Molecular Dynamics Simulation of supercooled ZnSe: Structural relaxation and Crystal nucleation

José Pedro Rino

Departamento de Física
Universidade Federal de São Carlos – S.P. - BRAZIL

II ICTP-SAIFR Condensed Matter Theory in the Metropolis
São Paulo, November 9-11, 2022.
The kinetics of crystal nucleation in SCLs are extremely important and play a crucial role in numerous natural processes such as

- snow precipitation
- crystallization of proteins and minerals

industrial technologies such as

- single crystals
- metal casting and solidification
- drug design and production
- glass-ceramics
• To properly understand the atomistic dynamics of SCL

- Two characteristic times

 - intrinsic atomic diffusivity that leads to structural rearrangement of the SCL - RELAXATION TIME - τ_R

 - Average period need to spontaneously form the 1st crystalline critical nucleus – NUCLEATION TIME - τ_N
Race between the two relaxation times

If $\tau_N < \tau_R$ \Rightarrow crystallization

If $\tau_N > \tau_R$ \Rightarrow liquid relax - glass

Temperature which $\tau_N = \tau_R$ \Rightarrow kinetic spinodal temperature T_{ks}

OBS: T_{ks} is not the classical thermodynamics spinodal, where the thermodynamic barrier for the liquid/crystal transformation vanishes
Race between the two relaxation times

The relationship between this characteristic time has been scarcely investigated.

Experimentally: \(\text{Li}_2\text{O}.2\text{B}_2\text{O}_3 \) and \(\text{Li}_2\text{O}.2\text{SiO}_2 \)

- Pressurized \(\text{SiO}_2 \)
- Supercooled Ni, Cu, Cu\(_5\)Zr

Simulation:
- Binary L-J mixture
- Cu\(_x\)Zr\(_{1-x}\), \(0.15 \leq x \leq 0.645\)
- BaS
Case studied: ZnSe

• Some properties:
 • direct wide band-gap
 • Low absorptivity at infrared wavelength
 • Preferred material for lenses, windows, output coupler, beam expander
 • Used laser-diodes
 • Green-blue LEDs
 • Crystallizes in both zinc-blende and wurtzite, under ambient conditions
Our Approach

Molecular Dynamics Simulation

• Interaction potential
• Spontaneous crystallization
Interatomic Potential – Vashishta/Rahman

\[\Phi(r) = \sum_{i<j=1}^{N} V_{i,j}(r) + \sum_{i,j<k} V_{jik}^{(3)}(\vec{r}_{ij}, \vec{r}_{ik}) \]

\[V_{ij}(r) = \frac{H_{i,j}}{r \eta_{i,j}} + \frac{Z_i Z_j}{r} e^{-r/\lambda} - D_{i,j} \left(\frac{\alpha_i Z_j^2 + \alpha_j Z_i^2}{2r^4} \right) e^{-r/\zeta} - \frac{W_{i,j}}{r^6} \]

\[V_{jik}^{(3)}(\vec{r}_{ij}, \vec{r}_{ik}) = B_{jik} \exp\left(\frac{1}{r_{ij}-r_o} + \frac{1}{r_{ik}-r_o} \right) \frac{(\cos \theta_{jik} - \cos \bar{\theta}_{jik})^2}{1 + C_{jik} (\cos \theta_{jik} - \cos \bar{\theta}_{jik})^2}. \]
Partial results

<table>
<thead>
<tr>
<th>Quantities used to find parameterization</th>
<th>MD</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohesive energy (eV/N)</td>
<td>-2.697</td>
<td>-2.697</td>
</tr>
<tr>
<td>Lattice constant (Å)</td>
<td>5.643</td>
<td>5.643 (extrapolated to 0K),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.667 at 300K</td>
</tr>
<tr>
<td>Bulk modulus (GPa)</td>
<td>61.85</td>
<td>59.53 - 78.4</td>
</tr>
<tr>
<td>Elastic Constant C_{11} (GPa)</td>
<td>83.70</td>
<td>81 – 104.6</td>
</tr>
<tr>
<td>Elastic Constant C_{12} (GPa)</td>
<td>50.91</td>
<td>48.8 – 65.3</td>
</tr>
<tr>
<td>Elastic Constant C_{44} (GPa)</td>
<td>31.02</td>
<td>44.1 – 46.13</td>
</tr>
<tr>
<td>Melting Temperature (K)</td>
<td>1388</td>
<td>1800</td>
</tr>
</tbody>
</table>
Partial results - Energetic

