mathrm{F}}$$

Application of the quantum oracle:

$$\begin{aligned} |\psi_1\rangle &= O_{\rm F} \left|\psi_0\rangle \\ &= O_{\rm F} \left(\frac{\sqrt{N-1}}{\sqrt{N}} \left|\alpha\right\rangle + \frac{1}{\sqrt{N}} \left|\beta\right\rangle\right) \\ &= \frac{\sqrt{N-1}}{\sqrt{N}} \left|\alpha\right\rangle - \frac{1}{\sqrt{N}} \left|\beta\right\rangle \end{aligned}$$

$I)H^{\otimes n}O_{\mathrm{F}}$ $^{\otimes n} - H^{\otimes n} I H^{\otimes n} O_{\mathrm{F}}$ $(H^{\otimes n})^{\dagger} - H^{\otimes n} H^{\otimes n}) O_{\mathrm{F}}$

 $|\psi\rangle = |+\rangle^{\otimes n}$ Don't forget!

Reflection with respect to the axis

 $|\psi_2\rangle = (2|\psi\rangle\langle\psi| - I)|\psi_1\rangle$ $= 2 |\psi\rangle \langle \psi| |\psi_1\rangle - |\psi_1\rangle$

Reflexion with respect to the axis determined by the vector $|\psi\rangle$

State of the system after the first application of the Grover's operator

$$\cos\frac{\theta}{2} = \langle \alpha | \psi \rangle = \frac{\sqrt{N-1}}{\sqrt{N}}$$

 O_F mark the target state with a phase (-1).

$$-(2|\psi\rangle\langle\psi|-I) = -|\psi\rangle\langle\psi|+|\psi_{\perp}\rangle$$

 O_F mark the initial state with a phase (-1).

Therefore,

- $G = (2 |\psi\rangle \langle \psi| I) O_F$
- Decomposing the identity operator as $I = |\psi\rangle\langle\psi| + |\psi_{\perp}\rangle\langle\psi_{\perp}|$, we have
 - $_{\perp}\rangle\langle\psi_{\perp}|=-|\psi\rangle\langle\psi|+|\psi_{\perp}\rangle\langle\psi_{\perp}|=O_{\psi}$

After successive applications of the Grover's operator, we have

For large $N \Rightarrow \theta \ll 1$, we obtain $\theta \approx -$

Then, the number of oracle queries is $k = \frac{\pi}{4}\sqrt{N}$

\/ / V

To achieve the target state after k steps, we impose

$$k\theta + \frac{\theta}{2} = \frac{\pi}{2} \implies k = \frac{\pi - \theta}{2\theta}$$

Different expressions of θ will be useful to obtain k.

$$r = \frac{\sqrt{N-1}}{\sqrt{N}} \Rightarrow \sin\frac{\theta}{2} = \frac{1}{\sqrt{N}} \Rightarrow \theta = 2 \arcsin\frac{-1}{\sqrt{N}}$$

$$O(N^{-3/2})$$

The success probability of achieving $|\beta\rangle = |x_0\rangle$ after $O(\sqrt{N})$ steps is

$$P_{a} = \left\| |x_{0}\rangle\langle x_{0}| G^{k} |\psi\rangle \right\|^{2}$$

= $\left|\langle x_{0}|G^{k} |\psi\rangle \rangle\right|^{2}$
= $\left|\cos \theta \left(|x_{0}\rangle, G^{k} |\psi\rangle \right)\right|^{2}$
> $\left|\cos \theta/2\right|^{2}$
= $\left(\frac{\sqrt{N-1}}{\sqrt{N}}\right)^{2}$
= $\frac{N-1}{N}$, $N = 2^{n}$.

Very close to 1 for large N.

Grover's algorithm is optimal.

If we give more or less steps than k, the projection of the final state on the desired state becomes smaller.

