
Universal set of quantum gates

A set of quantum gates that allows us to approximate any quantum gate to any 
desired precision is called a universal gate set. 

1A. M. Childs, Lecture Notes on Quantum Algorithms, http://www.cs.umd.edu/~amchilds/qa/.

(Exactly) universal: all gates of one and two quits.

(Approximately universal): We say that a circuit with gates                      approximates 
U with precision    if1 

U1U2 . . . Ut
ϵ

with some appropriate matrix norm. For instance, the spectral norm 

i.e., the largest singular value of A.
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• {CNOT, all single-qubit gates}1

• {CNOT, H, T }2

• {CNOT, Ry(π/4), S }3


• {Toffoli, H}4 - reversible classical gate + 1 quantum gate!

Some examples of universal gate sets are: 

Properties of a set of quantum gates to be universal:


Superposition;

Entanglement;

Complex amplitudes;

Contain more than the Clifford group {CNOT, H, S}.



1D. Gottesman, arXiv:quant-ph/9807006v1, (1998). 

The Clifford group1 is the set of gates {CNOT, H, S}. 


Although this set contains the properties described previously, the Gottesman-
Knill theorem1 says that a quantum circuit containing only these gates is efficiently 
simulated by a classical computer.

Theorem: A quantum circuit using only the following elements can be simulated 

efficiently on a classical computer:


1. Preparation of qubits in state         ,

2. Clifford gates,

3. Measurements in the computational basis.

|0⟩⊗n

This theorem shows that even some highly entangled states can be simulated 
efficiently.

https://en.wikipedia.org/wiki/ArXiv_(identifier)


Solovay-Kitaev Theorem
Theorem1: Fix two universal gate sets that are closed under inverses. Then any t-
gate circuit using one gate set can be implemented to precision    using a circuit        
of                   gates from other set (indeed, there is a classical algorithm for 
finding this circuit in time                     .

ϵ
tpoly log(t/ϵ)

tpoly log(t/ϵ)

Meaning:  

• The running time of an algorithm using one gate set is the same as that using the 
other gate set up to logarithmic factors; 


• This means that even polynomial quantum speedups are robust with respect to 
the choice of gate set;


• Quantum computers need only implement a finite number of gates to gain the full 
power of quantum computation.

1A. M. Childs, Lecture Notes on Quantum Algorithms, http://www.cs.umd.edu/~amchilds/qa/.



Circuit complexity

It is the least number of quantum gates required to implement a given quantum 
circuit, relative to some universal set of quantum gates.

Example: Toffoli gate decomposed into 16 one and two qubits gates.

Efficient quantum algorithms have at most polynomial circuit complexity poly(n), in 
which n is the number of input qubits .

Circuit complexity is generally hard to find!



Quantum Oracles

1A. Montanaro, Quantum computation - Lecture notes, https://people.maths.bris.ac.uk/~csxam/
teaching/qc2020/.

2G. G. Pollachini, (2018). http://gcq.ufsc.br/doku.php?id=trabalhos_desenvolvidos. In portuguese.

In this model, we assume we have access to an oracle, or black box, to which we can 
pass queries, and which returns answers to our queries. Our goal is to determine 
some property of the oracle using the minimal number of queries1.

XOR Oracle2

The XOR quantum oracle O is a unitary operator that implements the boolean 
function                                :f : {0,1}n → {0,1}m

is the input state|x⟩

is the target or answer state|y⟩



Notice that if                    , then the output state  is                            .    |y⟩ = |0⟩⊗m

is the bitwise XOR operation,y ⊕ f(x)

y ⊕ f(x) = y1 ⊕ f1(x) . . . ym ⊕ fm(x) = string of length m

|y ⊕ f(x)⟩ = | f(x)⟩

Phase Oracle1

Lets consider only one target qubit to illustrate the idea. Our first goal is to prepare 
the state                      |y⟩ = | − ⟩

1G. G. Pollachini, TCC, (2018). In portuguese.



Then, querying the oracle, we get 

OP |x⟩ = (−1) f(x) |x⟩ .

O

Therefore, the action of a phase oracle OP can be summarized as  



Query complexity

It is the number of calls to a function, or queries to an oracle (or black box) needed 
to solve the problem.

Black

Box

Input Output

We don’t know 
its inner working

Example: In the Grover’s search algorithm, the classical solution takes          
queries, while in the quantum case it takes only            .O( N)

O(N)

We call oracle separation the speedup in the number of oracle queries. 



Oracular quantum algorithms

1D. Deutsch, Proc. R. Soc. A 400, 7 (1985).

Problem:  Let f(x) be a boolean function                   , which is promised to be 
constant (             ) or balanced (            ). The problem is to determine if the 
function is balanced or constant.

Deutsch problem1

f : {0,1} → {0,1}
f(0) = f(1) f(0) ≠ f(1)

Classical solution

In the classical scenario, we must calculate f(0) and f(1) and compare them.  

Two bits of 
information are 

required!



Oracular quantum algorithms

1D. Deutsch, Proc. R. Soc. A 400, 7 (1985).
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Problem:  Let f(x) be a boolean function                   , which is promised to be 
constant (             ) or balanced (            ). The problem is to determine if the 
function is balanced or constant.