\[E_{ZB} - E_{WZ} = -8.5 \text{ meV} \]
Partial results

<table>
<thead>
<tr>
<th>Θ_{Debye} (K)</th>
<th>MD</th>
<th>Expt*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>226 ± 1</td>
<td>237 ± 6 at room temperature
224 ± 2 at nitrogen temperature</td>
</tr>
</tbody>
</table>

- N.P. Sharma, Indian Pure Appl. Phys. 10, 478 (1972)
Partial conclusions

 ✓ Very good interatomic potential

 ✓ The system spontaneously crystallize when cooled down

Goal

 ✓ Nucleation rate, relaxation time

 ✓ Systems with 17,576 and 32,768 particles
heating & cooling
Spontaneous nucleation – $T \leq 1000K$

Birth time, or nucleation time, τ_N

$T = 1000K, 950K, 900K$

System sizes: 17,576 and 32,768 particles

Average over 15 samples

Solid like particles – Steinhart bond-order parameter

$$S_{ij} = \sum_{m=-6}^{m=+6} q_{6m}(i) \cdot q^*_{6m}(j); \quad q_{6m}(i) = \frac{1}{N_b(i)} \sum_{j=1}^{Nb(i)} Y_{lm}(\vec{r}_{in})$$
Spontaneous nucleation – $T \leq 1000\text{K}$

$$J_{ss} = \frac{1}{\tau V}$$

<table>
<thead>
<tr>
<th>T (K)</th>
<th>N</th>
<th>τ_N (ps)</th>
<th>J_{ss} (ps$^{-1}$Å$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>17,576</td>
<td>803.8</td>
<td>2.5x10$^{-9}$</td>
</tr>
<tr>
<td></td>
<td>32,768</td>
<td>740</td>
<td>1.5x10$^{-9}$</td>
</tr>
<tr>
<td></td>
<td>3.7x1010</td>
<td>5.0x10$^{-4}$</td>
<td></td>
</tr>
<tr>
<td>950</td>
<td>17,576</td>
<td>224.7</td>
<td>0.9x10$^{-8}$</td>
</tr>
<tr>
<td></td>
<td>32,768</td>
<td>168.3</td>
<td>0.7x10$^{-8}$</td>
</tr>
<tr>
<td></td>
<td>3.7x1010</td>
<td>1.25x10$^{-4}$</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>17,576</td>
<td>161.2</td>
<td>1.3x10$^{-8}$</td>
</tr>
<tr>
<td></td>
<td>32,768</td>
<td>78.8</td>
<td>1.4x10$^{-8}$</td>
</tr>
<tr>
<td></td>
<td>3.7x1010</td>
<td>7.41x10$^{-5}$</td>
<td></td>
</tr>
</tbody>
</table>

$N=3.7\times10^{10}$ particles $\rightarrow V=1\mu\text{m}^3$
heating & cooling

The graph illustrates the change in atomic volume (Å3) as a function of temperature (T(K)). The curves represent different sample numbers (N=17576 and N=32768). The transition temperatures T_g (glass transition temperature) and T_m (melting temperature) are marked on the graph. The heating and cooling phases are indicated by arrows.
Structural Relaxation time

\[(1000 < T < T_m) \]

\[F_s(q, t) = N_{\alpha}^{-1} \sum_{j=1}^{N_{\alpha}} \exp(i\vec{q} \cdot (\vec{r}_j^\alpha(t) - \vec{r}_j^\alpha(0))) \]

The tail (long time) is described by the KWW law (Kohlrausch-Williams-Watts)

\[F_s(q, t) = F_s(q)\exp\left[-\left(\frac{t}{\tau_\alpha}\right)^\beta\right] \]

