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STRONGLY MAGNETIZED PHYSICAL SYSTEMS

Early universe√
eB ∼ 1.5 GeV

Heavy-ion collision√
eB ∼ 0.5 GeV

Neutron stars√
eB ∼ 1 MeV

QCD vacuum
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MAGNETIC FIELDS IN HEAVY-ION COLLISIONS

Figure 2: Spatial distributions of the electric (right) and magnetic (left) fields
in the transverse plane for an impact parameter b = 10 fm Deng and Huang

2012.

Caveats:

• highly non-homogeneous background.

• //A/////real///E////////leads///to//////sign////////////problem.

• ////No /////////////Minkoswki///////time ////////////evolution //////from
/////////////Euclidean ///////////////simulations.

What can we do?

B(x) as
background in
lattice QCD!
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LATTICE QCD IN A NUTSHELL

〈 O 〉 =
1

Z

∫
Dψ̄DψDA Oe−S[ψ̄,ψ,A] −→ 1

Z

∫
DAdet

[
/D(A) +m

]
Oe−Sg[A]

• quarks ψ(x) x ∈ R −→ ψ(n) n ∈ Z
• gluons Aµ −→ Uµ = eiagA

b
µTb ∈ SU(3)

• (anti-)periodic BC

1. Generate samples {O1,O2, ...,ON} with a probability
det
[
/D(A) +m

]
e−Sg using Monte Carlo steps.

2. Calculate averages 〈 O 〉 = (1/N)
∑N
i=1Oi

• magnetic field B −→ uµ = eiaqAµ ∈ U(1) (BACKGROUND!)

4
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MAGNETIC FIELD ON THE LATTICE

Consider a uniform �eld in the z directions:

B = B ẑ

Stoke's theorem must hold:

inner area:
I

A � dx� = SB

outer area:
I

A � dx� = ( L x L y � S)B

e� iqBS = eiqB (L x L y � S)

qB =
2�N b

L x L y
; Nb 2 Z The magnetic �ux is quantized in-

side a box!

5
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UNIFORM MAGNETIC FIELD ON THE LATTICE

B = r � A

Ay = Bx A x = Az = A t = 0

uy = eiaqBx ux = uz = ut = 1

uy (L x ) = eia 2�Nb=L y 6= uy (0)

We can perform gauge transfor-
mations on the links

u0
� (x) = 
( x)u� 
( x + a�̂ )y

a is the lattice spacing.

ux =

(
e� iqBL x y if x = L x � a
1 if x 6= L x � a

uy = eiaqBx 0 � x � L x � a

uz = 1

ut = 1

6



Strongly magnetized physical systems Lattice QCD and magnetic �elds Lattice simulations Summary & Conclusions References

UNIFORM MAGNETIC FIELD ON THE LATTICE

B = r � A

Ay = Bx A x = Az = A t = 0

uy = eiaqBx ux = uz = ut = 1

uy (L x ) = eia 2�Nb=L y 6= uy (0)

We can perform gauge transfor-
mations on the links

u0
� (x) = 
( x)u� 
( x + a�̂ )y

a is the lattice spacing.

ux =

(
e� iqBL x y if x = L x � a
1 if x 6= L x � a

uy = eiaqBx 0 � x � L x � a

uz = 1

ut = 1

6



Strongly magnetized physical systems Lattice QCD and magnetic �elds Lattice simulations Summary & Conclusions References

UNIFORM MAGNETIC FIELD ON THE LATTICE

B = r � A

Ay = Bx A x = Az = A t = 0

uy = eiaqBx ux = uz = ut = 1

uy (L x ) = eia 2�Nb=L y 6= uy (0)

We can perform gauge transfor-
mations on the links

u0
� (x) = 
( x)u� 
( x + a�̂ )y

a is the lattice spacing.

ux =

(
e� iqBL x y if x = L x � a
1 if x 6= L x � a

uy = eiaqBx 0 � x � L x � a

uz = 1

ut = 1

6



Strongly magnetized physical systems Lattice QCD and magnetic �elds Lattice simulations Summary & Conclusions References

UNIFORM MAGNETIC FIELD ON THE LATTICE

B = r � A

Ay = Bx A x = Az = A t = 0

uy = eiaqBx ux = uz = ut = 1

uy (L x ) = eia 2�Nb=L y 6= uy (0)

We can perform gauge transfor-
mations on the links

u0
� (x) = 
( x)u� 
( x + a�̂ )y

a is the lattice spacing.

ux =

(
e� iqBL x y if x = L x � a
1 if x 6= L x � a

uy = eiaqBx 0 � x � L x � a

uz = 1

ut = 1

6



Strongly magnetized physical systems Lattice QCD and magnetic �elds Lattice simulations Summary & Conclusions References

UNIFORM MAGNETIC FIELD ON THE LATTICE

B = r � A

Ay = Bx A x = Az = A t = 0

uy = eiaqBx ux = uz = ut = 1

uy (L x ) = eia 2�Nb=L y 6= uy (0)

We can perform gauge transfor-
mations on the links

u0
� (x) = 
( x)u� 
( x + a�̂ )y

a is the lattice spacing.

ux =

(
e� iqBL x y if x = L x � a
1 if x 6= L x � a

uy = eiaqBx 0 � x � L x � a

uz = 1

ut = 1
6



Strongly magnetized physical systems Lattice QCD and magnetic �elds Lattice simulations Summary & Conclusions References

INHOMOGENEOUS MAGNETIC FIELD ON THE LATTICE

B =
B

cosh
�

x � L x =2
�

� 2 ẑ

Pro�le motivated by heavy-ion colli-
sion scenarios Deng and Huang 2012,

Cao 2018.

