
Adiabatic quantum computing
The adiabatic quantum computing (AQC) is based on the adiabatic evolution of the 
quantum system.

When the Hamiltonian H of a system is time independent, the solution of the 
Schrödinger equation  

i
d
dt

|ψ(t)⟩ = H |ψ(t)⟩

is 
|ψ(t)⟩ = e−iHt |ψ(0)⟩ .

The evolved state in the Hamiltonian eigenbasis                        isH |n⟩ = En |n⟩

|ψ(t)⟩ = ∑
n

cn(0)e−iEnt |n⟩ .

( ·H = 0)

Time-independent Hamiltonian

(ℏ = 1)



If the initial state of the system is a Hamiltonian eigenvector,                 ,                       
then, there is no transition among its eigenstates for         

cn(0) = δmn
t > 0

|ψ(t)⟩ = e−iEnt |n⟩ .

Time-dependent Hamiltonian

i
d
dt

|ψ(t)⟩ = H(t) |ψ(t)⟩

For time-dependent Hamiltonians, the Schrödinger equation becomes

and the corresponding solution can be written as

|ψ(t)⟩ = ∑
n

cn(t)e−i ∫t
0 En(τ)dτ |n(t)⟩

To solve the Schrödinger equation we need to find the coefficients       . cn(t)



1M. S. Sarandy, L. A. Wu, and D. A. Lidar, Quantum Inf Process 3, 331 (2004).

Exercise: Show that the coefficients of the state expansion        are now 
coupled to each other by1  

·ck = − ck⟨k | ·k⟩ − ∑
n≠k

cn
⟨k | ·H |n⟩

gnk
e

−i
ℏ ∫t

0 gnk(τ)dτ

in which 
gnk(t) = En(t) − Ek(t) .

cn(t)

Adiabatic evolution

A quantum system that begins in the nondegenerate ground state of a time- 
dependent Hamiltonian will remain in the instantaneous ground state 
provided the Hamiltonian changes sufficiently slowly.



1M. S. Sarandy, L. A. Wu, and D. A. Lidar, Quantum Inf Process 3, 331 (2004).

Exercise: Following the Ref. [Sarandy2004] show that an adiabatic 
evolution is satisfied when  

T ≫
max0≤s≤1 |cn(0)⟨k(s) | dH(s)

ds
|n(s)⟩ |

min0≤s≤1 |gnk(s) |2

where T is the total evolution time and           is the parametrized time.s =
t
T

(n ≠ k)

Adiabatic Theorem



1D. Aharonov, et al., SIAM Journal on Computing 37, 166 (2007). arXiv:quant-ph/0405098.

AQC is a universal computational model;


In terms of computational complexity, it is polynomially equivalent to gate-based 
quantum computing1.


The solution to a desired problem is encoded in the ground state of a Hamiltonian 
(cost function). It is more robust to decoherence!

The power of AQC



Adiabatic quantum computing1

In the AQC model we solve optimization problems. Many computational problems 
can be cast as the minimization of some cost function h.

The idea is to interpolate between an easy to prepare Hamiltonian HI to a final one that 
contains the solution to the desired problem, as

H(t) = A(t)HI + B(t)HP

The real time dependent coefficients A(t) and B(t) must satisfy

A(0) = 1 A(T) = 0
B(0) = 0 B(T) = 1

and [HI, HP] ≠ 0.

1E. Farhi, et al., arXiv:quant-ph/0001106v1 (2000); T. Albash and D. Lidar, Rev. Mod. Phys. 90, 1 (2018).



Initial Hamiltonian: In general, the initial Hamiltonian is encoded as 

HI = −
1
2 ∑

n
(I − σn

x ),

whose ground state is 

|ψGS(0)⟩ = | + + + . . . + ⟩ .

Final Hamiltonian: HP is called problem Hamiltonian and its ground state encodes the 
solution of the problem.   