Deutsch problem1

f : {0,1} → {0,1}
f(0) = f(1) f(0) ≠ f(1)

|0⟩ →
|0⟩ + |1⟩

2
→

(−1) f(0) |0⟩ + (−1) f(1) |1⟩

2
→ [ (−1) f(0) + (−1) f(1)

2 ] |0⟩ + [ (−1) f(0) − (−1) f(1)

2 ] |1⟩

If f(x) is constant, then we measure the state     ;     |0⟩
If f(x) is balanced, then we measure the state      .     |1⟩ Just one qubit 

of information!2



The power of quantum interference

[ (−1) f(0) − (−1) f(1)

2 ] |1⟩

Lets interpret the algorithm as an interference process:

|0⟩

|0⟩

2

|1⟩

2

(−1) f(0) |0⟩

2

(−1) f(1) |1⟩

2

(−1) f(0) |0⟩
2

(−1) f(0) |1⟩
2

−
(−1) f(1) |1⟩

2

(−1) f(1) |0⟩
2

[ (−1) f(0) + (−1) f(1)

2 ] |0⟩

This term survives 
if the function is 

constant.

This term survives 
if the function is 

constant.



Deutsch-Jozsa algorithm1

1D. Deutsch,  R. Jozsa, Proc. R. Soc. London A. 439, 553 (1992).

Problem:  Let f(x) be a boolean function                            ,   which is promised to be 
constant or balanced. The problem is to determine if the function is balanced or 
constant.

f : {0,1}n → {0,1}

Deterministic classical solution

There are      functions                              .  


In the worst case it is necessary to evaluate              functions to decide if f is 
constant or balanced. 

2n

2n−1 + 1

{f(0), f(1), f(2), f(3), . . . , f(2n − 1)}

Exponential number of queries to the classical oracle.



1D. Collins, K. W. Kim, and W. C. Holton Phys. Rev. A 58, R1633(R) (1998).

Quantum solution

Optimized version of the circuit used to solve the Deutsch-Jozsa problem1.



Step 0 - Initial state: 

Step 1 - Uniforme superposition state: 

possible combinations of n qubits2n



Step 2 - Oracle query: 

Step 3 - Measurement (rotated basis)                   : 

P

P

H |0⟩ = | + ⟩

H |1⟩ = | − ⟩

{ | + ⟩, | − ⟩}



Density of probability of finding the system in the final state            :| + ⟩⊗n

Therefore, if the result of the measurement is         , the function is constant, 
otherwise it is balanced.   

|0⟩⊗n

±1 − for constant function
0 − for balanced function

⟨ + | = ⟨0 |H

⟨ − | = ⟨1 |H

Only one oracle query in the quantum case. Exponential speedup.



But, it is not all roses

Efficient probabilistic classical solution to the Deutsch-Jozsa problem.

Exercise: Given that f  is a balanced function of n qubits. Show that the 
probability of a wrong guess that the function is constant is


For k measurements s.t.            . 

perror =
1
2k

2n ≫ k



Whats is the number of steps to find a given phone number?

Looking for names and phone numbers in a telephone book

Looking for names is easy!

N/2

N/2

N/4 N/8 …

Binary search algorithm: 

# of names 
2{# of steps}

=
N
2k

= 1

Number of steps in average 
O(log2 N)



Grover’s problem1

Problem: Find the only entry                   such thatx0 ∈ {0,1}n

f(x) = {
1, x = x0,
0, x ≠ x0 .

The goal of the Grover’s algorithm is to find an element in an unstructured list of             
elements. 

N = 2n

Classical solution: It is necessary looking for           elements. Θ(N)

1L. K. Grover, Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, 212 (1996).

PS: The primary use of Grover's algorithm (at least initially) is likely not to 
be searching physical databases, but instead searching for solutions to 
computational problems.



Grover’s algorithm

The compact notation of the quantum circuit is1

in which

is the Grover’s operator.

k times

1G. G. Pollachini, (2018). http://gcq.ufsc.br/doku.php?id=trabalhos_desenvolvidos. In portuguese.



Step 0 - Initial state: 

Step 1 - Uniforme superposition state: 
Lets first define the following states

Target state

Complementary state

2D space



Step 3 - Grover’s operator 

OF |x⟩ = (−1) f(x) |x⟩ → = {
OF |x⟩ = − |x⟩, x = x0,
OF |x⟩ = |x⟩, x ≠ x0 .

Oracle's effect:

and



Rewriting the G operator 

Don’t forget!

Application of the quantum oracle:

Reflection with respect 
to the axis



 …

Reflexion with respect to the axis 
determined by the vector |ψ⟩

State of the system after the first 
application of the Grover’s operator

cos
θ
2

= ⟨α |ψ⟩ =
N − 1

N



Interpreting the Grover’s operator

G = (2 |ψ⟩⟨ψ | − I)OF

Decomposing the identity operator as                                             , we have I = |ψ⟩⟨ψ | + |ψ⊥⟩⟨ψ⊥ |

−(2 |ψ⟩⟨ψ | − I) = − |ψ⟩⟨ψ | + |ψ⊥⟩⟨ψ⊥ | = − |ψ⟩⟨ψ | + |ψ⊥⟩⟨ψ⊥ | = Oψ

Therefore,

G = − OψOF

OF mark the target state with a phase (-1). 

OF mark the initial state with a phase (-1). 



After successive applications of the Grover’s operator, we have

To achieve the target state after k steps, we impose

Different expressions of    will be useful to obtain k.   θ

cos
θ
2

=
N − 1

N
⇒ sin

θ
2

=
1

N
⇒ θ = 2 arcsin

1

N

For large                  , we obtain     N ⇒ θ ≪ 1

θ ≈
2

N
+ O(N−3/2)

Then, the number of oracle queries is k =
π
4

N



The success probability of achieving                 after             steps is  |β⟩ = |x0⟩ O( N)

If we give more or less steps than k, 
the projection of the final state on the 
desired state becomes smaller.Very close to 1 for large N.

Grover’s algorithm is optimal.


