
Quantum Fourier transform: motivation

Discrete Fourier Transform (DFT) is used for data processing analysis. 

1 T. G. Wong, Introduction to Classical and Quantum Computing (2022). https://www.thomaswong.net/

Waveform of a piano playing a C 
major chord.

Frequency spectrum
C4 E4

G4 C5 E5

With DFT it is possible to 
discover which frequencies 
are composing the chord. 

C4  (C middle) corresponds to 262 Hz

Classical solution



Discrete Fourier Transform
The discrete Fourier transform is

k ∈ {0,1,2,...,N − 1}

ω = ei2π/N

More explicitly

It is necessary to compute           terms.O(N2)

DFT matrix

Fast Fourier transform implements in                  steps. O(N log N)

1

N



Quantum solution

Using the quantum formalism, the state corresponding to the sound amplitudes is

While the transformed state is

The matrix used to implement the DFT can be used here. It is unitary!



Quantum Fourier tranform

So, the quantum Fourier transform (QFT) gate is

QFT
ω = ei2π/N

N = 2n

n = # of qubits

Its action on the basis states is 

Exercise: Show by matrix multiplication that the QFT gate is unitary.



Quantum circuit of QFT
Lets decompose the QFT into single-qubit and two-qubit quantum gates. However, first 
we need rearrange the argument of the exponentials. 

Representing j as a n-binary number

Then, j/N can be represented using a binary point as



Expressing k as an n-bit binary number

we obtain 



 We can drop all the bits to the left of the binary point. Example:

Then, we get 



The application of the QFT on a basis state can be written as  

The sum over the binary numbers k is equivalent to the sum over each bit,   



or

As                                                 , moving the summations, we get      |kn−1 . . . k0⟩ = |kn−1⟩ ⊗ . . . ⊗ |k0⟩

| jn−1⟩ | jn−2⟩

| j1⟩ | j0⟩



Now, lets create the quantum circuit using Hadamard and controlled-
rotations. Starting with state | jn−1⟩

Consider a single-qubit gate that rotates about the z-axis of the Bloch sphere 
by             radians2π/2r

Applying R2 to qubit n-1 controlled by qubit n-2, 



Similarly, applying R3 to qubit n-1 controlled by qubit n-3,

Continuing this through Rn, controlled by qubit 0, the state of qubit n-1 is

Repeating this procedure to construct the other factors, we get



the order of the outputs is reversed.

Just apply SWAP gates



What is the number of quantum gates to implement the QFT?

n n-1 2 1 n/2

n(n + 1)
2

Exponential speedup
n(n + 1)

2
+

n
2

= O(n2) = O(log2 N)

Classical fast Fourier transform O(N log N)

QFT



Important differences

QFT 

the result is a superposition quantum state, so we do not have access to these 
probability amplitudes all at once. 

Measurement in the computational basis returns just the norm-square of the 
amplitudes.

FFT 

we have access to all terms of the DFT.

X



Exercise: The inverse QFT (IQFT) does the reverse of QFT. Show that 
its circuit is given by  



Quantum phase estimation

Problem: Given a unitary matrix U and one of its eigenvectors     , find or estimate 
its eigenvalue.

|ν⟩

The eigenvalue equation for unitary operators takes the form

θ ∈ ℝ

Therefore, estimate its eigenvalues is equivalent to determine the phase    .  θ

In the case in which the unitary operator has the form

U(t,0) = e−i Ht
ℏ

it is possible to obtain the Hamiltonian eigenenergies. These phases can contain 
solutions to problems of interest. 

⇒ θ =
−Ht

ℏ



For an N-dimensional space 
Classical solution

Thus the phase can be obtained 

after the application of N multiplications, N-1 additions and one division, 

O(N) steps are necessary to solve the problem classically.



Quantum solution

To describe the eigenvectors of the system of dimension N, we will use n 
qubits, such that           ,            N = 2n

The value of the phase                   will be approximated using m precision-qubits,         0 ≤ θ < 2π

s.t.  

- n qubit state|ν⟩

Therefore, our task is to find the values of the bits j1, j2, …, jm.



The quantum circuit for the phase estimation algorithm is

Step 0 - Creating uniform superposition state.