Adiabatic evolution path: In general, the functions A(t) and B(t) are chosen as  

A(t) = s(t) and B(t) = 1 − s(t) .

A common expression for the interpolation function is 

s(t) =
t
T T is the total computing time.



The running time and the gap

T ≫
max0≤s≤1 |cn(0)⟨k(s) | dH(s)

ds
|n(s)⟩ |

min0≤s≤1 |gnk(s) |2

The final (solution) state is achieved with high probability if the runtime is sufficiently 
large. But how long is long enough? 

It depends on each specific problem. 

The total computing time T determines the efficiency of the algorithm, which is 
constrained by the adiabatic theorem.

However, it is strongly dependent on the energy gap between the ground and first 
excited states                       

Only in simple cases it is possible to estimate de energy gap.

There is no easy recipe to compute the runtime in the AQC model. 

g01 = |E0 − E1 | ⇒ T ≫ g−2
01



Some strategies to improve the computational time

Optimize the interpolation function: new time dependency; parameters with 
different speeds.   

Add intermediate hamiltonians to avoid energy gap closure. 

Choose different (simpler) final Hamiltonians, but that commute with HP and have 
the same ground state.  


T. Albash and D. Lidar, Rev. Mod. Phys. 90, 1 (2018).



Quantum annealing

 1T. Kadowaki and H. Nishimori, Phys. Rev. E. 58, 5355 (1998). 

Quantum annealing1  (QA) is an optimization process for finding the 
global minimum of a given objective function over a given set of candidate solutions 
(candidate states), by a process using quantum fluctuations.

This method is strongly inspired on the classical method for optimization named 
Simulated Annealing. In this case, the thermal fluctuations are used to overcome the 
potential barriers.

Figure taken from C. C. McGeoch , Adiabatic 
Quantum Computation and Quantum 
Annealing: Theory and Practice (2014).

Annealing: The goal is to find the equilibrium state 
of a system in the limit of low temperature. Steps:


(a) melting the material under study; 

(b) lowering the temperature very slowly; 

(c) spending a considerable amount of time in a 

range of temperatures close to freezing point.

https://en.wikipedia.org/wiki/Phys._Rev._E


QA: thermal fluctuations are replaced by quantum fluctuations

In general, QA is recommended for applications where the search space is discrete, 
such as combinatorial optimization problems. Ex.: spin glass or the traveling salesman 
problem.  



Implementing Quantum Annealing

1 - The objective function is encoded in the final Hamiltonian HF, whose ground state 
contains the solution for an optimization problem.

H(t) = HF + Γ(t)HD,

3 - Its adiabatic evolution is governed by the time-dependent Hamiltonian

where       is the transverse field coefficient, which is initially very high, and reduces to 
zero over time.   

Γ(t)

2 - The system starts in an arbitrary initial state.

HD is the transverse field Hamiltonian, which does commute with HF, 

S. Aaronson, Quantum Computing, Lecture 15.



The transverse field Hamiltonian

The disordering Hamiltonian HD introduces kinetic energy to the annealing process 
in the form of quantum fluctuations of the solution space. 


Decreasing        moves the system closer to HF  while dampening the quantum 
fluctuations.

Γ(t)

High values of       allow the computation to escape local minima by “tunneling 
through” hills instead of climbing over them incrementally, as Simulated Annealing 
does. This is allows the algorithm to move "faster" and "further" across the 
landscape early in the process.

Γ(t)

C. C. McGeoch, Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice. Synthesis 
Lectures on Quantum Computing 5,1 (2014).



Practical implementation of Quantum Annealing: 
DWave Systems1

In the DWave quantum annealers, the final Hamiltonian HF is written as an Ising 
Hamiltonian 

in which the coefficients hi and Jij encode the desired problem. The time-dependent 
Hamiltonian is given by  

1D-Wave Systems Inc., https://dwavesys.com. 