qB =
�N b

L y � tanh
� L x

2�

� Nb 2 Z

ux =

(
e� 2iqB�y tanh ( L x

2 � ) if x = L x � a
1 if x 6= L x � a

uy = eiaqB� [tanh ( x � L x = 2
� )+tanh ( L x

2 � )] ; 0 � x � L x � a

uz = ut = 1
7
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THE SIMULATION SET UP

• N f = 2 + 1 improved staggered fermions with physical masses;

• Lattices: 163 � 6 243 � 8 283 � 10 363 � 12 �!
continuum limit (lattice spacing ! 0, V = const.);

• Number of gauge con�gurations � O (200) - O(700);

• Magnetic �eld

B =
B

cosh
�

x � L x =2
�

� 2 ẑ eB =
3�N b

L y � tanh
�

L x

2�

� � � 0:6 fm

strength 0 GeV �
p

eB � 1:2 GeV �! magnetars, HIC and early
universe.

• Temperature range 68 MeV � T � 300MeV (crossover transition
at Tc � 155MeV).

8
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� 2 ẑ eB =
3�N b

L y � tanh
�

L x

2�

� � � 0:6 fm

strength 0 GeV �
p

eB � 1:2 GeV �! magnetars, HIC and early
universe.

• Temperature range 68 MeV � T � 300MeV (crossover transition
at Tc � 155MeV).

8



Strongly magnetized physical systems Lattice QCD and magnetic �elds Lattice simulations Summary & Conclusions References

THE SIMULATION SET UP

• N f = 2 + 1 improved staggered fermions with physical masses;

• Lattices: 163 � 6 243 � 8 283 � 10 363 � 12 �!
continuum limit (lattice spacing ! 0, V = const.);

• Number of gauge con�gurations � O (200) - O(700);

• Magnetic �eld

B =
B

cosh
�

x � L x =2
�

� 2 ẑ eB =
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LATTICE OBSERVABLES

• Local chiral condensates (u and d quarks!)

�  renormalization��������! �( x; T; B ) =
mud

m4
�

� �  (x; T; B ) � �  (x; T; 0)
�

�  (x; T; 0) � �  (� L=2; T; B)

• Local Polyakov loop

P =
1

L x L y

X

y;z

Re Tr
Y

n

Ut (x; y; z; n) renormalization��������!
P(x; T; B )
P(x; T; 0)

P(x; T; 0) � P(� L=2; T; B)

• Local electric currents (u, d and s quarks!)

hJ i (x) i = e
�

2
3

�u
 i u �
1
3

�d
 i d �
1
3

�s
 i s
�

9
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CHIRAL CONDENSATE IN THE T -B PLANE

What happens to the peak of the condensate as a function of T and B?

• Magnetic
catalysis T away
from Tc

• Inverse catalysis
for T around Tc

Endrődi et al. 2019

Valence effect vs Sea effect = (inverse) magnetic catalysis

11
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POLYAKOV LOOP

The Polyakov loop is typically broader
than the chiral condensate.

C(x, x′) =
1

m3
π

〈
ψ̄ψ(x)P (x′)

〉
c

The interaction of the condensate with
P causes the dips! (Local inverse
magnetic catalysis)
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INHOMOGENEOUS vs UNIFORM CASE

How different do the condensates behave in the two cases?
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ELECTRIC CURRENTS

J ∼∇× B −→ Jy ∼
∂Bz
∂x

= − 2B

ε cosh

(
x− Lx/2

ε

)2 tanh

(
x− Lx/2

ε

)

Figure 6: Lattice electric currents for RHIC-like (
√
eB = 0.1 GeV) and

LHC-like (
√
eB = 0.5 GeV) magnetic fields, respectively.
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(BARE) MAGNETIC SUSCEPTIBILITY

1

µ0
B = H + M −→ Jtot = Jf + Jm −→ Jm =∇×M

• Linear response term:
M ≈ χmH

•
χm

1 + χm
∇× B = Jm

The susceptibility contains an additive
divergence χm ∼ log(a)
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(RENORMALIZED) MAGNETIC SUSCEPTIBILITY

The divergence is independent of T : χrm(T ) ≡ χm(T )− χm(0)

•
χrm < 0:
diamagnetism

•
χrm > 0:
paramagnetism

Material χm

Al +2.2×10−5

Glass -1.13×10−5

Great agreement with the current-current method! Bali, Gergely Endrődi,

and Piemonte 2020
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and Piemonte 2020

16



Strongly magnetized physical systems Lattice QCD and magnetic fields Lattice simulations Summary & Conclusions References

(RENORMALIZED) MAGNETIC SUSCEPTIBILITY

The divergence is independent of T : χrm(T ) ≡ χm(T )− χm(0)

•
χrm < 0:
diamagnetism

•
χrm > 0:
paramagnetism

Material χm

Al +2.2×10−5

Glass -1.13×10−5

Great agreement with the current-current method! Bali, Gergely Endrődi,
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SUMMARY & CONCLUSIONS

• A richer scenario emerges in the presence of an inhomogeneous
B (dips, steady eletric currents, etc.);

• Prominent electric currents for LHC-like magnetic fields and
stronger;

• Using Jm and Maxwell’s equations we introduced a new method
to compute χm;

• Our χm corroborates the picture of weak diamagnetism in QCD
for T < Tc and strong paramagnetism for T > Tc;

• The knowledge of these processes is important to capture the
correct physics in heavy-ion collision studies (QCD models,
hydrodynamics, etc.);
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