Step 1 - Given the eigenvalue register are ordered as

| j1j2 . . . jm⟩

the action of the gate U controlled by state        results | jm⟩

Now, acting with the remaining controlled unitaries, we obtain 

Substituting             and                      , we find    θ = 2πj j = 0.j1j2 . . . jm



The bits to the left of the binary point must be ignored because they 
contribute with integer multiples of      . Then, 2π

This is exactly                  
QFT | j1j2 . . . jm⟩

| j1j2 . . . jm⟩
So, if we apply the inverse of QFT (IQFT) to this state, we obtain 

Now, we are able to estimate the phase to a give precision

θ = 2πj = 2π ( j1
2

+
j2
22

+ . . . +
jm
2m )



Quantum computational complexity

Number of quantum gates to estimate the eigenvalue to m bits of precision:


m Hadamard gates;

m controlled-UP operations;

IQFT on m bits - O(m2)

“Total" cost O(m2) 

Classical cost  N = 2n It depends on the values of m and n.
Speedup?

Hypotesis: 


We are able to prepare the initial state      ;

We are able to execute m controlled-UP operations. 


|ν⟩



Period of Modular Exponentiation
Modular exponentiation is taking powers of a number modulo some other number.

Period r = 3 Period r = 4

“mod” refers to modulus = the remainder of a division



The period or order is the smallest positive exponent r such that

If a and N  are relatively prime (they share no common factors except 1), the repeated 
pattern always comes out.

Classical solution

The total number of elementary binary arithmetic operations for an individual 
modular exponentiation is         . n is the number of bits used to write the power in 
binary representation. 

However, there are several individual modular exponentials. This turns this method 
expensive. 

See pages 329-331 of Ref. [Wong] for a detailed analysis. 

O(n2)

T. G. Wong, Introduction to Classical and Quantum Computing (2022). https://www.thomaswong.net/



Quantum solution

 Lets consider a quantum gate U that performs modular multiplication

0 ≤ y ≤ N − 1

Applying U repeatedly on the state |1⟩

r is the period

U implements 
exactly the modular 
exponential ax mod N



Due to the cyclic character of the states                    , they can be 
superposed to create an eigenstate of U 

0 ≤ s ≤ r − 1

|ax mod N⟩

Exercise: Show that 

U |νs⟩ = ei2πs/r |νs⟩ .



Observe that r is registered in the phase            for some value of s, 
then we can use the phase estimation algorithm to obtain r.  

ei2πs/r

As seen before, the circuit for phase estimation is

How to construct the eigenstates       of U?|νs⟩



The action of the controlled U gates         are determined by CU2j

|z⟩ − control qubit

Trick: instead of preparing a single eigenvector of U, we prepare the following 
superposition of them

Exercise: Show that 



This state is easy to prepare 

However, when we measure the phase of this state, there is a probability       of 
obtaining one of the eigenvalues          .  

1/r
ei2πs/r

The phase is approximated using m bits 

2π
s
r

≈ 2π0.j1j2 . . . jm

How to obtain r?



Continued fraction method

It is a method to approach a real number by its closest rational 

0.j1j2 . . . jm ≈
s
r

Considering the number of precision qubits               , the continued fraction method 
takes         .   

m = O(n)
O(n3)

We can discuss more about this method during the exercise classes.

Total cost of the modular exponentiation 
• 1 X gate

• m Hadamard gates

•          controlled Upower

• IQFT 

• Continued fraction 

O(n3)
O(n2)

O(n3)

Total # of gates: O(n3)
It is efficient!!



Factoring algorithm

The goal of factoring is to find prime numbers p and q such that

N = pq .

Classical solution: the best known classical algorithm is the number field sieve.

To factor an n-bit number, its runtime is roughly 

O (en1/3)

N is an n-bit number



P. W. Shor, Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Comput. Soc. Press: 
124 (1994).

Shor’s factoring algorithm
1 - Pick any number                . 

2 - Calculate the               . 

If                     , then we have found                     . So,              and we are 
done factoring. 

Else                      continue to the next step.

1 < a < N
gcd(a, N)

p = gcd(a, N) q = N/pgcd(a, N) ≠ 1

gcd(a, N) = 1

 3 - Find the period r of                  . ax mod N
If r is odd, go back to step 1 and pick a different a.
Else r is even, calculate                   .ar/2 mod N

If                                 go back to step 1 and pick a different a.ar/2 mod N = N − 1

Else we have found r.
4 - Then we have factored p = gcd(ar/2 − 1,N)

q = gcd(ar/2 + 1,N)

Quantum advantage O(n3)



Exercise: Use “Shor’s” algorithm (previous slide) to find the factors 
of N = 35.