2F. Glover, G. Kochenberger, and Y. Du, 4OR-Q J Oper Res 17, 335 (2019).

HF = HIsing = ∑
i

hiσi
z + ∑

ij

Jijσi
zσ

j
z,

H(t) = [1 − s(t)]HI + s(t)HF,

where s(t) is the scheduling function. The initial Hamiltonian is 

HI = − ∑
n

σn
x .



After the total evolution time T, the qubits are measured in the 
computational basis, returning a string of bits

zi ∈ {0,1}|z1z2 . . . zn⟩ s.t.

However, beyond quantum fluctuations, there are thermal fluctuations, once the 
superconducting qubits are cooled down approximately 15 mK.

After many runs, the lowest energy eigenstate is taken as the solution to the problem.

Observations: 

1- Due to decoherence and several experimental imperfections, the results cannot be 
good.

2 - AQC and QA methods are sometimes treated as equals. 

3 - Due to                  the DWave quantum annealers are dedicated quantum 
computers, not universal ones. 


HF = HIsing



Finding the prime factors of N = pq via QA1

Our first task is to build a cost function to this problem,

The solution to the problem is           and            s.t.                 .     x = p y = q fN(x, y) = 0

Expanding x and y in binary representation xi, yk ∈ {0,1}

1X. Peng, et al., Phys. Rev. Lett. 101, 220405 (2008).

W e a r e 
consider ing 
o n l y o d d 
numbers. 



Quantizing the binary variables:

we obtain the problem Hamiltonian

Bounds on the values of nx and ny 1

means the largest odd integer not larger than   .⌊w⌋odd w
⌈w⌉ means the smallest integer larger than or equal to    .w

1N. N. Hegade, et al., Phys. Rev. A 104, L050403 (2021).



Example: N=21

We can simplify the Hamiltonian taking into account the repeated binary variables: 

x2
i = xi y2

k = yk

The simplified Hamiltonian is 

Its ground state is |x1y1y2⟩ = |111⟩ ⇒ x = 1.21 + 1 = 3
y = 1.22 + 1.21 + 1 = 7



Solving differential equations on quantum 
annealers: 2D heat equation

Heat equation in the stationary regime for a square plate of length L with multiple

heat sources and sinks is

 G. G. Pollachini, Phys. Rev. A 104, 032426 (2021)

Boundary conditions

- heat-source function·q(x, y)

k is the thermal conductivity of the material 

(we use k = 1 W/m K).



Using the finite element method, the plate can be divided in 
smaller squares

m=11



Solving linear systems on quantum annealers

The solution of the system of coupled linear equations can be found by minimizing the

function

Each component can be represented in floating-point notation as

D. O'Malley and V. V. Vesselinov, in 2016 IEEE High Performance Extreme Computing Conference (HPEC) (IEEE, 
2016); 

M. L. Rogers and R. L. Singleton Jr, Frontiers in Physics 8, 265 (2020).

R describes the precision of the approximation.



Encoding the problem - discrete Hamiltonian

Coefficients

Two indices for each qubit?



Mapping the indexes

The inverse map

in which

The QUBO Hamiltonian

DWave needs just 
the Hamiltonian 
coefficients. 



Iterative method for Ax = b ⇒ less qubits  
(Block Gauss-Seidel method)

N/2N/2

N/2

N/2

Iterative solution

After k steps



Initial conditions

Distribution of sources and sinks



Relative error after steps 
(Benchmarking the 2000Q and Advantage Systems)



Relative error after steps with a shrink factor             of at each stepγ = 0.8

the interval for estimating the solution at the kth iteration



Solution:  
temperature distribution on the plate



Opportunity: 

Masters Scholarship in Quantum Computing


Start: beginning of 2023 



Conclusions and perspectives

Quantum computing is a very exciting field!!!

This mini course is a first step towards the development of more sophisticated 
quantum algorithms.

There are interesting open questions.

I hope you have enjoyed ;)