By decreasing the temperature, a plateau appears which is related to the time needed by particles to break out of the cage created by neighboring particles.
Average relaxation time – structural relaxation time

\[\tau_\alpha(T) = \left(\langle \tau_{\alpha,Zn} \rangle + \langle \tau_{\alpha,Se} \rangle \right) / 2 \]

\[\beta(T) = \left(\langle \beta_{Zn} \rangle + \langle \beta_{Se} \rangle \right) / 2 \]

Relaxation time \(\tau_R \)

\[\tau_R(T) = \frac{\tau_\alpha(T)}{\beta(T)} \Gamma \left(\frac{1}{\beta(T)} \right) \]

Diffusion and viscosity

\[\langle R^2(t) \rangle = 6Dt; \quad D = D_0 \exp \left(\frac{-E_A}{k_B T} \right) \]

\[\eta = \frac{V}{Nk_B} \int_0^\infty \langle P_{ij}(0)P_{ij}(t) \rangle dt \]
Deep supercooling: spontaneous crystallization
\((T: 1000K, 950K, 900K)\)

Shallow supercooling: relaxation time
\((900K \leq T \leq 1600 K)\)

How to compare?

How to extrapolate to other temperatures?

- \(\tau_N\) CNT
- \(\tau_R\) MYEGA
τ_N - Classical Nucleation Theory

Recall that

$$J_{ss} = \frac{1}{\tau_N} V$$

$$\frac{J_{ss}\sqrt{T}}{D} = A \exp \left(-\frac{B}{T} \right)$$

(A and B fitted parameters)

τ_R - MYEGA

Mauro-Yue-Ellison-Gupta-Allan - MYEGA

$$\log_{10}(\eta) = \log_{10}(\eta_\infty) + \frac{A}{T} \exp \left(\frac{B}{T} \right)$$
The ultimate fate of supercooled ZnSe

Maxwell equation,

$$\tau_\eta = \frac{\eta}{G_\infty}$$

1. $\tau_\eta < \tau_R$

2. above $\sim 1100K$ $\tau_R < \tau_N$

3. Large system below $\sim 1100K$ $\tau_N < \tau_R$

MYEGA:

$$\log_{10}(\tau_R) = \log_{10}\tau_\infty + \frac{A}{T} \exp(B/T)$$
Critical cooling rate required to avoid nucleation

\[\frac{\Delta T}{\Delta t} = \frac{T_m - T_{nose}}{\tau_{nose}} \]

(Uhlmann D. R., J Non – Crystal Solids 7 (1972)337)

\(\tau_{nose} \) related to \(T_{nose} \) (minimum point in the Time-Temperature transformation curve)

<table>
<thead>
<tr>
<th>System size</th>
<th>Critical cooling rate (K/ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17576</td>
<td>5.5</td>
</tr>
<tr>
<td>32768</td>
<td>18.5</td>
</tr>
</tbody>
</table>

Cooling rate used 1K/ps \(\rightarrow \) spontaneous nucleation already in the cooling procedure
Conclusions

- From MD we obtained both nucleation time, τ_N, (spontaneous crystallization) relaxation time, τ_R, from intermediate scattering function and viscosity.

- Relaxation time using Maxwell relation, τ_η, gives a lower boundary. (this confirms recent experimental results – Li$_2$O.2B$_2$O$_3$ and Li$_2$O.2SiO$_2$)

- Shallow supercooling: $\tau_R < \tau_N$, relaxation occurs before nucleation.

- T_{ks} increases as system size increases.

- $T_{ks} > T_g$, system crystallize (at least one critical nucleus) before become a glass.

- T_g, refer to a residual supercooled liquid which already contain several crystalline nuclei formed on the cooling path.
Collaborators

Prof. Dr. Edgar D. Zanotto
Center for Research, Technology and Education in Vitreous Materials
Universidade Federal de São Carlos, SP - Brazil

Dr. Leila Separdar
FAPESP Pos-Doc Fellow
Departamento de Engenharia dos Materiais
Universidade Federal de São Carlos, SP - Brazil
Acknowledgments

- FAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo
- CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico

Brazil